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Abstract: The increasing popularity of online job vacancies and machine learning methods has raised
questions about their combination to enhance our understanding of labour markets and algorithms.
However, the lack of comparable studies necessitates further investigation. This research aims to
explore the effectiveness of Random Forest Regressor (RFR) and Support Vector Regressor (SVR)
machine learning models in predicting online job vacancies compared to the auto-regressive ARIMA
method. To answer this question, detailed sub-questions are posed in relation to the sub-samples of
the main data provided by Birch Consultants, an external partner originally obtained by Jobdigger.
Drawing upon previous research on time-series accuracy, this study combines various approaches
to benefit society and the external partner. Using the walk-forward validation method, with a
91-day expanding window, it provides precise answers to the sub-questions. Findings suggest
that RFR is suitable for forecasting larger samples, while SVR is preferred due to its capability to
predict small series despite relatively small scoring benefits and computational costs. Both machine
learning models outperform the baseline ARIMA model in capturing complex time-series. Further
research should focus on exploring advanced auto-regressive, deep learning, and hybrid models for
future investigations.
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1. Introduction

The labour market, encompassing worker supply and demand, holds crucial im-
portance in modern economics. Understanding this dynamic equilibrium has become
increasingly urgent. The rise of online job boards (OJBs) and online job vacancies (OJVs)
has revolutionized job seeking, providing novel and robust platforms for employees. No-
tably, OJV data has gained significant value due to its increasing popularity [1], especially
in highly developed countries like the Netherlands [2]. Consequently, leveraging OJV
data for analytical and predictive purposes was proposed by [3]. As new technologies
and machine learning algorithms gain traction, the question arises: Can AI effectively
predict the labour market? Moreover, what is the optimal approach? Despite the proven
accuracy of machine learning, there is a notable dearth of studies that combine OJB data
with forecasting algorithms, leaving a substantial knowledge gap in the field [4].

This research aims to bridge the existing knowledge gap by identifying the most robust
tool for accurately forecasting the number of online job vacancies in online job boards,
specifically within the context of the Dutch labour market. Adopting a novel approach, the
study will utilize a quarterly data feed (91 days) to forecast the intervals between each feed.
The research will compare the widely employed ARIMA algorithm with the Random Forest
(RF) and Support Vector Machine (SVM) methods, which have demonstrated advantages
and relatively straightforward implementation for time series forecasting. By assessing the
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performance of these algorithms across multiple prediction tasks and setups, the study seeks
to determine the optimal algorithm for specific situations and highlight their contrasting
outcomes. Birch Consultants, a research and consulting company specializing in the
public sector, collaboratively developed this research to analyse literature, explore potential
applications, assess the database’s state, and present the following research question:

How do the performance of Support Vector Regressor and Random Forest Regressor
compare to that of the widely-used ARIMA time series forecasting model in predicting the
number of online job vacancies in the Netherlands?

In addition, to obtain more comprehensive answers about the performance of all three
models, three sub-questions were formulated:

1. To what extent do the selected models demonstrate efficacy in predicting job vacan-
cies categorized as “innovative” and “non-innovative” when confronted with an
imbalanced dataset?

2. To what extent do the models perform in predicting a reduced number of online job
vacancies, taking into consideration the required education degree?

3. To what extent does the performance of the selected models differ when the granular-
ity of the data transitions from the national level to the provincial level?

The primary objective of this study is to identify the most suitable forecasting method
for accurately predicting the number of OJVs in the Netherlands. Through a series of care-
fully designed sub-questions, this research aims to assess the robustness of each method
while evaluating the cost–benefit trade-offs associated with transitioning from purely sta-
tistical approaches. Moreover, the experiments conducted in this study explore the impact
of hyperparameter tuning on model performance and effectiveness. By conducting a com-
parative analysis of the ARIMA, RF, and SVM algorithms, this study not only determines
the optimal method for specific scenarios but also contributes to a deeper understanding of
the field as a whole. The findings of this research hold academic significance and can shed
light on the effectiveness of different forecasting models. Beyond academic contributions,
this study carries the potential for significant social benefits. Collaboration with Birch
Consultants, a consulting company involved in this project, allows the selected model
to be leveraged for predicting future OJVs. This knowledge can greatly facilitate the re-
cruitment process by enabling companies to proactively prepare for upcoming vacancies.
Furthermore, policymakers and organizations can utilize the study results to guide their
own research efforts or make informed decisions on which model to employ for forecasting
purposes. Ultimately, this research has practical implications that extend beyond academia,
making it relevant and valuable to a wide range of stakeholders.

The rest of the paper is organized as follows: Section 2 provides an overview of state-
of-the-art papers discussing demand forecasting and comparative model studies in times
series domain. Section 3 describes the methodology. Section 4 presents the obtained results.
In Section 5, a discussion of the obtained results is presented, while in Section 6, concluding
remarks are given.

2. Related Work

This section aims to provide a comprehensive overview of the literature related to
the research topic, with a particular focus on comparative studies conducted previously.
Firstly, the section presents specific knowledge on labour demand forecasting, followed
by a broader introduction to demand forecasting. Lastly, the research outlines time-series
forecasting comparative studies, summarizing the methodological approaches employed.

2.1. Demand Forecasting

Labour market predictions, a specific form of demand forecasting centred around
human workers, often emphasize transparent and qualitative methods, particularly in the
public sector [5,6]. Notable institutions like the Research Centre for Education and the
Labour Market in the Netherlands [7] and Monash University [8] have developed hybrid
methodologies combining econometric models, exploratory data analysis, and expert judg-
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ment. Conversely, some researchers rely solely on pure statistical methods [9], considering
them valuable tools for evaluating socio-economic indicators [10]. Among the various
approaches, the auto-regressive model, including the widely-used ARIMA model, remains
a popular choice, particularly for unemployment rate predictions [11–15]. Researchers have
demonstrated its high accuracy with studies such as [16], which explored labour market
wage forecasting using high-order ARIMA functions. This suggests that, with appropriate
configurations, the auto-regressive model can yield favourable results in many scenarios.
However, studies such as [17] indicate that machine learning surpasses the limitations of
econometric models in terms of prediction. This claim finds support in [18], which show-
cased the remarkable accuracy of Random Forest (RF) in predicting the unemployment
rate within the Eurozone. Furthermore, there is a growing trend of utilizing online job
boards (OJBs) as a data source for calculating common labour market indicators [19]. In fact,
in [20] the authors concluded that OJVs, when combined with machine learning algorithms,
significantly enhance our understanding of employee demand and labour market skills.
Overall, this body of research highlights the importance of considering different approaches,
including hybrid methodologies, statistical models like ARIMA, and machine learning
algorithms such as RF, when seeking to obtain comprehensive insights into labour market
dynamics and improve predictive accuracy. Despite extensive exploration of the labour
market demand in previous years, there is a notable scarcity of sources that delve into fore-
casting exact numbers rather than broader estimates. One noteworthy exception is a study
conducted by scholars from the Norilsk State Industrial Institute [21], where they aimed to
predict the number of job vacancies in the Russian arctic zone. The researchers employed
ARIMA, exponential smoothing, and Neural Network (NN) models, ultimately concluding
that the auto-regressive model, ARIMA, exhibited the highest accuracy among the three
methods. In the broader domain of demand forecasting, machine learning algorithms are
commonly utilized in complex domains where predictions are challenging due to intricate
factors, as seen in energy demand forecasting studies [22–24]. However, in the specific
context of labour market forecasting, auto-regressive models still remain prevalent [25,26].
Nevertheless, a general trend suggests that as problems become more complex, there is
a greater inclination to employ deep learning methods instead of traditional approaches,
despite the potential challenges of reproducibility and effectiveness [27]. The importance
of incorporating lagged inputs for precise predictions in international tourism demand
forecasting was underscored by a compelling study [28]. The research demonstrated that
after reaching a certain point in the number of lags, the prediction error measure stabilizes,
reducing the risk of overfitting. Moreover, findings on water demand in Iraq suggested
that ARIMA models are proficient in effectively handling noisy raw data [29].

