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Abstract: Data marketplaces are expected to play a crucial role in tomorrow’s data economy, but
such marketplaces are seldom commercially viable. Currently, there is no clear understanding of
the knowledge gaps in data marketplace research, especially not of neglected research topics that
may advance such marketplaces toward commercialization. This study provides an overview of
the state-of-the-art of data marketplace research. We employ a Systematic Literature Review (SLR)
approach to examine 133 academic articles and structure our analysis using the Service-Technology-
Organization-Finance (STOF) model. We find that the extant data marketplace literature is primarily
dominated by technical research, such as discussions about computational pricing and architecture.
To move past the first stage of the platform’s lifecycle (i.e., platform design) to the second stage
(i.e., platform adoption), we call for empirical research in non-technological areas, such as customer
expected value and market segmentation.

Keywords: data markets; data marketplaces; data exchange; business data sharing; research agenda;
systematic literature review; STOF model

1. Introduction

Data marketplaces are expected to play a crucial role in tomorrow’s data economy [1].
A data marketplace can be broadly defined as a multi-sided platform that matches data
providers and buyers. It facilitates business data sharing among enterprises. Key actors
providing data marketplace functionalities include owners, operators, and third-party
providers [2–4]. Business data sharing via data marketplaces may contribute to overall
economic growth by stimulating data-driven innovation, improving the competitiveness of
small and medium-sized enterprises (SMEs), and opening up job markets [5]. Despite their
potential, data marketplaces have only been commercialized in a few cases (such as Dawex,
Data Intelligence Hub, and Advaneo) [4]. Commercialization of such marketplaces enables
the creation of new products and services. It is especially beneficial for organizations that
do not have proprietary access to required data [6]. Moreover, commercialization can foster
the integration of third-party providers into data marketplaces, enabling them to enhance
marketplace offerings by providing complementary products and services.

This paper considers all data marketplace archetypes revealed by Fruhwirth, Rachinger,
and Prlja [2]: centralized, decentralized, and personal data trading. In centralized data
trading, data marketplaces mediate data exchange from diverse domains and origins, in-
corporating different data types and pricing mechanisms. Advanced data marketplaces in
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this archetype employ smart contracts to execute transactions. Decentralized data trading,
on the other hand, relies on a decentralized architecture to operate data marketplaces.
Finally, personal data trading refers to a Customer-to-Business (C2B) relationship where
individuals can sell their personal information to companies.

From an academic perspective, recent trends in the European Union policy-making
agendas have led to increased studies on business data sharing via data marketplaces,
resulting in a constantly expanding yet fragmented body of literature. Recent research
provides an understanding of the state-of-the-art in practice via business model studies
(e.g., Fruhwirth, Rachinger and Prlja [2], van de Ven et al. [7]), but it does not provide a
comprehensive overview of data marketplace research in academia. Consequently, knowl-
edge gaps in data marketplace research remain unclear. Specifically, we lack understanding
of whether research is scarce on topics that would advance data marketplaces toward
commercialization. As it stands, it might well be that academic research is focusing on
topics that do not help resolve the standstill in data marketplace commercialization.

Adopting the Systematic Literature Review (SLR) guideline provided by Okoli [8],
this paper provides a systematic review of research on data marketplaces. To cover the
broad range of issues that plays a role in technology commercialization, we also use the
business model construct as a literature review framework (cf., Solaimani et al. [9]). To the
best of our knowledge, our study is the first to provide a comprehensive overview of
data marketplace research, which will be beneficial in steering future research toward
commercializing data marketplaces.

We describe our approach in conducting a systematic literature review in Section 2,
followed by the article categorization based on the Service-Technology-Organization-
Finance (STOF) model in Section 3. Then, Section 4 discusses the domination of technical
research in the data marketplace literature; Section 4 also highlights the future research
agendas. Finally, we close this paper by presenting the main conclusions and limitations of
our study in Section 5.

2. Research Approach

This research employs a Systematic Literature Review (SLR) approach [8], summarized
in Figure 1. Okoli [8] suggests that an SLR study can be divided into four primary steps.
These are (1) planning, (2) selection, (3) extraction, and (4) execution.
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Figure 1. The research approach adapted from Okoli [8].

The planning step comprises the activities of determining the objective and research
protocol. Whereas the objective is presented in Section 1, the research protocol, including
the guidelines to synthesize the articles, will be discussed in this section. Next, the selection
step is conducted by identifying the screening criteria and conducting a literature search.
We selected articles based on three criteria: articles should be (1) written in English;
(2) published in a peer-reviewed journal or conference proceedings; and (3) focused on data
marketplaces. We employed the search terms of (“data marketplace*”) OR (“data market*”).
Our primary database is Scopus, which comprises a comprehensive database of many
scientific research papers, including the area we are examining in this study. The literature
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search was conducted on 6 July 2020 and resulted in 496 articles. We complemented these
articles with nine additional papers that we consider key literature. These nine articles did
not appear in the initial search because, for instance, they do not use the data marketplace
term explicitly, neither in the title nor abstract.

