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Abstract: This study introduces a novel method for driving risk assessment based on the analysis
of near-miss events captured in telematics data. Near-miss events, which are highly correlated
with accidents, are employed as proxies for accident prediction. This research employs histogram-
based gradient boosting regressors (HGBRs) for the analysis of telematics data, with comparisons
made across datasets from China and Spain. The results presented in this paper demonstrate that
HGBR outperforms conventional generalized linear models, such as Poisson regression and negative
binomial regression, in predicting driving risks. Furthermore, the findings suggest that near-miss
events could serve as a substitute for traditional claims in calculating insurance premiums. It can be
seen that the machine learning algorithm offers the prospect of more accurate risk assessments and
insurance pricing.

Keywords: usage-based insurance; driving risk assessment; near-miss event; generalized linear
model; machine learning

1. Introduction

A “near miss” is considered to cause no property damage or personal injury, but is
prone to damage or injury when there is a slight movement in time or location. In the field
of traffic safety, near miss, also known as near accident, near collision, and so on, refers to
an operation without personal or property loss but with high risk. It does not turn into
an accident but from a probabilistic point of view the more near-miss events there are,
the more likely it is that an accident occurs [1]. Therefore, near-miss events, which are
responsible for traffic safety, are a subject of increasing interest [2]. Although near-miss
events can be collected through telematics, modeling near-miss events allows us to evaluate
the risk dynamically and predict potential accidents before they occur, thus enhancing
preemptive safety measures. For example, a driver with a more aggressive driving style
may not have a near-miss for a period of time, but the regression results of his driving data
show that he does have near-miss events. In other words, regression analysis of telematics
data can dig out risks hidden deep inside. In this study, a new driving risk assessment
method is proposed, which uses the results of the near-miss event estimation model to
calculate the driving risk of each driver. This method has been verified on datasets from
China and Spain.

Vehicles and drivers are the main participants in traffic accidents, and their daily travel
is inseparable from auto insurance, which provides security. Motor insurance is compulsory
in most countries to protect those who should be compensated for losses caused by vehicles
in motion. The premium calculation of auto insurance, which is based on the determination
of claim risks and leads to insurance pricing, has always been the most concerned issue for
both the policyholders and insurers. Historically, insurers have relied on the number of
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accidents during the insured period, in fact, insurers only consider the number of claims
because policyholders may not report accidents when claiming implies that a penalization
on the next term price is enforced. The reality is that, if a minor accident occurs, most of
the drivers will avoid paying more premiums by not claiming [3]. Policies with no claims
for several years tend to be the majority in most portfolios, making it difficult to obtain
useful information that truly reflects the risks of driving [4]. With the development of
telematics, usage-based insurance (UBI), a new type of vehicle insurance, can use more
potential data attributes to complete the driving risk assessment and then complete the
auto insurance premium determination [5]. The method of scoring driving risk based on
expected near-miss events proposed in this study is a new attempt in the field of UBI. It is
crucial to develop UBI systems that can provide personalized insurance premiums based
on real-time driving behavior.

Research on UBI has been ongoing for years. Initially, researchers included driving
mileage alongside traditional auto insurance factors to assess driving risks and set premi-
ums. This early mileage-based approach was known as pay-as-you-drive (PAYD) [6–8].
Later, as data from the Internet of Vehicles became available, factors related to driving
behavior and driving conditions were introduced into the rate-making model, which was
called pay-how-you-drive (PHYD) [9–11]. In the future, if 5G communication technology
and in-car processors become widely used, UBI schemes will be called manage-how-you-
drive (MHYD), which will enable drivers to analyze their competence at the wheel and
allow for calculating insurance premiums in real-time [12]. The driving risk assessment
in this study is based on the near-miss event prediction model supported by telematics
data. Still, the utilization rate of vehicles is also considered, so it should be regarded as a
combination of PAYD and PHYD.

Driving risk scores are used in numerous contexts, primarily for pricing and risk
analysis. This latter function can inform drivers about their performance or help insurance
companies classify customers, though it is typically used internally or for marketing
purposes. There are various methods for assessing driving risk. Many researchers advocate
for methods based on the traditional generalized linear model (GLM), which is the most
widely used in the insurance field. Linear regression [12], logistic regression [7,13], quantile
regression [14], Poisson regression [15,16], zero-inflated Poisson regression [3,17], negative
binomial regression [18,19], zero-inflated negative binomial regression [18,19], panel data
regression [19], generalized additive model [20,21], etc., are widely used in driving risk
assessment due to their good interpretability. On the other hand, black-box algorithms
in machine learning have also been used in UBI research, such as cluster analysis [22,23],
decision tree [7], support vector machine [24], neural network [25], gradient boosting
method [26], and other relevant models [5,27]. In recent years, scholars have combined the
boosted generalized linear model with machine learning to study UBI by taking advantage
of both [28–30]. Nevertheless, the advent of these novel methodologies may encounter
obstacles due to regulatory constraints in certain jurisdictions where the application of
black-box predictive analysis is prohibited [31].

The role of near-miss events in driving risk assessment and premium pricing is quite
flexible and can be approached from multiple perspectives. Guillen et al. [18] analyzed
three types of near-miss events, i.e., cornering, braking, and accelerating, as independent
variables and proved that both traditional and telematics variables are relevant to risk
factors. Sun et al. [19] employed Poisson regression and negative binomial regression to
analyze four types of near-miss events as dependent variables in summary datasets and
panel datasets, respectively. This not only confirmed the significant influence of certain
driving risk variables but also identified specific driving risk factors for each driver. Guillen
et al. [4] proposed a new method for determining auto insurance rates, using historical
claims as the dependent variable and near-miss events as the independent variable. They
calculated influence coefficients via the log-link function and incorporated these into the
pricing model to complete rate-making. Guillen et al. [32] utilized telematics data from
19,214 drivers over 55 weeks to develop predictive models for weekly accident frequency.
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They demonstrated that incorporating behavioral and contextual factors significantly
enhances risk assessment. This approach also highlights potential usage-based insurance
schemes through Poisson regression-derived driving scores and personalized safety alerts.
This paper builds on previous studies but uses data that lacks information on accidents or
claims. Here, the frequency of each near-miss event is treated as a dependent variable to
evaluate driving risk.

The rest of this paper is organized as follows. The data structure, data description,
and variable availability of the datasets from China and Spain are presented in Section 2.
Section 3 presents the generalized linear model and machine learning algorithm used in
this research. Section 4 presents the results of the two types of models on the two datasets.
The similarities and differences are compared and discussed. Section 5 summarizes the
findings and shortcomings of this study.