2.2. Comparative Models Studies in the Time Series Domain

Comparative forecasting studies of time series models constitute a vast scientific field
where researchers contrast various methods for predicting time series data to identify the
most suitable approach within a specific context. For instance, in the study by [30], which
examined highly seasonal data, the authors demonstrated the superiority of the rolling fore-
cast method over the direct method. Conversely, the research conducted by [31] suggested
that the difference in measured error between ARIMA and the more complex SARIMAX
model could be insignificant, but indicated a need for more sophisticated machine learning
methods. Furthermore, the authors in [32] showcased the superior performance of Random
Forest (RF) over ARIMA in short- and long-term energy load forecasting, while acknowl-
edging the tradeoff between accuracy, complexity, and computational speed associated
with the algorithms. Similarly, in the study [33], RF emerged as the preferred choice among
tree-based algorithms for gold price prediction, while ARIMA also demonstrated strong
performance. In another study on predicting Australia’s real house price index [34], re-
searchers employed 47 algorithms and discovered that forecast horizons and the problem’s
linearity significantly influenced the accuracy of different models for specific applications.
Notably, Support Vector Regressor (SVR) emerged as the best-performing algorithm, while
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most machine learning algorithms outperformed Neural Networks (NN). Additionally,
the effectiveness of deep learning models in comparison to traditional models for load
demand forecasting was examined in the research [35]. The authors argued that the lack of
explainability in deep learning models was not justified by their performance, as the tested
NN algorithms exhibited similar or larger errors compared to the RF model. Additionally,
scholars have investigated different methodological approaches and validation methodsAn
empirical study [36] delved into the significance of validation methods and indicated that
while standard cross-validation (c-v) may be suitable for certain time-series scenarios, using
out-of-sample methods that maintain the temporal order of records leads to the most accu-
rate predictions, especially for real-life data with multiple exogenous variations. Another
study by the same researchers [37] indicated that forward-validation methods, particularly
rolling-origin and growing-window, tend to be the most suitable for time-series forecasting.
Furthermore, the study’s [38] conclusion highlighted that the optimal model selection
depends on the forecast horizon since various forecast horizons correspond to different
data distributions. In summary, researchers propose various theories and approaches,
but the context of the prediction, data format, and potential applications remain crucial
considerations. Understanding these factors is essential for selecting the most appropriate
forecasting model.

3. Methodology

This section presents a comprehensive overview of the experiments conducted in
this study, providing insights into the forecasting approaches employed. We begin by
discussing the databases utilized and performing a thorough analysis of the job vacancy
data. Subsequently, we delve into the data preprocessing steps implemented prior to the
experiments. The various algorithms used in this research are then discussed in detail.
Furthermore, we provide an elaborate description of the experimental setup, highlighting
the validation, hyper-parameter tuning, and evaluation methods employed. Lastly, we
provide a comprehensive account of the software and hardware utilized for conducting the
experiment. Figure 1 illustrates the experiment pipeline for better visualization.

3.1. Data Description, Pre-Processing and Exploratory Data Analysis

This study utilizes three databases. The primary database is the job vacancy dataset,
which is referred to as the main one as it serves as the input source for the forecasting
models. The other two databases, obtained from the European Commission’s website, are
used solely to create an innovative feature in the primary database. Moreover, exploratory
data analysis forms an integral part of the initial stages of the research and facilitates the
direction of subsequent actions.

3.1.1. Datasets Description

The first and primary one, referred to as the main dataset, is provided by Birch
Consultants, an external partner, and originally obtained and created by Jobdigger, an
international data software enterprise. It contains over 7.5 million records collected between
1 January 2014 and 31 December 2021 in the Netherlands, and includes various information
on individual job offers, companies, and web-scraping attributes. To reduce the dataset
size and select only the relevant variables necessary for prediction, only five features
are chosen for the research purposes (see Table A1). The selection of variables is based
on scientific relevance and company goals. The other two databases used to create an
innovative feature in the main dataset are the EU Industrial R & D Investment Scoreboard
for European companies in 2021 and the EU Industrial R & D Investment Scoreboard for
Worldwide companies in 2021. These databases are published annually by the European
Commission (DG Research & Innovation and DG Joint Research Centre) and collect key
economic indicators for 1000 European and 2500 worldwide companies. They are used
solely to select innovative companies in the main dataset. From each source, only two
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columns are kept: the name of the company and the R & D intensity proxy for the measured
year (see Tables A2 and A3)
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3.1.2. Data Pre-Processing

The pre-processing of the job vacancy database is carried out using the Dask library,
which is a Python tool for scaling data or code. Due to the large size of the main database,
direct handling of it becomes infeasible, and therefore, the pre-processing step is neces-
sary. Moreover, the absence of a large number of missing values enables straightforward
treatment of unknown instances by deleting all rows where values are missing without
adversely affecting the data distribution. Additionally, the pre-processing step involves
transforming the educational requirement feature (see Table A4). The innovativeness fea-
ture is obtained by initially searching the European Commission databases for companies
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with an R & D intensity level (“The R & D intensity is the ratio of a firm’s R & D investment
to its revenue for an enterprise.” [39]) of over 4%, as this percentage indicates that the
company implements an innovative strategy and can be considered a pioneering enter-
prise [40]. The obtained companies are then searched in the main dataset, resulting in the
discovery of a total of 279,533 vacancies (see Figure A1). Finally, the records are aggregated
based on the features used for each forecast and day of founding, resulting in four datasets,
which are presented in Table 1. The remaining pre-processing steps depend on the selected
algorithms, as each requires a different input data. The baseline model, ARIMA, requires
univariate input, consisting of a timestamp that places the data into the time-series domain
and the observed value at that particular point, which in this case is the number of job
vacancies found on a certain day. Therefore, no time-based feature extraction is applied
to this model. On the other hand, the performances of RFR and SVR can be significantly
improved by adding additional features [41]. As a result, the properties listed in Table 2 are
obtained and transformed into dummy variables.