In the extraction step, we retrieved the articles’ meta-data and saved it in an Excel
spreadsheet (File S1, available here: https://doi.org/10.4121/14673813.v2, accessed on
22 November 2021). Next, we analyzed the quality of the identified articles by employing
a two-step screening approach. First, we looked into the title and abstract of the selected
papers to assess their relevance. We discussed our assessment internally to reach a consen-
sus, resulting in an exclusion of 225 papers. We excluded the articles because the studies
(1) merely focus on data marketplaces as the core of the research, (2) are published in
a workshop or proceeding description—not in a peer-reviewed research paper, (3) not
written in English, and (4) have no abstract.

Second, we used traditional metrics (i.e., citation numbers, journal ranks, and journal
percentiles) by calculating the average number of citations from the existing 280 articles.
We use the resulting average citation number (7.3, rounded down to 7) as a threshold to
quantitatively assess the paper. We included any articles that were cited more than seven
times. We further assessed those below the threshold in terms of the publication outlet. If a
journal or conference proceedings were ranked above the 50th percentile in their respective
domain, we would consider those outlets as high-quality. As a result, we included any
articles that also belong to these criteria. Using both citation numbers and publication rank
ensured the inclusion of the most prominent and relevant articles.

We also considered alternative metrics (i.e., social media, usage, captures, and men-
tions) provided by the Scopus database, namely the PlumX Metrics [10], for the remaining
articles that did not meet both criteria. The rationale is that the novelty of data marketplaces
and its growing interest in the non-scientific community might lead to more discussions in
(among others) social media. As a result, the impact of such articles might not be captured
by traditional metrics. Using these alternative metrics would allow the inclusion of articles
that creates an impact beyond the scientific community. Furthermore, attention to such met-
rics is increasingly used for scientific evaluation to complement traditional metrics [11]. We
calculated the average numbers of those alternative metrics based on the existing 280 articles,
resulting in the following threshold: social media = 2.1, usage = 44.8, captures = 43.2, and
mentions = 0.2. We included any remaining articles that have scores above these numbers,
resulting in 158 papers. By combining both traditional and alternative metrics, we ensure
both scientific reliability and relevance to practice.

In the execution step, we synthesized the included papers and wrote the review
(see Section 4). Following Solaimani, Keijzer-Broers, and Bouwman [9], we applied the
Service-Technology-Organization-Finance (STOF) model to synthesize the included papers.
The STOF model is a generic framework to reconstruct the logic of a business and its ecosys-
tem [12]. Thus, it enables a high-level representation of the service domain (S), technology
domain (T), organization domain (O), and finance domain (F). The service domain describes
the service offering that the business and its ecosystem intend to deliver to create value
for a target group of customers. The technology domain describes the technical architecture
needed by the business ecosystem to deliver the proposed services. The organization domain
describes how the actors in the business ecosystem are organized to deliver the service
offering, to explicate how the ecosystem intends to create value for the customer. Finally,
the finance domain describes how the business and its ecosystem intend to capture value
from the service offering, including how costs, revenues, and risks are divided among the
different actors in the ecosystem.

The STOF model is suitable for our purpose since it is explicitly designed for ICT-
enabled services such as data marketplaces. Unlike frameworks such as The Business Model
Canvas [13], the STOF model explicitly captures the role of technology in commercialization.
Moreover, the STOF model helps to understand the dynamics involved in developing
successful business models (i.e., market adoption and sustainable profitability of the

https://doi.org/10.4121/14673813.v2
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designed services). Due to the lack of commercialized data marketplaces, it is crucial to
understand what we (do not) know about the breadth of the business models of data
marketplaces, ranging from their value to how they deliver and capture value. Hence, the
STOF model is highly appropriate to structure our review and discussion.

We then read the full text of the 158 remaining articles and classified each article into
a STOF model domain. Furthermore, each article was further classified into a category.
To classify an article, we identified its main research objective while paying attention to
the primary unit of analysis of the research. We employed the following guideline to
categorize the articles (see Table 1). The guideline is inspired by the STOF model [12].
In addition, we also considered the well-known ACM Computing Classification System
(https://dl.acm.org/ccs, accessed on 9 August 2021) to identify the suitable keywords for
our categorization.

Table 1. The guideline to categorize the articles.

