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Abstract: E-commerce has grown into a billion-dollar industry in recent times with an
ever-increasing number of individuals using it regularly. Thus, e-commerce companies
can gather interaction data from their customers and analyze it to create focused and
personalized marketing campaigns. For large companies, it is possible to tap into these data
for personalization using deep learning-based methods that require enormous computing
resources. Small companies, on the other hand, cannot afford this. Furthermore, this level
of tailor-made addressing necessitates an accurate customer representation. Neverthe-
less, the exploration of universal representations applicable across various tasks has been
limited despite the advantages they offer. We propose a universal customer representa-
tion learned only from customer interaction data. We demonstrate that self-supervised
trained embeddings of the customer interaction context are a suitable universal customer
representation for various e-commerce tasks. To demonstrate the effectiveness of our ap-
proach, we conducted experiments comparing four different state-of-the-art approaches
and their capabilities in different prediction tasks. Not only do we show that our method
outperforms others in most cases, but it also meets other important criteria for real-world
applications. It is particularly important to emphasize that our approach does not require a
significant amount of resources, and furthermore, is data protection compliant by not using
personal information.

Keywords: e-commerce; customer behavior; universal customer representation; behavior
prediction; embedding; neural networks

1. Introduction
The exponential growth in the use of the Internet has made e-commerce an indispens-

able facet of today’s society. With the widespread adoption of portable devices, individuals
have convenient access to the Internet, making online shopping and digital marketplaces
an omnipresent force in the daily lives of consumers worldwide [1]. This unprecedented
accessibility is facilitated by search engines, and recommendation systems in particular
have become central components of e-commerce companies [2–5].

In this highly competitive and swiftly evolving environment, companies must make
precise predictions about consumer behavior to stay ahead of the curve. Personalization
offers new opportunities by enabling targeted, individualized interaction with customers
through the extensive amount of collected data [6]. Achieving personalization requires
the development of a robust customer representation capable of capturing intricate cus-
tomer behavior patterns and performing predictive analyses. Traditionally, this endeavor
has demanded substantial manual effort and domain expertise, often involving feature

J. Theor. Appl. Electron. Commer. Res. 2025, 20, 12 https://doi.org/10.3390/jtaer20010012

https://doi.org/10.3390/jtaer20010012
https://doi.org/10.3390/jtaer20010012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jtaer
https://www.mdpi.com
https://orcid.org/0000-0003-3664-0360
https://orcid.org/0000-0002-8024-3074
https://orcid.org/0000-0002-1969-559X
https://doi.org/10.3390/jtaer20010012
https://www.mdpi.com/article/10.3390/jtaer20010012?type=check_update&version=1


J. Theor. Appl. Electron. Commer. Res. 2025, 20, 12 2 of 22

engineering following extensive data analysis processes [7–10]. Furthermore, this labor-
intensive feature engineering must be replicated for various campaigns, as these customer
representations are tailored to specific use cases. Consequently, there is a need for a
more universal customer representation (UCR) [4,11], whereby ’universal’ in this context
means that it is applicable to multiple use cases and tasks without reengineering it for
a specific use case or task. However, with the ongoing development of deep learning, a
change in the methodological approaches of online retail is becoming apparent. Starting
from transformer-based models like Bert4Rec [12] for product recommendations or deep-
attention-based networks for predicting customer click behavior like DIEN [3], such deep
end-to-end approaches show promising performance in dealing with specific tasks. How-
ever, these approaches may not be suitable for all companies, particularly smaller ones that
lack the necessary expertise, resources, and data. They require simpler, easy-to-implement
approaches that offer comparable performance and flexibility.

The following criteria for a UCR are derived from this argumentation for real-world
applications with limited resources where various e-commerce tasks exist: (1) Perfor-
mance comparable to state-of-the-art approaches; (2) Flexibility for the use case, data
volume, and data type; (3) Data protection compliance, as with the rise of privacy laws
and regulations, access to certain information is no longer feasible. This has led to the
emergence of new baseline requirements that prohibit the use of personal customer infor-
mation [13–15]; (4) Real-time capability is crucial for providing a personalized customer
experience and engaging with customers using an appropriate marketing strategy, as noted
by Esmeli et al. [10].