Table 1. Forecasting datasets obtained with daily aggregation.

Name of the Dataset A Feature Used to Aggregate Levels of the Feature

All vacancies - 1
Innovativness innovative 2
Educational educationdegreeminimumrequired 4

Province physicallocationprovince 12

Table 2. Forecasting datasets obtained with daily aggregation.

Name of the Feature Original Type

year categorical
is year start binary

quarter categorical
month categorical

is month start binary
day categorical

day of week categorical
weekend binary

Additionally, rolling statistic features are included in the analysis. These properties
are calculated from the number of previous time periods in the time series and are added
using a window function, which is a type of calculation performed across instances related
in a temporal manner. The extracted rolling features are listed in Table 3. Furthermore,
a crucial practice in forecasting using machine learning and auto-regressive models is to
create time lags in the time series, i.e., to shift the values forward by n-steps to establish
time-dependency between records. While the baseline ARIMA model lags the data during
fitting, for the other two models, lags need to be created manually. This is achieved using
the auto-lag property of the ADF function from the statsmodels library. The tool is based on
the Augmented Dickey–Fuller (ADF) unit root test for stationarity. Moreover, the Akaike
Information Criterion (AIC) metric is chosen to determine the optimal number of lags
within this function. Thus, in the SVR and RFR models, the data are shifted and the
resulting outcomes are presented in Table 4.

Table 3. Extracted rolling features.

Name of the Feature Size of Window Function

Rolling mean 14
Rolling standard deviation 14

Rolling minimum 7
Rolling maximum 7
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Table 4. The forecasting datasets with numbers of lags used.

Forecasting Dataset Number of Lags

All vacancies 20
Innovative 27

Educational 28
Province 28

Finally, for the input of the SVR model, the dataset needs to be scaled. Since the
exploration of data distribution, explained in Section 3.1.3, indicates that the data does not
follow a normal distribution, MinMaxScaler is selected as it is a robust method for these
kind of values [42].

3.1.3. Exploratory Data Analysis (EDA)

As understanding data is crucial for choosing the right tools, an exploratory data
analysis is conducted. For each of the prepared forecasting datasets, a line graph visualizing
the number of offers against time is created. The allocation of all openings over the training
period is shown in Figure 2. Additionally, normality of the data distribution is examined.
Initially, a visual inspection is conducted. The sample data values on the probability plot
against the normal distribution quantiles, as shown in Figure 3, are not perfectly aligned on
the line. Moreover, the kernel density estimate plot, presented in Figure 4, is not bell-shaped.
Ultimately, the Wilk-Shapiro test was executed, confirming the non-normal distribution of
the data (see Table A6). Based on these observations, it can be concluded that the data is
not normally distributed.
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Subsequently, a thorough analysis of the data graphs is conducted to investigate the
stationarity of the data. The findings suggest that the data exhibits a small yet significant
trend. Furthermore, a decomposition of the data illustrates not only the presence of a trend
but also seasonality, as depicted in Figure 5.
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Furthermore, the rolling mean and standard deviation are explored for both Figure 6
and the decomposed data in Figure 7. After the decomposition, the first metric exhibits a
more linear trend, while the second one remains inconsistent, indicating the presence of
nonstationarity within the data. To back up the visual examination with statistical tests, two
tests, namely Augmented Dickey–Fuller (ADF) and Kwiatkowski–Philips–Schmidt–Shin
(KPSS) are conducted. The results of the former indicate the stationarity of nearly all
datasets (see Table A5). However, the ndiffs function from the pmdarima library suggests a
single differencing process while using the KPSS, leading to the conclusion that the null
hypothesis of this test is not rejected and the data is non-stationary.
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3.2. Algorithms

The objective of this study is to forecast the number of OJVs using three distinct
algorithms. The baseline method, ARIMA, is compared against Random Forest and Support
Vector Machine. The selection of these two methods is justified by their well-known benefits
and growing popularity in the field of machine learning for time-series data. Since each
algorithm utilizes a unique approach to generate predictions, the comparison of their
performance resulting from this study is of great significance in evaluating their efficacy
for forecasting time-related scenarios like the one presented here.

3.2.1. ARIMA

The ARIMA model, which serves as the baseline in this research, is a widely used
tool in the field of time-series forecasting. The name of this algorithm is an acronym for
auto-regressive (AR), integrated (I), moving average (MA). The AR component of the model
is a time-series model that uses past and lagged values as inputs to the regression formula
to forecast future points in subsequent time stamps. This model can be described as follows,
Formula (1):

Xt = ∑p
i=1 XϕiXt−i + εt (1)

where ϕ1, ..., ϕp are the model parameters and εt is the white noise. Moreover, the second
component—I—is what sets the ARIMA model apart from the classic ARMA method. While
the precursor underlying the baseline approach considers only strictly stationary data as
input, the ARIMA model can handle non-stationary data by applying the differencing
process, which calculates the difference between successive observations. Finally, the third
component of the baseline is the moving-average (MA) model, which is a method for
univariate time-series forecasting. It assumes that the output is cross-correlated with a
non-identically distributed random variable. The equation for the MA model is as follows,
Formula (2):

Xt = µ + εt + θqεt−q = µ + ∑q
i=1 θiεt−i + εt (2)

The ARIMA model has three parameters, one from each element of the algorithm,
namely AR (p), I (d), and MA (q). In this model, µ represents the mean of data, while
θ1, ..., θq are the model parameters and εt, εt−1, ..., εt−q are the white noise errors. The
d attribute denotes the number of differencing needed to obtain stationary data. The p
parameter represents the number of lags used as predictors, while q refers to the number
of lagged forecast errors. Several methods can be employed to estimate the algorithm
parameters. For instance, visual observation of the partial autocorrelation (PACF) plot and
autocorrelation function (ACF) can be used for simple time-series data. Alternatively, the
Akaike Information Criterion (AIC) can be used to select the right p and q to reduce the
chance of making a wrong decision. Additionally, the estimation of the parameter d can be
performed visually or through the KPSS or ADF test results. The current literature suggests
that the ARIMA model can be accurate in predicting future values based on past values.
However, it has several limitations, such as low capabilities when forecasting complex or
longer series and poor generalizability [43] (p. 273).