STOF Model Domain Description Category Examples
(Included but Not Limited To)

Service

Discussing possible services for end-users (data
providers and buyers); services uniqueness and
differentiators compared to competitors’ offered
services; potential customers who will use and pay
for the developed services.

Customer, previous experience, expected value, market
segment, context, effort (ease of use), tariff, bundling,
perceived value, delivered value, intended value,
value proposition.

Technology Discussing technology needs to deliver
the services.

Technical architecture, applications, devices, service
platforms, billing platform, customer data platform,
technical functionality.

Organizational

Discussing actors and resources to run the services.
Use organization domain to categorize “other”
topics, e.g., demographic aspects,
social implications.

Resources and capabilities, strategies and goals, value
activities, value network, actors, organizational
arrangements, relations, interactions, roles.

Finance Discussing financial schemas to run the services.
Investment sources, capital cost sources, costs, revenue
sources, revenues, risk sources, risk performance
indicators, financial arrangement.

For example, Munoz-Arcentales et al. [14] propose an architecture for data usage
and access control. Since the discussion emphasizes technology needs, we classified this
paper into the architecture category in the STOF technology domain. Another example
is a study conducted by Virkar, Viale Pereira, and Vignoli [5]. The study discusses the
political, economic, societal impacts of data trading via a data marketplace. After carefully
examining the paper, we classified this paper into the social implication category in the STOF
organization domain. Although some articles can have multiple overlapping topics, we
still attempted to assign each article into a single category. We justified this by analyzing
the central theme of the discussion. Various articles were independently categorized
by multiple authors to assess inter-rater reliability. In general, there was a high level
of agreement between the authors. We also further excluded some irrelevant articles,
including those that did not discuss business data sharing via data marketplaces. Our final
sample consisted of 133 articles.

3. Results: STOF Model Categorization

This section describes the results of our STOF model categorization. In total, we
identify 17 categories (refer to Figure 2). The description for each category is provided in
the following sub-section.

https://dl.acm.org/ccs
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Figure 2. The selected articles categorized using the STOF model (n = 133).

3.1. The Service Domain

We identify three categories within the STOF service domain (see Table 2). The first
one concerns the data-related aspects. This category explores data properties as a unit of
analysis, such as data characteristics as economic goods [15] and approaches to identify
data quality problems [16]. The second category in the service domain is user preferences.
It discusses data providers’ willingness to share data via data marketplaces considering
aspects such as anonymity [17] and data ownership [18]. In addition, the value theory for
personal data is also proposed [19].

Table 2. The service domain.

Category Description Article Reference

Data-related aspects Discussing data properties as a unit of analysis. [15,16]

User preferences Discussing willingness to share data due to certain aspects. [17–19]

Value proposition Identifying value for data marketplace actors. [20–26]

Finally, the most dominant category in the service domain is the value proposition.
The studies in this category generally concern identifying value for data marketplace actors.
For example, Perera et al. [20] and Anderson et al. [21] explore the value of trading Internet
of Things platforms (IoT) and healthcare data, respectively. An additional example is the
value exploration of data marketplaces that trade anonymous personal data [22]. Addition-
ally, Mamoshina et al. [23] discuss the possibility of blockchain and artificial intelligence
implementation to solve concerns from regulators and data providers, specifically related
to the issue of control over data. Match-making services in data marketplaces are also
discussed to ease data providers to advertise their data product; to enable data buyers to
request their data demand [24,25]. Finally, another surprising example is the discussion of
services provided by “stolen data markets”, which refer to marketplaces that trade illegal
data such as personal and credit card information [26]. To sum up, the discussion in the
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service domain primarily focuses on the services provided by data marketplace operators
and third-party providers to fulfill the needs of data marketplace actors.

3.2. The Technical Domain

Most publications fall within the STOF technology domain. This domain is divided
into six categories (refer to Table 3). In our sample, the first identified category is archi-
tecture. Architecture of data marketplaces can be loosely described as building blocks of
technical components. The discussion in the architecture category is primarily dominated
by blockchain-based systems, which relates to the development of peer-to-peer and de-
centralized data marketplaces [27,28]. Specifically, the blockchain systems are applied to
specific contexts such as the automotive domain [29,30], private data sharing [31], Internet
of Things (IoT) [32–35], or smart cities [36]. In other cases, blockchain-based systems
are employed for proposing auditing schema [37], credit scoring [38], data transaction
integrity [39], and Proof of Usage (PoU) algorithm [40]. Beyond the blockchain-based
systems, the proposed architecture specifically highlights data access and control based
on the International Data Space (IDS) reference architecture [14]. Beyond the blockchain-
based architecture, Matzutt et al. [41] discuss a conceptual architecture for personal data
marketplaces, focusing on protecting data privacy, while Mišura and Žagar [42] focus
on IoT devices. In addition, Sánchez et al. [43] propose a data marketplace architecture
to federate multiple-domain IoT; Pillmann et al. [44] propose an information model to
provide a single point of access for vehicle data. Finally, Li et al. [45] propose a cost-efficient
middleware for data acquisition service; Ren et al. [46] introduce infrastructure architecture
for data placement.