2. Data Description

Different telematics datasets from China and Spain are included in this study. Al-
though the sources of the two datasets are different, their data attributes have many
similarities and differences (see details in Table 1). Harshacceleration (nearmiss_accel) and
Harshdeceleration (nearmiss_brake), as common attributes of the two datasets, are selected
as the dependent variables of this study. It is worth noting that there are no common
attributes in the driving behavior category, but they are all taken into account because
they have important information about driving risk. Similarly, in the driving duration
category, while TripsinDay and TripsinNight in the dataset from China and nweekdays and
nweekenddays in the dataset from Spain do not appear in the other dataset, they should not
be ignored because they contain key information. By the same token, in the driving distance
category, Fuel in the dataset from China and distance_max_per_day, distance_under_50
kmh and distance_above_120 kmh in the dataset from Spain are retained.

Table 1. Types, names, and definitions of the data attributes from the China telematics dataset and
the Spain telematics dataset.

Type Dataset from China Dataset from Spain Definition

identity ID telematics ID Telematics-box unique identification number

nearmiss event

Harshacceleration nearmiss_accel
Frequency of cases when acceleration is

greater than 6 m/s2

Harshdeceleration nearmiss_brake
Frequency of cases when acceleration is less

than −6 m/s2

nearmiss_accel_under_50 kmh
Frequency of cases when acceleration is
greater than 6 m/s2 and speed is under

50 km/h

nearmiss_brake_above_120 kmh
Frequency of cases when acceleration is less
than −6 m/s2 and speed is above 120 km/h

Overspeed Frequency of driving speed greater than
100 km/h

Highspeedbrake Frequency of braking when the driving
speed is greater than 90 km/h

driving behavior

Speed speed_mean Mean of speed (km/h)
speed_max Maximum of speed (km/h)
accel_mean Mean of acceleration (m/s2)

Brakes Total number of brakes
Range Range of driving (geographical units)
RPM Mean of revolutions per minute (r/min)

Accelerator pedal position Mean of acceleration pedal position (%)
Engine fuel rate Mean of engine fuel rate (%)

headig_mean Average distance to the vehicle in front (m)
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Table 1. Cont.

Type Dataset from China Dataset from Spain Definition

driving duration

Days ndays Total number of driving days

Trips ntrips
Total number of driving trips that count if the

vehicle remains stationary for more than
five minutes

TripperDay ntrips_per_day_media Number of driving trips per day
TripsinDay Total number of driving trips during the day

TripsinNight Total number of driving trips at night
Weekdays nweekdays Total number of driving days in weekdays
Weekends nweekenddays Total number of driving days in weekends

TripsinWeekdays ntrips_in_weekdays Total number of driving trips on weekdays
TripsinWeekends ntrips_in_weekenddays Total number of driving trips on weekends

Trips ≤ 15 m ntrips_under_15 min Total number of trips with a driving time under
15 min

15 m < Trips ≤ 30 m ntrips_between_15 min_30 min Total number of trips with a driving time of more
than 15 min or less than 30 min

30 m < Trips ≤ 1 h ntrips_between_30 min_1 h Total number of trips with a driving time of more
than 30 min and less than 1 h

1 h < Trips ≤ 2 h ntrips_between_1 h_2 h Total number of trips with driving time between 1 h
and 2 h

Trips > 2 h ntrips_longer_2 h Total number of trips with a driving time of more
than 2 h

driving distance

Distance distance Total driving distance (km)
Fuel Total fuel consumption (L)

DistanceperTrip distance_per_trip_media Driving distance per trip (km)
DistanceinWeekdays distance_week_media Driving distance on weekdays (km)
DistanceinWeekends distance_weekend_media Driving distance on weekends (km)

DistanceinDay distance_during_day Driving distance during the day (km)
DistanceinNight distance_during_night Driving distance at night (km)

distance_max_per_day Maximum driving distance per day (km)

distance_under_50 kmh Driving distance when driving speed is less than
50 km/h (km)

distance_above_120 kmh Driving distance when driving speed is greater than
120 km/h (km)

The two datasets have their own data structures. The main feature is that neither
dataset contains accidents or claims, while frequent near-miss events can serve as valuable
indicators of driving risk. Unlike accidents and claims, which occur only a few times a
year, near-miss events tend to occur more frequently and are easily captured by telematics
sensors. The dataset from China contains telematics data from 261 vehicles over six days,
as shown in Table 2. Notice that the means of Harshacceleration and Harshdeceleration are
both non-negative integers, which suggests that Poisson regression models could be used.
In contrast, the dataset from Spain consists of 285 connected vehicles with a period ranging
from 1 to 194 days, see Table 3. Notice that nearmiss_accel and nearmiss_brake are also
non-negative integers but their variances are much higher than the mean, which suggests
that Poisson regression may not be as good as negative binomial regression in modeling
the frequency of near misses. In general, negative binomial regression would be more
appropriate when there is excessive dispersion in the count data, but if this dispersion is
mainly caused by a few outliers, the Poisson regression model may be more robust. In
other words, the negative binomial regression model may be affected by outliers, leading
to biased parameter estimates and, thus, affecting predictive performance. Note that the
median, 75% quantile, and maximum value of the speed_max variable are equal, which
might indicate repeated values caused by sensor errors. Consequently, this variable has
been ignored in this study.
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Table 2. The data description for the dataset from China includes the count, mean, standard deviation,
and quartiles.