3.2.2. Random Forest Regressor

The Random Forest Regressor is a widely used ensemble model in the domain of
regressive machine learning. This algorithm employs a specific configuration of decision
trees, designed to obtain numerical outcomes. The RFR method uses the bootstrap aggrega-
tion technique, which involves creating n trees and obtaining the result by averaging the
predictions made by all estimators. Additionally, when selecting a split point, the algorithm
is forced to choose the best feature predictor from a limited and random sample. The RFR
model has various parameters, including those related to the size of the model, such as
the number of estimators, the maximum depth of each tree, and the maximum number
of nodes, as well as parameters that control the learning process, such as the criterion of
split, the minimum weight fraction for each leaf, or the method for calculating the number
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of features considered. Despite the bagging procedure, RFR may still be susceptible to
overfitting and is computationally expensive. However, there are several documented
benefits of using RFR, such as its robustness and flexibility. It works well even when the
data contains outliers or missing values, and scaling is not necessary.

3.2.3. Support Vector Regressor

The Support Vector Regressor (SVR) is a modification of the original Support Vec-
tor Machine (SVM) that was developed specifically for predicting continuous values by
identifying the best fit line. Unlike other regression algorithms that aim to minimize the
difference between the predicted and actual values, SVR seeks to fit the best line within a
threshold value. One of the most crucial components of the algorithm is the kernel, which is
a set of mathematical functions that transforms the input into the desired format. Although
the linear kernel is the most basic, many researchers prefer to use polynomials, sigmoid,
or Radial Basis Function (RBF) kernels because they can overcome the linearity limitation.
Another key parameter in SVR is ε, which represents the distance between the best fit line
and ε-intensive bands. This parameter serves as a loss function to ensure the existence of a
global minimum. The regularization parameter, C, is another important SVR parameter that
determines the trade-off between achieving a small error during training and minimizing
the weight norm. Finally, γ is utilized in non-linear SVR kernels to regulate the influence
distance of a single instance. The unique design of SVR provides several advantages. The
most notable of which is its excellent generalization capability, making it a reliable and
versatile model. Additionally, the SVR algorithm is relatively flexible, allowing frequent
model updates. It is also robust to outliers, although it may underperform when the data is
noisy. It is important to note that SVR requires input scaling and can be computationally
expensive when dealing with large datasets.

3.3. Experimental Set-Up

The selected algorithms differ significantly from each other, resulting in distinct
training and tuning processes for each. While RFR and SVR share some common properties,
the ARIMA method stands apart from them. However, to establish a level of comparability,
the evaluation is conducted consistently, considering the algorithms’ intended real-life
applications. For this research, the walk-forward validation (W-FV) with an expanding
window is employed. Additionally, the RFR and SVR models undergo parameter tuning
using the nested blocked c-v approach. The forecasting outcomes are primarily evaluated
using the MAPE metric, with the MAE and RMSE metrics used to reinforce the reliability
of the results. Furthermore, back-testing, which treats recent records as an unseen testing
set, is utilized in this research. To fulfil this purpose, the test set consists of the last year of
data, specifically 2021.

3.3.1. Training and Hyper-Parameter Tuning

Although ARIMA parameters can be obtained by a visual examination, in this research
we employed automated functions. This facilitates the selection process, and reduces the
chance of a mistake, since the ACF in Figure 8 and PACF in Figure 9 are not perfectly
explicit. As a result, the parameters p and q are chosen for each forecasting with reference
to the results given by the auto arima method from the pmdarima library. This function fits
several models and selects the best performing one in terms of the lowest AIC value. The
setup of the function is shown in Table 5.
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Table 5. The setup of auto ARIMA function.

Property Minimal Value Maximal Value Value

p 1 10 -
q 1 10 -
d - - 1

stepwise - - True
maxiter - - 50

Furthermore, the Multi Output Regressor is utilized to forecast multiple series since
ARIMA cannot handle more than one series at the same time. After selecting the optimal p,
d, q values, the model fitting is carried out. RFR is a multivariate model, and the research
exploits this advantage by using temporal-based features extracted from the data. However,
the method is sensitive to the number of features, and thus Recursive Feature Elimination
(RFE) is employed. RFE is a feature selection method that removes the weakest variables
by fitting the model until a selected number of features is obtained. To test the overall
strength of predictors on the main model, the feature importance plot is used. It is observed
that around one third of all features are significant. The graph is allocated in Appendix A.
Therefore, no more than 30% of all available predictors are selected for all forecastings. As
consecutive forecastings have the same number of features, only multiplied by the number
of series to be predicted, the same percentage is used for all forecastings. The selection
steps of the function are chosen with regard to data size and possible efficiency effect.
Furthermore, it is examined whether the model predicts better when the number of trees
is doubled. Three model parameters are tuned, namely the maximal depth of the trees,
minimal samples per leaf, and minimal sample split. The tuning is performed within a
specific c-v function—Time Series Split, which is exemplified in Figure 10. Furthermore,
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Randomised Search, an estimator of the best model given certain parameters, is utilized.
All the values selected for hyperparameter tuning are presented in Table 6.

J. Theor. Appl. Electron. Commer. Res. 2023, 18, FOR PEER REVIEW 14 
 

 

 
Figure 10. An example of time-series split function. 

Table 6. The hyper-parameters chosen for the tuning process of RFR. 

Hyper-Parameter Selected Values 
max depth [None, 30, 50, 80] 

min samples leaf [1, 2, 4, 6] 
min samples split [2, 4, 6, 8] 

n estimators [100, 200] 

As the generalization capabilities of the SVR model are independent of the dimen-
sionality of the feature space, feature selection is not performed. In this model, four pa-
rameters are tuned. For the kernel, RBF and Sigmoid are chosen, as they are popular and 
accurate in solving complex problems. Additionally, different sizes of gamma, epsilon, 
and C are examined. The method of hyperparameter tuning remains the same as in RFR, 
i.e., nested time-series c-v with Random Search. Similarly to ARIMA, SVR cannot forecast 
multiple time-series simultaneously, and hence the Multi-Output Regressor is used. The 
last province model is compiled with over seven times the kernel cache size. All selected 
SVR setups are presented in Table 7. 

Table 7. The hyper-parameters chosen for the tuning process of SVR. 

Hyper-Parameter Selected Values 
kernel [’rbf’, ’sigmoid’] 

gamma [1 × 10−4, 1 × 10−3, 0.01, 0.1] 
C [1, 10, 100, 1000, 10,000] 

epsilon [0.001, 0.01, 0.1] 

3.3.2. Model Evaluation 
The evaluation of all models is conducted in a congruous way to obtain comparable 

results. The year 2021 is chosen as the test set. However, instead of the standard validation 
process, the study uses W-FV with an expanding window. This method is an out-of-sam-
ple testing method that many regard as the gold standard, especially in the field of stock 
forecasting [43,44]. In principle, the technique uses past values available at a given point 
in time to predict the future, making it the most transposable method for real-life applica-
tions where data is periodically supplied to the model. To test how algorithms would 
perform in the context described above, the research uses a year-long benchmark as the 
test set. The expanding window implementation in the research creates five minor models, 

Figure 10. An example of time-series split function.