The second category, which is the most discussed category in this domain, is com-
putational pricing. It focuses on technical discussions for data pricing. Computational
pricing emphasizes algorithms as price determination mechanisms [47], such as machine
learning-based algorithms to price training data or pre-trained models [48,49]. Advanced
techniques are proposed, such as a smart pricing algorithm based on Stackelberg game
theory. This algorithm is applied in blockchain-based data marketplaces [50].

Next, publications in this category primarily propose query-based pricing mechanisms,
referring to the capability to allow “the price of any query to be derived automatically”
([51], p. 43). The studies discuss many aspects, for instance, the implementation of query
pricing [52] and dynamic pricing considering “reserve price constraint” that helps data
brokers maximize their revenue [53]. Another algorithm allows data price to be derived
from the privacy losses [54]. Studies in query-based pricing mechanisms consider many
cases such as query interfaces for mobile crowd-sensed data [55,56], cloud-based data mar-
ketplaces with possibilities to share cloud resources [57], spatial data [58], aggregated data
from multiple distributed system [59], and data acquired from Application Programming
Interfaces (APIs) [60]. Moreover, Tang et al. [61] introduce query-based data provenance,
while Wang et al. [62] create efficient query-based auctions by considering both the value
data and the resource consumption of queries.

Many other articles also propose data quality-based pricing models by considering a
bi-level mathematical programming model [63], Fair Knapsack Pricing [64,65], or optimal
distributing algorithm [66]. Other works on data quality-based pricing specifically focus
on XML dataset properties [67,68]. Moreover, another topic in this category discusses an
iterative auction-based algorithm with an additional focus on data protection throughout
the auction processes [69,70]. Still concerning auction, Zheng et al. [71] introduce an
auction algorithm for data brokers, aiming for profit maximization in mobile crowdsourcing
data marketplaces.

The rest of the pricing topics are relatively diverse, depending on their specific fo-
cus. Zeng and Ohsawa [72] propose a new method to price data based on the clustering
technique. Oh et al. [73,74] develop data trading models that consider privacy valua-
tion. Likewise, another example explores algorithms for dynamic privacy pricing [75].
Hu et al. [76] develop a blockchain-based incentive structure that incorporates privacy and
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security aspects. Still on blockchain-based data trading, Liu et al. [77] design a debt-credit
system to solve the efficiency issues. Finally, Yang et al. [78] develop a pricing algorithm
from a data science perspective to examine the effect of data quality on machine learning.

Next, the category of data-as-a-service primarily explores the topic of Application
Programming Interfaces (APIs) to enable data providers and buyers to use the services of
data marketplaces. Vu et al. [79] aim to ease API implementation by providing a structure
description model. In addition, Truong et al. [80] develop a RESTful service specifically for
exchanging data agreements. The following category is data contracts, which generally refer
to formal arrangements between data providers and data buyers to specify data usage.
In this category, abstract models for data contracts are proposed to develop various data
contracts that consider different data types. The studies also propose evaluation techniques
to evaluate data contracts [81,82].

The information retrieval category to support data discovery in data marketplaces such
as information schema [83], semantic [84], and ontologies [85,86] are also discussed in the
literature. A review of data search techniques in data marketplaces is also conducted [87].
Moreover, Rekatsinas et al. [88] introduce a data source management system, which allows
users to identify the most useful data sources for their applications. Finally, the security
and privacy category has also gained much attention in the literature. The topics covered
in this category are related to privacy-preserving technology [89–93], property rights
enforcement [94], and secure information models [95].

Table 3. The technical domain.

Topic Description Article Reference

Architecture Proposing building blocks of technical components for data marketplaces. [14,27–46]

Computational pricing Discussing technical aspects such as algorithm or query techniques to price the data. [48–50,52–78]

Data-as-a-Service Exploring the topic of Application Programming Interfaces (APIs) to enable data providers
and buyers to use services of data marketplaces. [79,80]

Data contracts Discovering the models to develop formal arrangements between data providers and data
buyers to specify data usage. [81,82]

Information retrieval Discussing data discovery techniques in data marketplaces. [83–88]

Security and privacy Proposing technical enforcements to guarantee security and privacy. [89–95]