Variable Mean Standard Deviation Minimum 25% 50% 75% Maximum

Harshacceleration 139.613 162.567 0 33 80 200 1062
Harshdeceleration 198.893 199.638 1 71 133 248 1694

Brakes 1446.854 1288.607 0 621 1027 1947 9243
Speed 37.745 16.084 1.164 25.596 38.805 49.858 70.493
Range 4.511 4.533 0.0188 1.162 2.521 6.838 26.781
RPM 847.308 192.205 123.863 765.633 869.082 951.701 1375.211

Accelerator pedal position 16.981 6.825 0.187 12.551 17.392 21.326 34.127
Engine fuel rate 9.359 4.300 0.731 6.347 8.804 12.231 19.211

Days 5.494 1.047 1 5 6 6 6
Trips 39.345 17.491 3 28 38 49 102

TripperDay 7.102 2.834 1.4 5 6.667 8.667 20.400
TripsinDay 23.333 14.856 1 13 20 31 96

TripsinNight 16.011 11.125 0 7 15 23 56
TripsinWeekdays 26.556 12.205 0 19 25 33 79
TripsinWeekends 12.789 7.493 0 8 12 17 39

Trips ≤ 15 m 19.398 11.654 0 12 18 25 64
15 m < Trips ≤ 30 m 4.548 3.553 0 2 4 6 27
30 m < Trips ≤ 1 h 3.900 3.759 0 1 3 6 19
1 h < Trips ≤ 2 h 3.985 3.946 0 1 3 6 21

Trips > 2 h 7.513 4.863 0 3 7 11 23
Distance 2176.589 1561.173 18.334 882.527 1935.629 3056.883 7401.503

Fuel 559.446 430.039 10.248 258.162 420.131 843.811 2018.369
DistanceperTrip 61.266 45.742 0.796 25.931 50.391 82.575 216.569

DistanceinWeekdays 1409.925 1042.584 0 610.642 1173.935 1976.121 4941.579
DistanceinWeekends 766.664 606.723 0 266.412 748.427 1094.106 2786.403

DistanceinDay 858.247 944.155 0 105.312 545 1297.322 5082.737
DistanceinNight 1318.342 1051.073 0 484.326 1108.903 1952.406 5195.649

Given the large number of data attributes, a correlation analysis of the variables was
also conducted prior to modeling and before examining the regression results. In the
dataset from China, as shown in Figure 1, each type of variable exhibits a certain degree
of internal correlation. Notably, the driving distance variables demonstrate the strongest
correlation. There is a positive correlation between driving behavior variables and driving
distance variables, whereas the correlation between driving duration variables and the
other two types of variables is weak or even negative. In the dataset from Spain (see
Figure 2), driving distance variables and driving duration variables show an obvious
positive correlation, while driving behavior variables have no obvious correlation with
other variables. Interestingly, the linear correlation between dependent variables and
independent variables in the dataset from China is not strong, but the correlation between
dependent variables and independent variables in the dataset from Spain is strong. Since
the correlation between independent variables can affect model parameter identification
and the assessment of causality, it is necessary to conduct multicollinearity tests and make
trade-offs before modeling. Alternatively, regularization terms can be added to eliminate
the bad effects of multicollinearity during modeling. As shown in Tables 4 and 5, after
eliminating variables with the excessive variance inflation factor (VIF), the remaining
variables passed the multicollinearity test. Although, this work is not limited to generalized
linear models, the number of variables involved in this study can be easily handled by a
machine learning algorithm, which is good at processing multidimensional data.
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Table 3. The data description for the dataset from Spain includes the count, mean, standard deviation,
and quartiles.

Variable Mean Stdandard
Deviation Minimum 25% 50% 75% Maximum

nearmiss_accel 118.477 182.752 0 3 15 172 968
nearmiss_brake 30.782 78.487 0 0 3 24 658

speed_mean 14.293 5.324 1.614 11.059 14.168 17.729 32.617
speed_max 36.952 6.780 13.112 33.404 41.330 41.700 41.700
accel_mean 0.00527 0.0191 0 0.000602 0.00137 0.00314 0.258

headig_mean 171.628 29.237 45.033 159.537 173.564 186.139 279.689
ndays 40.888 53.767 1 2 7 70 194
ntrips 132.102 186.887 1 5 17 216 819

ntrips_per_day_media 2.703 1.141 1 2 2.739 3.308 8
nweekdays 31.179 40.785 0 1 5 55 145

nweekenddays 9.709 13.750 0 0 2 16 56
ntrips_in_weekdays 103.218 145.023 0 3 13 171 645

ntrips_in_weekenddays 29.460 46.616 0 0 5 46 228
ntrips_under_15 min 63.348 95.346 0 2 8 100 511

ntrips_between_15 min_30 min 41.018 62.884 0 1 6 58 369
ntrips_between_30 min_1 h 19.709 33.485 0 0 3 23 225

ntrips_between_1 h_2 h 5.509 10.263 0 0 1 7 68
ntrips_longer_2 h 2.519 6.416 0 0 0 2 59

distance 2,598,486 3,924,461 2202.191 60,812.701 369,717.903 4,025,068 21,416,301
distance_per_trip_media 20,254.511 16,384.724 2202.191 10,371.821 16,436.243 24,441.733 142,954.600

distance_week_media 54,322.604 62,479.617 0 19,942.939 40,155.481 66,025.783 571,818.303
distance_weekend_media 47,438.224 55,849.631 0 0 35,019.364 70,342.073 386,267.301

distance_during_night 648,796.203 1,042,995 0 10,269.070 77,628.823 909,464.704 5,305,998
distance_during_day 1,949,690 2,984,507 0 45,305.752 322,924.604 2,948,788 17,182,576

Table 4. Variance inflation factor and inverse variance inflation factor for the dataset from China.

Variable VIF 1/VIF

TripperDay 8.17 0.12
Speed 7.55 0.13

Trips ≤ 15 m 6.18 0.16
DistanceinWeekends 5.06 0.20

RPM 4.17 0.24
TripsinWeekends 3.77 0.27
Engine fuel rate 3.65 0.27

Trips > 2 h 3.58 0.28
Accelerator pedal position 3.27 0.31

DistanceinDay 2.62 0.38
30 m < Trips ≤ 1 h 2.40 0.42

Range 2.28 0.44
TripsinNight 2.26 0.44

1 h < Trips ≤ 2 h 2.19 0.46
15 m < Trips ≤ 30 m 2.07 0.48

Brakes 1.60 0.62
Mean VIF 3.80

Table 5. Variance inflation factor and inverse variance inflation factor for the dataset from Spain.

Variable VIF 1/VIF

ntripsinweekenddays 8.76 0.11
distance_during_night 8.10 0.12
ntrips_under_15 min 6.32 0.16

ntrips_between_15 min_30
min 5.58 0.18

distance_per_trip 5.22 0.19



J. Theor. Appl. Electron. Commer. Res. 2024, 19 3483

Table 5. Cont.

Variable VIF 1/VIF

distance_week 4.82 0.21
ntrips_between_30 min_1 h 4.73 0.21

ntrips_between_1 h_2 h 4.36 0.23
distance_max_per_day 3.85 0.26

ntrips_longer_2 h 3.09 0.32
distance_above_120 kmh 2.87 0.35

speed_mean 2.72 0.37
ntrips_per_day 2.26 0.44

distance_weekend 2.15 0.47
accel_mean 1.40 0.71

headig_mean 1.15 0.87
Mean VIF 4.21

Figure 1. Correlation of variables from the dataset from China. Red represents linear positive correlation
and blue represents linear negative correlation; the darker the color, the stronger the linear correlation.
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Figure 2. Correlation of variables from the dataset from Spain. Red represents linear positive correlation
and blue represents linear negative correlation; the darker the color, the stronger the linear correlation.