Table 6. The hyper-parameters chosen for the tuning process of RFR.

Hyper-Parameter Selected Values

max depth [None, 30, 50, 80]
min samples leaf [1, 2, 4, 6]
min samples split [2, 4, 6, 8]

n estimators [100, 200]

As the generalization capabilities of the SVR model are independent of the dimension-
ality of the feature space, feature selection is not performed. In this model, four parameters
are tuned. For the kernel, RBF and Sigmoid are chosen, as they are popular and accu-
rate in solving complex problems. Additionally, different sizes of gamma, epsilon, and
C are examined. The method of hyperparameter tuning remains the same as in RFR, i.e.,
nested time-series c-v with Random Search. Similarly to ARIMA, SVR cannot forecast
multiple time-series simultaneously, and hence the Multi-Output Regressor is used. The
last province model is compiled with over seven times the kernel cache size. All selected
SVR setups are presented in Table 7.

Table 7. The hyper-parameters chosen for the tuning process of SVR.

Hyper-Parameter Selected Values

kernel [’rbf’, ’sigmoid’]
gamma [1 × 10−4, 1 × 10−3, 0.01, 0.1]

C [1, 10, 100, 1000, 10,000]
epsilon [0.001, 0.01, 0.1]

3.3.2. Model Evaluation

The evaluation of all models is conducted in a congruous way to obtain comparable
results. The year 2021 is chosen as the test set. However, instead of the standard validation
process, the study uses W-FV with an expanding window. This method is an out-of-sample
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testing method that many regard as the gold standard, especially in the field of stock
forecasting [43,44]. In principle, the technique uses past values available at a given point in
time to predict the future, making it the most transposable method for real-life applications
where data is periodically supplied to the model. To test how algorithms would perform in
the context described above, the research uses a year-long benchmark as the test set. The
expanding window implementation in the research creates five minor models, each with a
91-day forecasting horizon, and consequently, all of them have different train and test sets.
An example of the validation methodology is shown in Figure 11.
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3.3.3. Model Performance Metrics

This study employs three different and complementary metrics: Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE).
RMSE is commonly used and penalizes larger errors more, which is important as MAE
does not indicate the relative size of the error, making it difficult to distinguish large errors
from smaller ones. Moreover, the bigger the gap between these two criteria, the more
inconsistent the error size. Furthermore, MAPE is used as it is one of the most popular
metrics in the time-series forecasting field and is easy to interpret, making it the main metric
in this study. The metrics are obtained by comparing all predicted values for the entire
year with the actual data. Additionally, the results for multi-series forecasting are averaged
for better readability, although the values for each predicted series are also reported. The
coefficient of determination (R2) is used to tune the hyperparameters in SVR and RFR as it
is a suitable metric for the regression task in the Random Search context.

4. Results

In this section, we present the results of our experiments. Firstly, we describe and
collate the results related to the forecasting of all vacancies. This part also covers the
influence of hyperparameter tuning on the performance of the machine learning models.
Then, we outline the results of all remaining predictions, which are aimed at answering the
sub-research questions. In each of the sub-sections, we emphasize the comparison aspect of
the algorithms.

4.1. Forecasting All Job Openings

After conducting the steps described in the methodology section, the models are
compiled and results are obtained from them, and shown in Table 8.

Table 8. The forecasting results for all job openings.

Model MAE MAPE RMSE Execution Time in Minutes [0.5 ex]

ARIMA 869.79 26.1% 1119.64 <1
RFR 512.09 15.69% 698.85 ~6
SVR 597.90 17.85% 781.32 <1

The accuracies of the models are assessed using three different metrics, all of which
consistently demonstrate that the baseline model, ARIMA, is significantly less accurate
compared to the other models. Among the models, RFR performs the best across all
metrics, albeit with a notable increase in computation time. SVR exhibits relatively good
performance with a MAPE only approximately 2% worse than the top-performing model,
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while compensating with faster execution speed. Visual representations in Figures 12–14
further illustrate these findings by comparing the predicted values with the true values.
The ARIMA model struggles to accurately predict complex and mid-term series, displaying
fluctuating predictions within the same range for each forecasting window. Conversely,
both RFR and SVR exhibit visually similar plots, with RFR demonstrating superior ability
to capture extreme values. To obtain further insights into the forecasting results for all
vacancies, additional plots are created comparing predicted values with actual values for
the first and last month. Figures 15 and 16 depict the baseline graph, clearly revealing that
the ARIMA algorithm simply repeats the learned pattern with varying ranges for each
forecasting window, leading to highly inaccurate outcomes.
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The predictions made by RF are more accurate, even though it also uses a learned
pattern. This is because the predictions are adjusted to fit the data better, as shown in
Figures 17 and 18.

Finally, the SVR model, as shown in Figures 19 and 20, exhibits a similar pattern to
the tree-based models. However, it differs in that it has a greater dependence on trend or
adapted seasonality.
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Table 9 presents an examination of the impact of hyper-parameter tuning on the
machine-learning models. The results highlight that the SVR model is particularly sensitive
to the selection of hyper-parameters. After tuning, the performance of SVR significantly
improves, with the errors nearly halved across all metrics. In contrast, RFR demonstrates
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consistent performance across various configurations, exhibiting negligible differences
in the measured errors. Furthermore, when it comes to adding more predictors to the
RFR model, the impact on performance is insignificant. However, it should be noted that
training time doubles with the inclusion of additional predictors.

Table 9. The forecasting results of non- and tuned models for all job openings.

Model MAE MAPE RMSE [0.5 ex]

RFR without tuning 516.19 15.81% 707.64
RFR with tuning 512.09 15.69% 698.85
RFR with extra predictors and tuning 506.70 15.54% 695.71
SVR without tuning 1349.28 36.18% 1647.86
SVR with tuning 597.90 17.85% 781.32

The assessment of feature importance within the primary forecasting dataset reveals
the consecutive seventh lag, fourteenth lag, and rolling max variable as the most important
for the model (see Figure A2).

The graphs depicting the residuals of the ARIMA (see Figure A3) and SVR (see
Figure A4) models are similar, with the only distinction being that the residuals of the
ARIMA model are heavier-tailed. On the other hand, the residuals of the RFR model exhibit
a more normal distribution (see Figure A5).

For a comprehensive grasp of our forecasting techniques, we have diligently docu-
mented the results of hyperparameter tuning for each model. The finely-tuned parameters
can be examined for ARIMA (see Table A7), RFR (see Table A8), and SVR (see Table A9).