3.3. The Organization Domain

We identify five categories in the STOF organization domain (refer to Table 4). The first
category is the classification frameworks, which describe data marketplace business models
via a taxonomy [2,96,97]. Next, the category of data ecosystems is also discussed. A data
ecosystem is “a set of networks composed by autonomous actors that directly or indirectly
consume, produce or provide data and other related resources (e.g., software, services, and
infrastructure)” [98] (p. 4). Data marketplaces are often categorized as an instance of a data
ecosystem [99]. Therefore, the topics in this category examine ecosystem structures that
are relevant to data marketplaces. For instance, Hayashi and Ohsawa [100] investigate the
structural characteristics (i.e., how data interacts) in networks. Koutroumpis, Leiponen
and Thomas [3] examine data sharing using a conceptual market design perspective.
They identify the requirements for data sharing, specifically comparing small markets
with greater control vs. large markets with less control over data. Another topic is the
exploration of stolen data markets that specifically discuss the processes and market
forces that shape the relationship between involved actors and available products [101].
Finally, W. Thomas and Leiponen [6] and Oliveira, Lima and Lóscio [99] review data
ecosystems in the literature and propose research agenda. Subsequently, the category of
demographic aspects can be broadly defined as the description distribution of specific actor
properties, such as population. The topic discussed in this category covers the geographical
distribution of victims [102], actor populations [103], and community networks structures
in stolen data markets [104].
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Next, governance, the most-discussed category in this domain, broadly refers to govern-
ing processes by certain actors (e.g., data marketplace operators) via several mechanisms,
such as norms or power [105]. Examples of governance topics include discussion about
policies and strategies in data marketplaces [106], a reference model for data protection for
policymakers [107], and trust-creating mechanisms to enhance perceived market trustwor-
thiness [108]. Other topics analyze social structures [109] and facilitating factors of data
trading in stolen data markets [110]. Subsequently, the intervention and distributing ap-
proaches to crime prevention in stolen data markets are also discussed [111]. Furthermore,
more topics like tax instruments [112], a manifesto from data providers to retain control
over their data [113], and an elaboration on how multi-party computation (MPC) can be
attributed as a control mechanism [114] are also studied. The last topics in this category are
governance mechanisms in the data sharing platform design process [115], self-regulation
for fairness and transparency for data sharing [116], as well as discussion about legal and
technical measures for dealing with privacy issues [117].

Finally, the category of social implications refers to the exploration of data marketplace
impacts for society, such as the rise of ethical challenges in genomic health data shar-
ing [118]. Likewise, Van Dijck and Poell [119] critically examine the claim of the benefits
of health data sharing in platforms. This category also discusses the implications of data
trading for social, political, economic, and cultural contexts [5]. Finally, many articles
discuss the topic of exploitation of individual data in personal data marketplaces [120–123].

Table 4. The organization domain.

Topic Description Article Reference

Classification frameworks Developing a business model taxonomy for data marketplaces. [2,96,97]

Data ecosystems Examining ecosystem structures that are relevant to data marketplaces,
such as structural characteristics (i.e., how data interacts) in networks. [3,6,99–101]

Demographic aspects Describing the distribution of specific actor properties, such as population. [102–104]

Governance Exploring governing processes by certain actors (e.g., data marketplace
operators) via several mechanisms, such as norms or power. [106–117]

Social implications Discussing data marketplace impacts for society. [5,118–123]

3.4. The Finance Domain

We identify three categories in the STOF finance domain (see Table 5). The first
category is economic feasibility, examining the possibility to implement data marketplaces
using economic perspectives. It explores the competition between actors using Nash
equilibrium characterization [124]. Another category is market analysis. In general, it
examines the market size and value. For instance, Holt et al. [125] and Shulman [126]
analyze the economic value of stolen data markets. In addition, Soley et al. [127] develop a
model for calculating and estimating the monetary value of connected car data.

Table 5. The finance domain.

Topic Description Article Reference

Economic feasibility Examining the possibility to implement data marketplaces using economic perspectives. [124]

Market analysis Examining the market size and value of data marketplaces. [125–127]

Pricing mechanisms Discussing mathematical or economic approaches in evaluating, valuating, or pricing
datasets (or data services) in data marketplaces. [47,128–145]

Articles in the finance domain are not equally distributed across categories because
most discussions are centralized in pricing mechanisms. Unlike the computational pricing
in the STOF technology domain that focuses on technical aspects like query- or machine
learning-based pricing (see Section 3.2), the pricing mechanisms here emphasize more on
mathematical or economic approaches in valuating or pricing data in data marketplaces.
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The topics of this category include data trading models that consider contract the-
ory [128], information design perspective [129], and equilibrium pricing mechanism based
on Stackelberg game approach [130]. Moreover, pricing mechanisms specifically for per-
sonal data are also discussed. For instance, Niu et al. [131] propose pricing functions for
aggregated personal data; Parra-Arnau [132] mathematically examine the tradeoff between
privacy and money in personal data market; Yuncheng et al. [133] identify the properties
that contribute to price personal data, such as data cost, value weight, information entropy,
credit rating, and data reference index; Li et al. [134,135], discuss an economic theory of
pricing personal data.