3. Methods
3.1. Modeling

Conventional GLMs are preferred and assignable in the UBI scenario [31]. In the context
of a Poisson regression model, the conditional expectation function is a non-negative function
of a vector of explanatory variables. This is analogous to the negative binomial regression
model, where the conditional expectation function is also defined by a log-link function,
as follows:

E(yi | xi) = λi = Ti × exp(β0 + β1x1i + · · ·+ βkxki) (1)

where λi denotes the expectation of yi, i denotes the number of the observation, Ti denotes
the risk exposure variables, x1i. . . xki represent the independent variables that have passed
the VIF multicollinearity test, and constant β0 and β1. . . βk are unknown parameters that
need to be estimated.It should be noted that to facilitate comparative analysis of the results,
the exposure variables for both datasets in this study are measured in days. But, in practice,
the value of the exposure variable can vary depending on the actual situation [4].

In contrast to the preceding studies, a gradient boost method is introduced to deal
with the potentially large data volume in the practical work of UBI. The HGBR algorithm is
an improved gradient boosting regression tree (GBRT) algorithm based on histograms [33].



J. Theor. Appl. Electron. Commer. Res. 2024, 19 3485

The basic idea of HGBR is to discretize continuous floating-point eigenvalues into integer-
valued bins and construct a histogram with the width of k. When traversing the data,
the histogram accumulates statistics according to the discretized values as indices. After
traversing the data once, the histogram accumulates the required statistics and then tra-
verses according to the discrete values of the histogram to find the optimal segmentation
point and build the gradient boosting tree, which tremendously reduces the number of
splitting points to consider instead of relying on sorted continuous values. Hence, the
HGBR algorithm offers advantages such as low memory consumption, reduced compu-
tational costs, high cache utilization rate, and a clear construction process. This is why
similar iterative processes are found in algorithms like XGBoost and LightGBM [34]. It
is well-known that the auto insurance industry is characterized by high-dimensional and
large-volume data, and the future expansion of telematics is expected to lead to even more
explosive growth in data volume and complexity. Such data characteristics meet the scope
of application of the HGBR algorithm.

It is important to note that the HGBR loss function Lt adds an L2 regularization term
based on the traditional GBRT loss function:

Lt =
n

∑
i=1

L[(yi, ft−1(xi) + ht(xi)] +
λ

2

m

∑
j=1

w2
tj (2)

where n represents the sample size, ht(xi) represents the output value of the tth decision
tree; m represents the number of leaf nodes of the tth decision tree; wtj denotes the optimal
value of the jth leaf node; and λ represents the regularization coefficient. Since the output
requirement of this study is non-negative, a 1/2 Poisson deviation is selected as the base
loss function; see Equation (3).

L[yi, ft−1(xi)] = yi log
yi

ft−1(xi)
− [yi − ft−1(xi)]. (3)

Equation (2) can be obtained through a series of approximate derivations, such as the
Taylor expansion, as follows:

Lt =
m

∑
j=1

[Gtjwtj +
1
2
(Htj + λ)w2

tj] (4)

where Gtj represents the first-order derivative of Equation (3), and Htj represents the
second-order derivative of Equation (3). When each leaf node region takes the optimal

solution wtj = − Gtj
Htj+λ , the minimum loss function is as follows:

Lmin
t = −1

2

m

∑
j=1

G2
tj

Htj + λ
. (5)

Then, the optimal split point of each leaf node region can be determined by analyzing
the change in Equation (5) before and after the split. Assume that the sum of the first-order
derivatives of the loss function for the parent leaf node before the split is GP, and the sum
of the second-order derivatives is HP. After the split, the sum of the first-order derivatives
for the left leaf node is GL, and the sum of the second-order derivatives is HL. The sum of
the first-order derivatives of the right leaf node after the split is GP − GL, and the sum of
the second-order derivatives is HP − HL. The loss gain before and after the node split is
defined as follows:

Gain =
1
2

G2
L

HL + λ
+

1
2

(GP − GL)
2

HP − HL + λ
− 1

2
G2

P
HP + λ

. (6)
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The split point that maximizes Equation (6) before and after the leaf node region split is
the optimal split point. The pseudocode of HGBR is shown in Algorithm 1. The HGBR process
in this study is implemented with the help of sklearn.ensemble.HistGradientBoostingRegressor.

Algorithm 1 HGBR on near-miss

Input: training set: D = (x1, y1), (x2, y2), ..., (xn, yn); loss function: L[yi, ft−1(xi)] =
yi log yi

ft−1(xi)
− [yi − ft−1(xi)]; maximum number of bins: K; regularization coefficient:

λ; iteration limit: T
1: Initialization: f0(x) = arg min︸ ︷︷ ︸

h

∑K
i=1 L(yi, h)

2: repeat
3: Construct histograms on each feature variable, calculating each bin’s first derivative

sum of loss function Hist[Bink(i)].G+ = ∂L[yi , ft−1(xi)]
∂ ft−1(xi)

and the second-derivative sum

of the loss function Hist[Bink(i)].H+ = ∂2L[yi , ft−1(xi)]

∂ f 2
t−1(xi)

;

4: By each Bin as a split point, accumulate the first derivative on the left GL and the
second derivative on the left HL. Given the first derivative on the parent GP and the
second derivative on the parent HP, the first derivative on the right is GR = GP − GL,
and the second derivative on the right is HR = HP − HL;

5: Calculate the loss gain at each split point Gain = 1
2

G2
L

HL+λ + 1
2

G2
R

HR+λ − 1
2

G2
P

HP+λ , the
eigenvariable corresponding to the maximum loss gain and the eigenvalue of
Bin are the eigenvariable and the optimal eigenvalue of the optimal split node
wtk = arg min︸ ︷︷ ︸

h

∑xi∈Rtk
L[yi, ft−1(xi) + ht(xi)], where Rtk represents the kth Bin region

corresponding to the tth regression tree; t+ = 1.
6: until t >= T

Output: strong learner: F(x) = fT(x) = f0(x) + ∑T
t=1 ∑K

k=1 wtk I(x ∈ Rtk)