4.2. Forecasting Vacancies Split by the Innovative Feature

The models were also employed to forecast the number of vacancies in relation to
the innovativeness feature. As presented in Table 10, ARIMA once again shows poor
performance, while RFR and SVR achieve the best results. Although the performance
metrics demonstrate little difference between the two models, the execution time of the
algorithms varies considerably. Specifically, SVR outperforms its competitors by compiling
in under a minute. The detailed outcomes for all three models can be found in a single
table (see Table A10), providing a cohesive perspective on the results.

Table 10. The averaged results across groups for forecasting number of innovative and non-innovative
vacancies can be seen in Appendix (see Figures A6–A8).

Model MAE MAPE RMSE Execution Time in Minutes [0.5 ex]

ARIMA 524.09 37.9% 893.79 8
RFR 259.47 19.8% 484.53 14
SVR 260 18.48% 459.49 <1

After analysing the plots of predicted versus actual values (see Figures A6–A8), it can
be concluded that ARIMA fails to accurately forecast both innovative and noninnovative
job openings. The method exhibits a lack of predictive ability, with forecasts fluctuating
imprecisely for about two weeks, followed by a straight line. On the other hand, the
machine learning-based models perform significantly better. Among them, SVR emerges as
the best model, outperforming RFR by a small margin. Specifically, it achieves significantly
better predictions over the entire period for the smaller (i.e., innovative) sample, except for
the third forecasting window, where the model’s error is high.

4.3. Forecasting Vacancies by Educational Requirements

Consistently, as shown in Table 11, ARIMA demonstrates the poorest forecasting
performance with results averaged across the entire series. On the other hand, SVR achieves
the highest scores, with RFR predictions being extremely close, with the exception of two
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forecasting levels—namely WO and, more notably, Geen—where RFR fails to make accurate
predictions with MAPE exceeding 50%. Once again, SVR outperforms its competitors in
terms of computational speed, completing the task in around 3 min, while its rivals require
either 4 times (ARIMA) or almost 16 times (RFR) more, in terms of additional time.

Table 11. The averaged results across groups for forecasting number of vacancies by educational
requirement.

Model MAE MAPE RMSE Execution Time in Minutes [0.5 ex]

ARIMA 198.87 33.81% 330.87 ~12
RFR 115.91 25.9% 200.07 ~47
SVR 110.76 19.27% 193.18 ~3

The conclusions drawn from the analysis are supported by the visual inspection of
the predicted versus actual vacancies plots (see Figures A9–A11). Consistent with the
previous findings, ARIMA fails to capture the trend and seasonality in most series, with
the exception of the HBO series, which is the only one to achieve a MAPE below 30% in
this model. RFR exhibits good performance in most series, except for the Geen series. On
the other hand, SVR predicts all series accurately, but like its counterparts, performs poorly
on the Geen series. The detailed outcomes of this forecasting are showcased individually
for each model: ARIMA (see Table A11, Figure A9), RFR (see Table A12, Figure A10), and
SVR (see Table A13, Figure A11).

4.4. Forecasting Job Openings by Provinces

Lastly, forecasting of the number of vacancies by province is conducted and the general
results are delineated in Table 12. ARIMA presents noticeably the worst performance on all
three metrics. Thereupon, it is worth mentioning that, this time, three forecasted series out
of twelve can be considered as a working ones, i.e., Limburg, Nord Brabant and Utrecht.
The SVR model seems to be by far the best method for the scenario. In all series, it predicts
better than RFR and consecutively ARIMA. The precise outcomes table can be found for all
three models, i.e., ARIMA (see Table A14, Figure A12), RFR (see Table A15, Figure A13),
SVR (see Table A16, Figure A14).

Table 12. The averaged results across groups for forecasting number of vacancies by province.

Model MAE MAPE RMSE Execution Time in Minutes [0.5 ex]

ARIMA 83.31 35.35% 132.57 ~30
RFR 48.86 21.68% 78.71 82
SVR 37.2 15.35% 62.63 ~14

Table 12 displays the efficiency of the models in terms of time, with SVR being the
fastest, taking under a quarter of a minute, while RFR needs over an hour more. The
compilation time of ARIMA depends on finding the right parameters rather than the actual
prediction, hence as the number of series grows, the time increases to around half an
hour. Additionally, the table also shows the general performance metrics of each model.
SVR outperforms both RFR and ARIMA on all series. Only three forecasted series, namely
Limburg, Nord Brabant, and Utrecht, can be considered as working ones. SVR demonstrates
significantly better predictions than its rivals. The visual examination of the figures (see
Figures A12–A14) confirms that ARIMA forecasts correctly in the three above-mentioned
provinces, but poorly, failing to capture trend or seasonality in other cases. While RFR
struggles, especially in predicting the province of Zeeland, SVR performs better, even with
a very small value. Graphs showing predictions of each algorithm again, and the true
values, are shown in Appendix A.
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5. Discussion

This section presents the experimental results by addressing the research questions
outlined in the introduction. The comparison of three algorithms reveals that the baseline
model performs poorly for the main research question posed in this research with a MAPE
of approximately 26%. Its inadequacy stems from its inability to effectively capture the
complexity of the time series, relying on a single learned fluctuation while the data is more
intricate. This finding aligns with a previous study by [45], where ARIMA also struggled to
predict complex load forecasting scenarios. In contrast, the RFR model outperforms the oth-
ers in this scenario, achieving a MAPE of around 15.7%. However, hyper-parameter tuning
does not significantly improve its performance, as observed in previous research by [46,47].
The SVR model, while significantly faster than RFR, delivers comparable outcomes with
MAPEs of approximately 15.7% vs. 17.9%, respectively. Tuning is crucial for SVR, en-
hancing precision by approximately twofold across all evaluated metrics, consistent with
previous research by [48]. However, the SVR model faces challenges with extreme values,
as highlighted in a study by [49], resulting in lower accuracy for points significantly below
the median. Examining the forecast residuals’ distributions, the RFR model demonstrates
the most precise predictions. In conclusion, RFR is the preferred model for this application,
prioritizing accuracy over time-effectiveness. The baseline model is outperformed by both
machine learning algorithms and is unsuitable for extended forecasting. This finding sup-
ports the earlier assumption by [50] that the length of the forecasting horizon significantly
impacts the algorithm, as enlarging the window leads to poorer ARIMA results. Although
the SVR method performs relatively well and has faster computation time compared to
RFR, it struggles with abnormal values. Therefore, SVR can be considered as an alternative
when time-efficiency is a concern.

In examining the precision of the models in scenarios with unbalanced samples, the
baseline model performs poorly, displaying the lowest performance with an average MAPE
of approximately 38% across both series. Additionally, the baseline model produces linear
results, suggesting that the best predictions are merely straight lines without capturing
trend or seasonality. On the other hand, among the two machine learning-based algo-
rithms, SVR is the preferred choice. It not only exhibits slightly better overall performance
(18.4% vs. 19.8%), but also demonstrates superior results in predicting smaller samples.
Moreover, SVR is significantly more time-efficient compared to RFR, requiring around
14 times less compilation time.