Empirical research is also conducted in the finance category. Hayashi and Oh-
sawa [136] explore the utility value of data using a workshop and behavioral economic
theory. Subsequently, Muschalle et al. [137] outline critical inhibitors of data pricing based
on interview results. Beyond empirical research, systematic literature reviews are also
conducted to study data pricing opportunities and challenges in data marketplaces [138].
This approach is also employed to explore the different data pricing models in the data
marketplace literature [47,139].

Other topics are auction-based pricing using the Bayesian mathematical model [140,141],
a pricing mechanism negotiation based on a negotiation game theory based in the energy
domain [142], and a generic pricing mechanism based on a non-cooperative game the-
ory in Mobile Crowdsensing [143]. Finally, Stahl and Vossen [144] discuss data quality
criteria (such as accuracy, completeness) that can be used to relatively price data, while
Jang et al. [145] propose a three-hierarchal model of data trading and create a pricing
function to achieve Nash Equilibrium (NE).

4. Discussion

This paper aims to investigate the current state-of-the-art of data marketplace research.
Specifically, we want to know whether research lacks topics that would advance data
marketplaces toward commercialization. As indicated in the introduction section, data
marketplaces are hardly commercially exploited, even though the concept has existed
for years. Apparently, existing data marketplaces struggle to move from the initial stage
into the second stage of the platform’s lifecycle (i.e., the platform adoption). One possible
reason for the lack of data marketplace commercialization could be that previous studies
have not dealt extensively with non-technical topics (refer to the findings elaborated in
the previous section). Hence, contributions from the academic perspective toward data
marketplace commercialization are still scant. Therefore, this section discusses various
possible explanations for the technical research domination on data marketplace and
connects these explanations to recommendations for future research.

4.1. Domination of Technical Research in the Data Marketplace Literature

As shown in Figure 2, we reveal that data marketplace research is still primarily
dominated by technical literature. Based on this finding, the pattern of evolution of data
marketplace research tends to follow the technology push (i.e., technological advancement
drives innovation). We suggest three explanations for the dominance of technical research
in data marketplaces literature.

First, funding and project availability are intensely focused on the technological
development of data marketplaces—refer to the description of EU-funded projects on data
markets (https://cordis.europa.eu/programme/id/H2020_ICT-13-2018-2019, accessed
on 9 August 2021). The European data strategy [1] provides a clear example of this, as it
intends to “invest €2 billion in a European High Impact Project to develop data processing
infrastructures, data sharing tools, [and] architectures.” Second, with recent increases
in funding, many of these projects are still in the initial design phase. As suggested
by Henfridsson and Bygstad [146], the goals in this phase tends to typically focus on
foundational work, such as architectural design. This may explain why the debate in
the data marketplace literature focuses on technical rather than non-technical aspects.

https://cordis.europa.eu/programme/id/H2020_ICT-13-2018-2019
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Finally, policymakers and other key stakeholders have already defined the overall aim of
EU-funded projects (e.g., trust and sovereignty) as reflected in regulations and standards
like the European data governance act (https://digital-strategy.ec.europa.eu/en/policies/
data-governance-act, accessed on 17 November 2021) and Gaia-X (https://www.gaia-x.
eu/what-is-gaia-x, accessed on 17 November 2021). In this regard, scholars might take
these aims for granted and immediately focus on designing technical components of data
marketplaces to achieve those pre-determined goals.

As a result of the three above-mentioned developments, extant research on data
marketplaces has so far primarily been published in technical conference proceedings and
in more technology-oriented journals, such as the IEEE Access and the IEEE Internet of
Things Journal.

4.2. Service Domain Aspects

The findings indicate that little attention has been paid to the topics categorized in
the service domain (this domain was covered least by our studied papers). Based on
business model knowledge, this domain is essential and should be the starting point for
data marketplaces to be commercially exploited [12]. The topics in the service domain
are essential to design services that fulfill customers’ needs. Although a few attempts
have been made to discuss relevant topics such as value proposition, many other topics
such as customer expected value and market segmentation have barely been discussed in the
selected articles.