3.2. Driving Risk Factor

According to Chinese regulations, China’s auto insurance premium rate-making model
is as follows:

P =
Pbasic
(1 − r)

× Cadjustment (7)

where the benchmark premium Pbasic is based on static characteristics such as the vehicle
brand, engine capacity, driver age, ..., and the additional fee rate r is based on the additional
items purchased by the policyholder, only the rate adjustment factor Cadjustment can be
adjusted by the insurance company. The risk adjustment factor contains many contents,
such as a traffic violation factor, a non-indemnity discount, and a driving risk score factor,
which is the very focus of this study. The idea of the PAYD mode is that the more a vehicle
is used, the greater the probability that accidents or near-miss events occur. Using this idea,
a risk factor based on usage can be obtained as follows:

Cusage = 1 − e−βnxn (8)

where xn represents a variable that measures the vehicle utilization rate, which is positively
correlated with near-miss events, βn denotes the estimated value obtained by the predictive
model (note that we assume that βn > 0), Cusage goes from 0 to 1. In this study, xn denotes
the number of driving trips per day.

The relationship between originally observed and predicted risk events requires special
attention. The predicted expected frequency value is the Poisson distribution expectation
computed from the regression model. If the original value is greater than the predicted
value, it indicates that the model underestimates the driving risk, and the driving risk factor
will naturally be higher. On the contrary, if the original value is less than the predicted
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value, it indicates that the model overestimates the driving risk and the corresponding risk
factor is low. Given the above description, and assuming that both the original values obey
the Poisson distribution, the near-miss event risk factor can be obtained from the Poisson
cumulative distribution function, as follows:

Cnear-miss =
y

∑
k=0

ŷk

k!
e−ŷ (9)

where y represents the original value of near-miss events, ŷ represents the predicted value
of near-miss events, and the Cnear-miss goes from 0 to 1. By adding the above two factors,
the driving risk factor—considering both vehicle utilization rate and near-miss event
probability—can be obtained as follows:

Crisk = (1 − α) · Cusage + α · Cnear-miss = (1 − α) · (1 − e−βnxn) + α ·
y

∑
k=0

ŷk

k!
e−ŷ (10)

where α, ranging from 0 to 1 (0.5 in this study), represents the proportion of near-miss
events that are taken into account in the driving risk factor, Crisk goes from 0 to 1, the higher
the value, the greater the driving risk. In practical applications, each type of risk factor can
be weighted and averaged, which will not be discussed in this study.

4. Results and Discussions

Assuming that each near-miss event (as a dependent variable) obeys the Poisson distribu-
tion, the Kolmogorov–Smirnov test was conducted on them, respectively, and the test results
(seeing Table 6) showed that none of the four near-miss events conformed to the standard
Poisson distribution. This may bring about the estimation results of Poisson regression bias. In
order to compare the effects of the two regressions, Poisson regression and negative binomial
regression were estimated on the dataset from China and the dataset from Spain, respectively,
and their coefficient estimations and significance results are shown in Tables 7 and 8. It is
worth noting that prior to undertaking the regressions, the independent variables were sub-
jected to standardization. This process entailed the division of the total number of variables
such as brakes, trips, and distance by the exposure period, thereby converting them into
average daily rates (with the “_pd” suffix). This modification was implemented to ensure
that the values of the independent variables were comparable across insureds with varying
exposure periods, thereby enhancing the robustness and interpretability of the model. From
the regression results, whether in the dataset from China or Spain, most of the independent
variables in the Poisson regression demonstrate significant effects, regardless of which near-
miss event is used as the dependent variable. However, it seems to mean that the variances
of the estimators are probably understated. Furthermore, the Akaike information criterion
(AIC) and Bayesian information criterion (BIC) of negative binomial regressions are smaller
than Poisson regressions for the same variables. The log-likelihood of the negative binomial
regression is higher than that of the Poisson regression. And the discrete parameter α is
significantly greater than zero. These all imply that the negative binomial regression performs
more convincingly at the parameter estimation level relative to Poisson regression. Since this
study focuses more on obtaining an accurate prediction model, further validation is needed to
compare the accuracy of the two predictions.

According to the negative binomial regression results for the dataset from China (see
Table 7), driving behavior variables, especially Brakes_pd, have significant positive effects
on near-miss events. The positive impacts of RPM and the Acceleratorpedalposition on
Harshacceleration show that the more aggressive the driving behavior, the more near-miss
events will be observed, which is consistent with the common sense of daily driving. The
positive effect of TripperDays shows that the more frequent the driving, the more near-miss
events are generated, while the negative impacts of TripsinNight_pd on Harshdeceleration and
TripsinWeekends on Harshacceleration indicate that driving in a specific environment will reduce
dangerous driving. For example, driving on weekends can make drivers more cautious due to
changes in the driving environment, both inside and outside the vehicle. Another example is the
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driver is less frequently involved in other vehicles’ trajectories due to low traffic flow at night.
The strong negative effects of Trips ≤ 15 m_pd (under 15 min) and 15 m < Trips ≤ 30 m_pd
(between 15 min and half an hour) indicate that short-term driving will produce less dangerous
driving. Correspondingly, the negative effects of 1 h < Trips ≤ 2 h_pd (between one hour and
two hours) and Trips > 2 h_pd (over 2 h) are believed to be caused by the fact that driving
fatigue leads to less intense driving.

Table 6. Kolmogorov–Smirnov test for four near-miss events.

Variable Harshacceleration Harshdeceleration Nearmiss_Accel Nearmiss_Brake

N 261 261 285 285
Poisson parameter mean 139.612 198.889 118.483 30.784

absolute 0.617 0.584 0.641 0.710
positive 0.617 0.584 0.641 0.710Most extreme differential
negative −0.290 −0.274 −0.287 −0.159

Kolmogorov–Smirnov Z-value 9.975 9.432 10.823 11.989
Asymptotic significance (two-tailed) 0 0 0 0

In contrast, the negative binomial regression results for the dataset from Spain are, in
many respects, identical yet still slightly different than those from the dataset from China. As
Table 8 shows, the biggest similarity is that ntrips_per_day shows a strong positive effect for
near-miss events. In a similar vein, ntrips_under_15 min_pd, ntrips_between_15 min_30 min_pd,
ntrips_between_1 h_2 h_pd and ntrips_longer_2 h_pd, have a negative effect on both types of
near-miss events. However, trips between 30 min and 1 h also show significant negative
effects on near-miss events, which is different from the results of the above model for China.
The biggest difference is that ntrips_in_weekenddays and distance_during_night do not show
significant effects on near-miss events in the dataset from Spain, which is probably related to
the different driving conditions and different driving habits of drivers. In addition, driving
behavior variables such as accel_mean do not show a significant effect on near-miss events. This
lack of significance is likely related to differences in variable definition methods, data collection
methods, and data collection channels between the two datasets [12,32].