To further reinforce the examination of predicting smaller numbers using the compared
algorithms, it can be concluded that the baseline model once again performs the worst,
failing to capture important components and resulting in an average MAPE of 33.8%.
In terms of the machine learning algorithms, SVR outperforms its main rival, RFR, by
approximately 6% in MAPE (19.3% vs. 25.9%). Additionally, the issue of time-effectiveness
needs to be considered. While SVR completes the process in just 3 min, RFR takes more
than 15 times longer.

In summary, SVR not only demonstrates the best performance but also requires the
least amount of time among the compared algorithms. Lastly, in addressing the final
sub-question of obtaining results from both smaller and larger series simultaneously, the
comparison between algorithms remains consistently focused on machine learning models.
The baseline model again exhibits the worst performance with a MAPE of 35.3%. However,
in this case, the baseline model produces tolerable outcomes in three out of twelve series,
raising the question of its potential in more suitable circumstances. In this forecasting
scenario, SVR outshines RFR, achieving an approximate MAPE of 15.4% compared to
around 21.6% for RFR. Not only does the kernel-based model significantly outperform RFR
in all predictions, but it is also several times faster.

To summarise the answers given to the above-posed questions—in the scenarios pre-
sented, SVR is the most optimal algorithm choice and therefore, the more data which is
augmented, the better results the model yields. Thereupon, there is a need for thoroughgo-
ing hyper-parameter tuning, as the influence of this step is substantial in the research exper-
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iments. RFR can be considered as an alternative for predicting larger samples; nevertheless,
the computational costs should be kept in mind. Finally, the baseline is outperformed in
this study by both machine learning algorithms. It can be concluded that it is not suitable
for the given situations, but nonetheless may be more useful when forecasting shorter
periods of time. Additionally, MAE and RMSE measured performance in a parallel way,
i.e., there was no deviation providing an extra insight into the results.

Finally, the findings of this research indicate that machine learning algorithms, espe-
cially SVR, are useful when forecasting this particular OJB in a periodic manner. More-
over, with an averaged MAPE below 20%, the created models are suitable for the actual
data prediction.

5.1. Limitations

This paper acknowledges several limitations that should be mentioned. Firstly, the
models are trained using data spanning every 91 days, and the testing data covers 365 days,
resulting in the last (5th) forecasting period consisting of only one day. Although this
does not negatively impact the final results, as metrics are calculated for all predictions
against the true values, it may introduce inconsistencies. Additionally, the examination
of hyper-parameter tuning may not always be sufficient to determine whether the RFR
model cannot be effectively tuned with this data or if the parameters were simply poorly
chosen. While previous studies also highlight the relatively low significance of this aspect
for the algorithm, it is important to consider this limitation. Furthermore, this study
employs a standard computer, and the effectiveness of the models, particularly the more
computationally intensive ones, may not present a significant obstacle for companies or
other entities utilizing more efficient measures.

5.2. Future Research

The authors of this research suggest continuing the research by enhancing the scope
of this study. In particular, new studies should focus on exploring the capabilities of the
models compared in different experimental setups. The types and sizes of windows should
be checked, since the influence of these components on the algorithms in the foregoing
studies is established as more than crucial. It is also suggested to check whether more
advanced models like SARIMA or SARIMAX would overcome the obstacles faced by
ARIMA and provide a better baseline. Moreover, it is recommended to examine more
hyper-parameter configurations to address one of the study’s limitations and to determine
whether hyper-parameter tuning is indeed unprofitable for RFR. Additionally, it may be
beneficial to explore new methods of searching for the best parameters in the model, similar
to those examined in the study by [51].

6. Conclusions

The primary objective of this research was to identify the optimal model for forecasting
the number of online job vacancies in the Netherlands on a quarterly basis (each quarter
consisting of 91 days), utilizing a dataset provided by Birch Consultants. The study
focused on comparing three algorithms: ARIMA, RFR, and SVR. To ensure the relevance
to potential applications, the experiments were conducted using an expanding window
approach. The findings of this study suggest that SVR is the most suitable algorithm for
such a task. Although it performed slightly worse than RFR with larger sample sizes, SVR
demonstrated superior performance with smaller samples and exhibited significantly faster
computation time. Both SVR and RFR outperformed the baseline model, highlighting
that ARIMA is not suitable for accurately forecasting such extended and complex time
series. These results underscore the significance of further research to comprehensively
understand the forecasting of online job vacancies and the associated algorithms. By
delving deeper into this subject matter, a more complete understanding can be achieved,
thus enabling improved forecasting capabilities and algorithm selection.
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Appendix A

Table A1. Table presents the main database features.

All available features in the main database

organization name, organization name generalized,
education degree minimum required detailed, education degree minimum required, education

degree generalized, education degree,
Industry code, industry description, date found, date deactivated, closing date, starting date,

active weeks,
organization place, organization_id, nr of employees

physical location municipality, physical location place,
physical location province, jdcocode,

jdcodescription, jdcoisco, position title, position title cleaned, selected text

Table A2. Table presents the Worldwide sub-database features.

All available features in the EU Industrial R&D Investment Scoreboard for the Worldwide
companies for 2021 database

World rank, Company, Country, Region,
Industry-ICB3 sector name, R&D 2020 (EUR million), R&D one-year growth (%), Net sales (EUR
million), Net sales one-year growth (%), R&D intensity (%), Capex (EUR million), Capex one-year

growth (%), Capex intensity (%), Op.profits (EUR million), Op.profits one-year growth (%),
Profitability (%), Employees, Employees one-year growth (%),
Market cap (EUR million), Market cap one-year growth (%)

Table A3. Table presents the EU sub-database features.

All available features in the EU Industrial R&D Investment
Scoreboard for the European companies for 2021 database

EU rank, Company, Country, Region,
Industry-ICB3 sector name, R&D 2020 (EUR million), R&D one-year growth (%),

Net sales (EUR million), Net sales one-year growth (%), R&D intensity (%),
Capex (EUR million), Capex one-year growth (%), Capex intensity (%),

Op.profits (EUR million), Op.profits one-year growth (%),
Profitability (%), Employees, Employees one-year growth (%),
Market cap (EUR million), Market cap one-year growth (%)
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Table A4. Table presents transformation of education degree minimum required variable.

Original Feature Final Feature after Transformation

VWO
HAVO
VMBO

LBO

MIDDELBARE_SCHOOL

Nan
ONBEKEND np.NaN

The equation of the SVR model is as follows:

minimise
1
2
‖ω‖2

subject to |yi − 〈w, xi〉 − b| ≤ ε

where xi is the training sample with the target value yi, 〈w, xi〉 is the inner product, b is
the intercept and together they create the prediction for the sample. Finally, ε is a free
parameter—the threshold.