Regarding the value proposition, we recommend studies that go beyond the mere
value propositions of facilitating data exchange, and that include data analytics, data
products, and advice. Studies can also distinguish value derived from different data types,
such as real-time versus aggregated data, business versus personal data, and sensitive
versus non-sensitive data. Segmentation is especially promising to study given that data
marketplaces are in principle applicable to any business sector and any business type, but
the desired value proposition likely differs drastically between segments of businesses.
For instance, digitally native firms may be looking merely for access to data for running
their own algorithms, whereas firms without data processing capabilities may look for
additional value propositions of analytics features or even data products that are directly
usable in the daily business practice. Empirical methods such as cluster analysis or class
analysis could help to distinguish segments of data marketplace users, although also
methods that combine qualitative and quantitative research, such as Q-methodology, may
help to distinguish different perspectives on the value that data marketplaces offer. Given
the expected proliferation of data marketplaces in heterogeneous business sectors, we also
call for situated research, such as case studies, that considers how contextual characteristics
of business sectors affect the desired value propositions by data traders.

Besides studies on the value proposition per se, we also recommend studies that
interlink technical and pricing model choices with value delivered to user segments. For in-
stance, decentralized technology paradigms such as blockchain-based data marketplaces
may affect the value that users receive. Similarly, data collaboration algorithms such as
multi-party computation affect value proposition too, as these enable deriving and sharing
business-relevant insights rather than disclosing the raw data. These decentralized and
collaborative technologies may also resolve the negative impacts of using data market-
places, as they afford control over data without a trusted third party. We recommend
design science research (DSR) and (controlled) experiments to derive the impact of these
new technology paradigms on value delivery to data marketplace users.

Moreover, data marketplace projects are often conducted in a consortium based on
academia-practitioners collaborations (e.g., the EU-funded projects). Academic publica-
tions may also reflect the work conducted by practitioners, for instance, by investigating
the challenges and success factors of the few data marketplaces that exist in the market so
far. This is important because, besides an imbalance in the current state of data marketplace
research, we might also lack a clear understanding of problems faced by data marketplaces.

https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
https://www.gaia-x.eu/what-is-gaia-x
https://www.gaia-x.eu/what-is-gaia-x
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As a result, scholars and practitioners may try to solve the wrong problem or even problems
that do not exist. Hence, comparative case studies and quantitative surveys among data
marketplaces could yield meaningful insights to identify problems faced by such platforms
and suggestions for future development. Given that data sharing and trading is a complex
socio-technical process, investigating non-technical aspects may open opportunities to
speed up the platform adoption process in practice.

4.3. Organizational Domain Aspects

Considering the organizational domain, one crucial overlooked aspect in current
literature is value networks (or ecosystems) that describe actors and their interactions. It is
essential to understand the dynamic to align their vision by developing organizational ar-
rangements to achieve the common goal. In the area of data marketplaces, data governance
and data provenance are especially important areas, in order for data sellers to retain a
sense of being in control of their own data. Possible future research directions include
efforts to transfer ideas from data stewardship and data governance to the area of data
marketplaces. Such studies should not only provide technical or legal means to exert
governance over data sales, but also empirically study the impact of such governance
means on the willingness of data owners to sell their data. The issue of organizational
arrangements will likely become even more important as data marketplaces are emerging
in many different industries with fragmentation, thus leading to an ecology of data mar-
ketplaces with incompatible data governance regimes (see Abbas [147]). The cross-over
between organizational arrangements and the service domain is a fertile study ground too,
for instance, in choice experiments that contrast data marketplaces operated by big tech
providers with those of a more decentralized ownership structure.

Other topics such as the meaning of openness in data marketplaces are also worth
investigating. Typically, scholars have emphasized data as the object of openness by identi-
fying approaches to incentivize data sharing. However, openness in data marketplaces can
go beyond access to data, such as access to analytics modules (cf. Mucha and Seppala [148])
provided by third-party complements. In this regard, literature on digital platforms (e.g.,
De Reuver et al. [149]) might explain why openness matters (or not) in the context of data
marketplaces. On the one hand, openness could attract more service complementors [150]
and boost third-party innovation by analytics providers [151], ultimately attracting more
users [152] and attaining critical mass [153]. On the other hand, openness could also
lead to increased costs and effort to control complementors [154], especially complements
that could harm platform’s integrity [155]. Hence, it would be interesting to see if cur-
rent understandings of platform openness could simply be applied to the new context of
data marketplaces.

Considering actors and their interactions, the value on a data marketplace is not only
provided by a single stakeholder but jointly created in an ecosystem setting. Typically, data
marketplace owners rely on third-party providers to realize their value offerings, such
as data suppliers, data aggregators, applications developers, and service providers [6,99].
To successfully design and commercialize data marketplaces, it is crucial to identify the
different players in data marketplaces and understand the economic value exchanges
between them. Therefore, future research can focus on studying the roles and value
flows of stakeholders in and around data marketplaces. We recommend using existing
value modeling techniques, such as e3-value [156], to connect relevant stakeholders to
their respective value flows. In doing so, the partnerships among data marketplaces and
third-party providers to co-create value are likely to emerge.