In the prediction process, factors such as model complexity, generalization capability, and
adaptability to data characteristics need to be considered to select the most suitable model. To
validate the prediction capability, the evaluation of the GLM model and the HGBR model are
presented in Table 9. Here, all three models were run with default maximum iterations set
at 100 on both a train set and a test set to prevent overfitting from affecting model judgment.
The results show that the Poisson regression model has the poorest performance on the test
set, indicating weak generalization. Conversely, while the negative binomial regression did
not perform exceptionally well on the training set, it outperformed Poisson regression on
the test set. This suggests that it is more sensitive and adaptable to the overly discrete data
characteristic of this study. This aligns with previous evaluations of parameter estimation
and model comparison. Therefore, negative binomial regression has been chosen as the
comparison group in subsequent studies for HGBRs, which consistently demonstrate superior
model evaluation metrics over GLMs across all datasets and dependent variables. Although
most of the hyperparameters remain default without tuning (loss = ’poisson’, max_iter =
100, max_depth = 2, random_state = 0, and other defaults), the HGBR’s performance is
exceptional. In practice, the optimal model hyperparameters can be further selected by using
cross-validation and grid search to obtain the best model performance with the best data
characterization capabilities.

As illustrated in Figure 3, the HGBR exhibits superior predictive capabilities and more
accurately simulates the data distribution of the two types of near-miss events in comparison to
the negative binomial model across both datasets (from China and Spain). It has been observed
that the negative binomial model’s predictions for zero values sometimes do not align with
reality, unlike the HGBR, which demonstrates a good fit to actual data. This discrepancy may
be attributed to the failure of the GLM to account for non-linear relationships among variables.
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There is also the fact that the prediction process of the GLM is actually an approximation to a
hypothetical distribution, and once the actual situation is not a standard distribution, its predictive
power is weakened. In contrast, the HGBR’s strength lies in its capacity to incorporate diverse
data types and variable dependencies, which contributes to its exceptional predictive power.

(a)

(b)

(c)

(d)

Figure 3. Cumulative frequency comparison of the original value (left), negative binomial regression
model predicted value (middle), HGBR model predicted value (right) on (a) Harshacceleration from
the dataset from China, (b) Harshdeceleration from the dataset from China, (c) nearmiss_accel from
the dataset from Spain, and (d) nearmiss_brake from the dataset from Spain.



J. Theor. Appl. Electron. Commer. Res. 2024, 19 3490

Table 7. Results of Poisson regression and negative binomial regression for the variables Harshacceleration and Harshdeceleration from the dataset from China.

Variable Poisson with Harshacceleration Negative Binomial with Harshacceleration Poisson with Harshdeceleration Negative Binomial with Harshdeceleration
Coefficient z Coefficient z Coefficient z Coefficient z

constant −0.391 *** −9.34 0.402 1.54 2.192 *** 70.43 1.646 *** 6.56
Brakes_pd 0.00104 *** 45.43 0.00131 *** 4.62 0.00130 *** 71.18 0.00192 *** 7.42

Speed −0.0111 *** −12.43 −0.0141 −1.53 −0.00392 *** −5.26 0.00823 1.02
Range −0.0255 *** −15.37 −0.0109 −0.70 −0.0198 *** −14.20 −0.00934 −0.68
RPM 0.00309 *** 60.53 0.00245 *** 4.78 0.000426 *** 9.16 0.000728 1.62

Accelerator pedal position 0.0267 *** 18.18 0.0292 * 2.18 0.0219 *** 18.30 0.0140 1.19
Engine fuel rate 0.0330 *** 16.40 0.0186 0.89 0.0119 *** 6.38 0.000963 0.05

TripperDays 0.764 *** 26.64 0.627 ** 3.13 0.148 *** 4.01 0.208 1.18
TripsinNight_pd −0.00000285 −0.00 −0.0281 −0.77 −0.0647 *** −19.37 −0.0708 * −2.30
TripsinWeekends −0.0320 *** −23.84 −0.0365 ** −3.02 0.000585 0.54 −0.00245 −0.25
Trips < 15 m_pd −0.738 *** −25.54 −0.600 ** −2.96 −0.114 ** −3.10 −0.163 −0.92

15 m < Trips < 30 m_pd −0.737 *** −24.24 −0.742 *** −3.32 −0.213 *** −5.64 −0.345 −1.75
30 m < Trips < 1 h_pd −0.457 *** −15.39 −0.299 −1.36 0.00881 0.24 −0.000907 −0.00
1 h < Trips < 2 h_pd −0.607 *** −20.17 −0.503 * −2.28 −0.0551 −1.46 −0.103 −0.53

Trips textgreater 2 h_pd −0.784 *** −25.61 −0.532 * −2.41 −0.0877 * −2.31 −0.163 −0.83
DistanceinDay_pd −0.000228 *** −4.17 −0.0000630 −0.14 −0.000217 *** −4.95 −0.000136 −0.33

DistanceinWeekends_pd 0.000224 *** 12.01 0.000188 1.03 0.000252 *** 16.31 0.0000914 0.58
Wald chi2 21862.6 173.9 14521.1 138.7

Log-likelihood −8122.7 −1458.4 −12045.8 −1557.7
AIC 16279.5 2952.9 24125.6 3151.4
BIC 16340.1 3017.0 24186.2 3215.6

α 0.607 0.454
N 261 261 261 261

z-value stands for t statistics. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 8. Results of Poisson regression and negative binomial regression for the variables nearmiss_accel and nearmiss_brake from the dataset from Spain.

Variable Poisson with Nearmiss_Accel Negative Binomial with Nearmiss_Accel Poisson with Nearmiss_Brake Negative Binomial with Nearmiss_Brake
Coefficient z Coefficient z Coefficient z Coefficient z

constant −0.649 *** −8.23 −0.431 −1.33 −2.627 *** −16.71 −2.142 * −2.37
speed_mean 0.00785 * 2.00 0.0247 1.73 0.0594 *** 7.40 0.0673 1.66
accel_mean 4.860 *** 5.02 0.0178 0.01 2.677 * 2.17 6.931 0.76

headig_mean 0.00326 *** 8.19 −0.000625 −0.40 0.0105 *** 12.83 −0.00120 −0.27
ntrips_per_day 0.0642 0.23 2.938 *** 3.63 4.166 *** 8.40 5.809** 2.68
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Table 8. Cont.