The equation for AIC is as follows:

AIC = 2k − 2 ln(Lˆ),

where k is the number of estimated parameters and (Lˆ) is the maximized value of the
likelihood function for the model.

The equation for ADF is as follows:

∆yt = α + βt + γyt−1 + δ1∆yt−1 + ··· + δp−1∆yt−p + 1 + εt,

where α is a constant, β is the coefficient on a time trend and p the lag order of the auto-
regressive process.

The equation for the Wilk–Shaprio test:

W =
(∑n

i=1 ai×xi)
2

(∑n
i=1 xix)

2

where x(i) is the ith smallest number in the sample.
The equation for the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test is as follows:

x[t] = r[t] + [t] + 1

The test decomposed time-series data into; a random walk (r[t]), a deterministic trend
(β[t]) and a stationary error (ε[t]).

Table A5. The table of the results of ADF test.

Series Test Result p-Value Decision

Total −3.173956 0.021543 Stationary

Non-innovative −4.105082 0.000950 Stationary

Innovative −3.138486 0.023833 Stationary

Geen −3.169272 0.021834 Stationary

HBO −3.821251 0.002697 Stationary

MBO −2.307436 0.169581 Non-Stationary
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Table A5. Cont.

Series Test Result p-Value Decision

MIDDELBARE −2.144197 0.227118 Non-Stationary

WO −4.841603 0.000045 Stationary

Drenthe −3.717743 0.003870 Stationary

Flevoland −3.366402 0.012159 Stationary

Friesland −3.628962 0.005231 Stationary

Gelderland −3.477303 0.008590 Stationary

Groningen −4.211969 0.000629 Stationary

Limburg −3.003770 0.034544 Stationary

Noord-Brabant −3.189875 0.020578 Stationary

Noord-Holland −3.420469 0.010281 Stationary

Overijssel −3.702140 0.004083 Stationary

Utrecht −3.362788 0.012295 Stationary

Zeeland −2.945658 0.040290 Stationary

Zuid-Holland −3.346154 0.012937 Stationary

Table A6. The table shows the results of Wilk-Shapiro test.

Test Result p-Value Decision

0.96517 2.75 × 10−24 Data non-normally
distributed
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Table A7. The selected setup of the main ARIMA forecasting by the auto_arima function.

p d q

9 1 5

Table A8. Selected parameters for the main RFR model during hyper-parameter tunning.

Forecasting Min_Samples_Split Min_Samples_Leaf Max_Depth

1st 4 2 80

2nd 6 2 30

3rd 6 2 None

4th 2 4 30

5th 2 2 80

Table A9. Selected parameters for the main SVR model during hyper-parameter tunnig.

Forecasting Kernel Gamma Epsilon C

1st rbf 0.001 0.1 10,000

2nd sigmoid 0.01 0.001 1000

3rd sigmoid 0.001 0.1 10,000

4th sigmoid 0.01 0.001 1000

5th rbf 0.1 0.001 100

Table A10. Detailed results for forecasting number of innovative and non-innovative vacancies.

Model Non-Innovative Innovative

ARIMA [998.47, 33.45%, 1262.46] [49.72, 42.43%, 62.79]

RFR [488.52, 16.1%, 684.03] [30.43, 23.51%, 40.73]

SVR [490.81, 15%, 648.61] [29.21, 21.96%, 39.58]

Table A11. Detailed results of ARIMA for forecasting number of vacancies by educational requirement.

ARIMA

Series MAE MAPE RMSE

Geen 21.34 30.23% 30.04

HBO 346.04 26.25% 442.75

MBO 452.17 35.32% 570.41

MIDDELBARE 80.87 40.69% 102.46

WO 93.97 36.54% 120.67

Table A12. Detailed results of RFR for forecasting number of vacancies by educational requirement.

Random Forest Regressor

Series MAE MAPE RMSE

Geen 32.67 55% 39.47

HBO 212 16.19% 290.56

MBO 234.85 18% 323.71

MIDDELBARE 41.91 20.2% 57.9

WO 58.16 20.1% 77.57
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Table A13. Detailed results of SVR for forecasting number of vacancies by educational requirement.

Support Vector Regressor

Series MAE MAPE RMSE

Geen 18.58 27.9% 24.48

HBO 213.65 15.9% 290.47

MBO 237.54 18% 308.47

MIDDELBARE 43.77 20.4% 59.38

WO 40.28 14.15% 54.28

Table A14. Detailed results of ARIMA for forecasting the number of vacancies by province.

ARIMA

Series MAE MAPE RMSE

Drenthe 20.08 38.36% 24.76

Flevoland 24.02 38.91% 30.9

Friesland 29.09 37.71% 38.82

Gelderland 109.3 32.63% 135.59

Groningen 31.37 36.97% 42.8

Limburg 49.24 28.15% 63.78

Noord-Brabant 137.40 26% 176.9

Noord-Holland 201.08 34% 251.19

Overijssel 64.11 37.28% 79.82

Utrecht 101.37 28.72% 128.88

Zeeland 32.38 51.92% 40.71

Zuid-Holland 200.28 33.5% 254.01

Table A15. Detailed results of RFR for forecasting number of vacancies by province.

Random Forest Regressor

Series MAE MAPE RMSE

Drenthe 13.14 24.81% 17.04

Flevoland 14.91 26.36% 19.37

Friesland 19.67 22.48% 28.52

Gelderland 61.64 18.4% 83.26

Groningen 20.67 22.9% 29.62

Limburg 34.61 20.16% 46.04

Noord-Brabant 88.75 16.51% 120.55

Noord-Holland 108.89 19.29% 139.40

Overijssel 37.06 19.98% 49.3

Utrecht 65.15 19.31% 86.61

Zeeland 20.29 32.87% 26.99

Zuid-Holland 101.19 17.16% 135.32
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Table A16. Detailed results of SVR for forecasting number of vacancies by province.

Support Vector Regressor

Series MAE MAPE RMSE

Drenthe 8.29 15.2% 10.05

Flevoland 10.27 16.36% 13.45

Friesland 16.05 18.74% 23.58

Gelderland 49.89 14.18% 69.69

Groningen 16.02 17.49% 23

Limburg 23.49 13.82% 31.95

Noord-Brabant 55.16 10.25% 72.36

Noord-Holland 86.65 14.44% 114.63

Overijssel 20.2 10.56% 26.73

Utrecht 50.18 14.45% 65.97

Zeeland 16.81 24.1% 21.96

Zuid-Holland 93.4 14.6% 125.99
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Figure A12. The predictions of ARIMA on the number of openings by province.
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Figure A13. The predictions of RFR on the number of openings by province. Figure A13. The predictions of RFR on the number of openings by province.
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