4.4. Finance Domain Aspects

The finance domain aspect is essential to create viable business models [12]. Neverthe-
less, the current literature merely emphasizes data pricing. Future research should cover
other essential topics in the finance domain, such as cost sources and investments because
they are essential to building operating models of data marketplaces. For example, opera-
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tors need to hire internal developers to maintain a stable core system of data marketplaces.
Another example is the need for primary and supporting activities (e.g., marketing or
human resources, respectively) to deliver value to end customers [157], which required
careful cost calculation. Therefore, future research could identify a framework to identify
cost sources and calculate them appropriately. Cost sources are also inseparably linked
with investments because marketplace owners need to calculate required capital to sustain
marketplaces in the medium- and long-term [12]. Thus, future works can also examine
possibilities of funding sources for data marketplaces, including the transition strategies
(or roadmaps) to connect new funding to the creation of additional services or technology
developments (see De Reuver et al. [158]).

4.5. Research Approaches

Our additional impressions after reading and analyzing the articles are as follows.
We only found a few studies, e.g., Schomakers, Lidynia and Ziefle [17], Spiekermann
and Korunovska [19], that conduct empirical investigations in non-technical literature.
Case studies on data marketplaces that did reach the next phase of platform adoption
would yield valuable insights into what business model choices lead to viability. More-
over, the many technology-focused studies hardly consider the link between practical
problems, theories, and evaluations, such as is common in Design Science Research (DSR)
approaches [159,160]. DSR is further helpful in examining data marketplace business
model configurations that do not yet exist, which is essential given the absence of highly
successful data marketplaces businesses in practice. Stronger links between technical solu-
tions and value-related problems would help focus data marketplace research on resolving
practical problems.

The literature also hardly discusses solutions to some core non-technical challenges
of data marketplaces, such as: defining data ownership [3], assessing data quality [3],
lacking legal frameworks [116], lacking technical expertise and resources to operate the
ecosystem [99], and unclear organizational structure [99]. Thus, we generally suggest con-
ducting various empirical research approaches such as case studies and grounded theory
(see Sekaran and Bougie [161]) to understand those challenges in non-technical domains.

5. Conclusions

This study provides an overview of the state-of-the-art of data marketplace research.
Specifically, we want to know whether research is scarce on topics that would advance
data marketplaces toward commercialization. We find that the existing literature on data
marketplaces is dominated by technical research, such as the discussion related to compu-
tational pricing and architecture. We highlight possible explanations about the dominance
of technical research: the recent project financing availability that has pre-determined goals
such as trusts and sovereignty. Moreover, most current works and research are still in
their infancy; therefore, they focus on the technological advancement of data marketplaces.
We also suggest future research agendas in the service, organizational, and finance do-
mains, equipped with potential research approaches to advance marketplaces for data
toward commercialization.

A limitation of this study is that the topic identification process is subject to the
researchers’ knowledge and interpretations about the topic, i.e., different readers may
have different judgments. However, independently categorizing the present papers by
different authors showed overall alignment. Moreover, as indicated in Section 2, some
articles may have many overlapping topics. Because we attempted to classify an article
into a specific category, we analyzed the central theme of the discussion by examining
the research objectives, questions, and methods of articles. The study is also limited by
its scope and the number of publications included in the analysis due to our criteria, e.g.,
a single database, the timeframe selection, and a paper quality check. Nonetheless, we
argue that we have reached a sufficient level of saturation, i.e., analyzing more articles
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from the selected sample did not lead to new categories being identified or major shifts in
the distribution of papers among existing categories.

Practitioners involved in data marketplace developments can reflect on our findings.
Because data marketplaces tend to be rarely commercialized, (research) projects on such
marketplaces need specific tasks to explore viable business models. While doing so, they
can consider our list of literature as a starting point to understand what is currently known
about data marketplaces. Practitioners can also reflect on our suggested (research) approach
to explore potential value for stakeholders.

This study contributes to the literature by (a) providing a comprehensive overview of
current data marketplace research and (b) identifying neglected research topics that may
contribute to data marketplaces’ growth toward commercialization. We set out potential
research topics to help data marketplaces shift from the first stage of the platform’s lifecycle,
i.e., the platform design, to the second stage, i.e., the platform adoption. Our research
provides the essential basis for future research toward the commercialization of data
marketplaces. To sum up, we call for (empirical) research in non-technological domains to
complement the current technology-focused data marketplace research.
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