Variable Poisson with Nearmiss_Accel Negative Binomial with Nearmiss_Accel Poisson with Nearmiss_Brake Negative Binomial with Nearmiss_Brake
Coefficient z Coefficient z Coefficient z Coefficient z

ntrips_in_weekenddays 0.00110 *** 9.67 0.00148 1.62 0.00266 *** 12.02 0.00176 0.65
ntrips_under_15 min_pd 0.145 0.51 −2.631 ** −3.25 −4.614 *** −9.13 −5.833 ** −2.69

ntrips_between_15 min_30 min_pd 0.288 1.04 −2.610 ** −3.19 −3.938 *** −7.91 −5.321 * −2.42
ntrips_between_30 min_1 h_pd 0.278 1.03 −2.826 *** −3.48 −3.217 *** −6.63 −5.994 ** −2.76

ntrips_between_1 h_2 h_pd 0.858 ** 3.15 −2.275 * −2.51 −1.491 ** −2.97 −4.977 * −2.00
ntrips_longer_2 h_pd 1.091 ** 2.98 −2.520 * −2.23 −3.038 *** −4.55 −4.522 −1.51

distance_max_per_day −0.000000167 *** −4.88 −0.000000194 −0.89 0.000000110 1.61 −0.000000382 −0.59
distance_week −0.00000284 *** −5.53 −0.000000404 −0.30 −0.00000840 *** −10.45 0.000000398 0.11

distance_weekend 0.000000463 * 2.41 0.000000123 0.13 0.00000175 *** 4.99 0.00000356 1.27
distance_per_trip 0.00000793 *** 3.77 0.00000713 0.96 −0.0000402 *** −8.86 0.0000108 0.56

distance_during_night_pd −0.00000297 ** −3.14 0.00000499 1.73 −0.0000120 *** −7.11 0.0000105 1.32
distance_above_120 kmh_pd −0.00000200 ** −2.85 −0.00000310 −1.16 0.0000168 *** 12.95 −0.0000136 −1.72

Wald chi2 2540.3 174.3 2026.0 81.19
Log-likelihood −2875.7 −1130.9 −5338.8 −872.7

AIC 5785.4 2297.7 10711.6 1781.5
BIC 5847.5 2363.5 10773.7 1847.2

α 0.211 1.866
N 285 285 285 285

z-value stands for t statistics. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 9. The prediction evaluation of three regressions on training and test datasets; indices include mean Poisson deviance, root mean square error, mean absolute
error, and explained variance score.

Dataset Dependent
Variable Regression Train Set

MPD
Train Set

RMSE
Train Set

MAE Train Set EVS Test Set MPD Test Set
RMSE Test Set MAE Test Set EVS

Dataset from China Harshacceleration Poisson 49.940 107.992 67.502 0.542 68.371 118.482 82.553 0.128
Dataset from China Harshacceleration NB 50.984 111.827 68.845 0.509 66.575 116.146 80.809 0.156
Dataset from China Harshacceleration HGBR 5.727 27.568 17.994 0.970 55.743 98.574 72.938 0.387
Dataset from China Harshdeceleration Poisson 81.929 169.825 108.149 0.362 94.270 168.462 112.811 0.0114
Dataset from China Harshdeceleration NB 83.042 176.378 109.568 0.311 93.257 171.512 110.342 −0.0250
Dataset from China Harshdeceleration HGBR 6.732 34.581 24.643 0.974 68.183 136.403 95.093 0.367
Dataset from Spain nearmiss_accel Poisson 35.435 113.455 75.648 0.771 109.057 295.228 167.459 −0.585
Dataset from Spain nearmiss_accel NB 37.566 121.562 80.057 0.738 103.230 285.976 158.901 −0.504
Dataset from Spain nearmiss_accel HGBR 0.917 15.042 12.047 0.996 59.704 142.539 108.913 0.626
Dataset from Spain nearmiss_brake Poisson 68.715 98.752 59.957 0.410 131.334 169.415 97.284 −0.337
Dataset from Spain nearmiss_brake NB 72.813 104.598 63.328 0.338 110.137 142.324 86.313 0.0368
Dataset from Spain nearmiss_brake HGBR 1.589 8.676 6.457 0.995 95.379 115.870 72.233 0.362
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Permuted feature importance, one of the explanation tools of machine learning, could
be derived from changes in model prediction errors following the disruption of eigen-
values [35]. To understand the contribution of features to model prediction, permuted
feature importance tests are performed on the Poisson regression model and HGBR model,
respectively. It can be seen from Figure 4 that the two models of the two near-miss event
labels in the dataset from China are more sensitive to driving behavior variables. The same
is true for the dataset from Spain, except that the model from the dataset from Spain is
more sensitive to distance and duration variables, as shown in Figure 5. However, the
characteristics of the same model do not contribute to the prediction of different labels. Due
to the different features selected among different models, the comparison of feature contri-
butions is meaningless. It is worth mentioning that the permuted feature importance of the
negative binomial regression model is partially consistent with the variable significance
shown in Tables 7 and 8, but there are also contradictions. This means that this method can
only be used as an aid to understanding the contribution of variables, and its reliability
and interpretability need to be improved.

Figure 4. Feature importance ranking for the dataset from China; the upper left subgraph presents
the results of negative binomial regression on Harshacceleration, the upper right subgraph presents
the results of negative binomial regression on Harshdeceleration, the lower left subgraph presents the
results of HGBR on Harshacceleration, and the lower right subgraph presents the results of HGBR
on Harshdeceleration.

Once the aforementioned risk factor calculation method was employed to derive
driving risks, the predicted outcomes from the HGBR were combined with the actual
values of near-miss events from the two datasets. This process yielded four groups of
driving risk factors, as detailed in Table 10. Due to the limited number of drivers, all these
metrics were derived from the full sample. The distribution maps in Figure 6 illustrate the
distribution of driving risks for each near-miss event. In each group, a point represents an
observation’s driving risk factor, while the shaded areas and box plots represent the kernel
density and distribution of observed driving risks. In the dataset from China, either in the
Harshacceleration group or in the Harshdeceleration group, the driving risk for each near-
miss event group is primarily concentrated into two clusters. The first cluster, comprising
observations with a value above 0.6, indicates a high-risk group, while the second cluster,
comprising observations with a value below 0.6, indicates a low-risk group. In the dataset
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from Spain, both the near_miss acceleration and near_miss braking groups indicate that the
majority of drivers’ risks are distributed approximately normally around 0.3, whereas a
minority are distributed approximately normally around 0.8.

Figure 5. Feature importance ranking for the dataset from Spain; the upper left subgraph presents
the results of negative binomial regression on nearmiss_accel, the upper right subgraph presents
the results of negative binomial regression on nearmiss_brake, the lower left subgraph presents the
results of HGBR on nearmiss_accel, and the lower right subgraph presents the results of HGBR
on nearmiss_brake.

While there is no inherent correlation between the four sets of driving risk factor
outcomes, they do exhibit certain similarities. These include the magnitude of individual
driving risks and how they are aggregated. The results demonstrate that—regardless of the
dimension used to assess a driver’s risk-taking behavior—two distinct groups emerge: one
with lower driving risk and another with higher driving risk. These groups exhibit a clear
divergence, with the majority of ambiguous drivers occupying a relatively minor position.
In general, the lower-risk drivers constitute the majority, yet it is not implausible that the
majority of drivers may engage in more aggressive driving under certain circumstances.
This result also proves that the driving risk scoring algorithm proposed in this study can
effectively distinguish the driving risk levels. In addition, although laws and regulations
in Spain differ from those in China, and neither auto insurance market currently offers a
near-miss-based premium calculation product, this method demonstrates a straightforward
way to show that near-miss events can be used as corrections to the price of subsequent
periods. Furthermore, the same approach can be applied across different countries.

Table 10. Driving risk factor description of different near-miss events on different datasets.

Dataset Near-Miss Event Count Mean Standard Deviation Minimum 25% 50% 75% Maximum

Dataset from China Harshacceleration 261 0.597 0.226 0.132 0.406 0.534 0.817 0.989
Dataset from China Harshdeceleration 261 0.503 0.233 0.158 0.298 0.406 0.747 0.946
Dataset from Spain nearmiss_accel 285 0.400 0.205 0.133 0.241 0.333 0.507 0.883
Dataset from Spain nearmiss_brake 285 0.406 0.217 0.135 0.259 0.326 0.524 0.947
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Figure 6. Driving risk distribution for the dataset from China, which shows the Harshacceleration
group (first pink on the left) and Harshdeceleration group (second pink on the left), and the dataset
from Spain, which shows the nearmiss_accel group (first green on the right) and nearmiss_brake
group (second green on the right).

5. Conclusions

Near-miss events have been shown to be effective for assessing driving risks. Most in-
dependent variables in the GLM model are statistically significant, indicating that the model
effectively captures the distribution pattern of near-miss events as dependent variables.
The HGBR model demonstrates exemplary predictive capacity, ensuring accurate output
variables derived from input variables. The values and distribution of driving risk factors
align with prevailing expectations and understanding. This study’s findings suggest that
near-miss events have the potential to serve as independent variables, providing valuable
information for driving risk regression analysis. Furthermore, near-miss events may be
utilized as substitutes for accidents or claims when scoring driving risks [36]. Additionally,
driving risks can be leveraged to adjust premiums. However, the actuarial implications of
such adjustments for insurance companies require analysis. In particular, issues such as the
equilibrium of premiums and the distribution of payouts remain beyond the scope of this
paper and necessitate further examination.

The aforementioned study raises an intriguing question about the potential bene-
fits of employing driving risk predictors instead of directly using near-miss frequencies.
We contend that predictive models offer an effective methodology for generating a risk
score that incorporates contextual data beyond near-miss information. This data can be
influenced by external factors unrelated to the driver, such as the hazardous actions of
other drivers. Consequently, the risk score or predictive value provides a more accurate
approximation of the expected number of near-miss events and, ultimately, the projected
number of accidents.

Both conventional generalized linear models and machine learning algorithms have
their own respective merits and limitations. The outcomes of Poisson regression and
negative binomial regression indicate the effect size and statistical significance of each
independent variable on the dependent variable. They also highlight the causal impact of
telematics attributes on near-miss events. The high accuracy of the HGBR in predicting near-
miss events demonstrates its robust capability in handling telematics data with multiple
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driving-related variables. In the context of applying driving risk to rate-making, the
interpretability of the calculation method is highly valuable to policyholders. Meanwhile,
the efficiency and precision of the algorithm enable insurers to process large volumes of
driver data in an effective and precise manner.

It needs to be recognized that the findings of this study are constrained by a number
of limitations pertaining to the availability of relevant data. Firstly, the dataset from China
covers a duration of less than seven days, which precludes essential analyses such as
comparisons between weekdays and weekends. This limited timeframe may not accurately
represent annual driving behavior, particularly as it may be influenced by seasonal vari-
ations. Additionally, the restricted temporal range could contribute to inconsistencies in
the reported significance of variables. Moreover, the dataset from Spain is insufficiently
comprehensive, and the types and number of variables included are not as large as those
in the dataset from China, which renders the results less interpretable. Furthermore, the
lack of traditional insurance data and driving condition data represents a substantial limi-
tation. Including factors that capture the characteristics of drivers is crucial for providing a
comprehensive evaluation of the risks associated with driving.

Given the good performance of the ensemble learning algorithms used in this study,
future research will explore the use of more interpretable machine learning algorithms for
modeling and predicting large amounts of telematics data, and for car insurance pricing.
While artificial neural networks are not inherently interpretable, they can nonetheless be
explained using secondary tools or methods [37,38]. Thus, future research will explore how
state-of-the-art artificial neural networks can be applied to auto insurance to change the per-
sistent perception among insurers and administrators that such algorithms are completely
black-box systems. Exploring and analyzing telematics data using AI methods is impor-
tant for shifting our perceptions and decision-making processes from non-autonomous to
semi-autonomous to fully autonomous driving.
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The following abbreviations are used in this manuscript:

UBI usage-based insurance
IoV Internet of Vehicles
PAYD pay-as-you-drive
PHYD pay-how-you-drive
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MHYD manage-how-you-drive
VIF variance inflation factor
GLM generalized linear model
HGBR histogram-based gradient boosting regressor
GBRT gradient boosting regression tree
AIC Akaike information criterion
BIC Bayesian information criterion
MPD mean Poisson deviance
RMSE root mean square error
MAE mean absolute error
EVS explained variance score
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