In our work, we propose a foundation representation for e-commerce customers based
on self-supervised embeddings learned in the context of customer behavior as UCR and
can be used as features for arbitrary learning models in order to predict customers’ fu-
ture behavior that meets all four aforementioned requirements. We benchmarked our
approach against four other state-of-the-art approaches. For our use case, our approach
outperforms the existing methods. To demonstrate the transferability and reproducibility
of our approach, we subsequently apply it to three freely available and literature-renowned
benchmark datasets. Also, in these use cases, our approach shows good performance. Fur-
thermore, our experiments empirically show that embedding-based approaches represent
customer behavior better than manually selected features by domain experts.

The remainder of the paper is structured as follows: In Section 2, we describe the re-
lated work regarding different e-commerce tasks and customer representation. In Section 3,
we describe our use case in detail and the utilized datasets. Next, the used methodology
for the proposed embedding approach is explained in detail in Section 4. The conducted
experiments are described in Section 5. Finally, in Section 6 the results of our experiments
are presented and critically discussed. Furthermore, we describe our conducted ablation
study in Section 7. We summarize our research in Section 8 and give an outlook of potential
future directions.

2. Related Work
2.1. Universal Customer Representation Approaches

In related work, the focus is often on generating predictive models for specific e-
commerce tasks, rather than learning a universal customer representation. As a result,
only a few works address UCR generation using only activity data. In 2018, Ni et al. [4]
proposed the Deep User Perception Network (DUPN), an end-to-end Long-Short Term
Memory (LSTM) with an embedding input that is trained on multiple tasks. In addition
to the work of Ni et al., which comes closest to our perspective, other works enrich their
data with text data such as reviews or product descriptions in order to generate customer
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representations. For example, Gu et al. [16] propose the Self-Supervised User Modeling
Network (SUMN) that embeds text (e.g., review, search terms) of customers to model their
behavior. A similar approach is proposed by Yang et al. [11]. They present the Lifelong
User Representation Model (LURM) which represents customer behavior based on textual
features like written reviews, product names, and product categories over all activities in
their history. Wu et al. [17] proposed a pre-trained user model (PTUM) that learns customer
behavior from textual data which is inspired by pre-trained large language models. Recently,
Bertrand et al. [18] introduced an autoencoder-based framework for learning universal
customer embeddings from tabular data and using that tabular-embedding for different
downstream tasks, such as recommendation or forecasting. However, tabular data and its
mix of feature types often requires heavy preprocessing.

2.2. Task-Specific Customer Representation Approaches

Instead of focusing on universal customer representation, a larger number of related
works focus on task-specific customer representation approaches. Three e-commerce tasks
in particular are addressed more frequently: purchase prediction, churn prediction, and
click-through rate (CTR) prediction.

Purchase prediction is the prediction of the customer’s intention to purchase. In the
literature, the features are typically extracted from clickstream data from historical records,
which are mostly from known customers and their demographic information [9,19–24]. A
shift in research methodology can be identified around 2018. Approaches started to focus on
real-time capability and rely less on customers’ demographic information. Esmeli et al. [10]
propose an early purchase prediction framework that leverages extracted session-related
information from ongoing customer sessions. Sudirman et al. [25] use a particle swarm
optimizer to improve the accuracy of a decision tree for a purchase prediction use case.
Sheil et al. [26] propose an end-to-end three-layered LSTM with an embedding layer to
represent and predict customers’ purchase intention at the same time in which different
features are encoded into the embedding. Alves Gomes et al. [27] propose a similar but
simpler approach that only uses customer interaction as input.

Another task is to predict customer churn or return. It has been shown that the
cost of acquiring new customers is five times higher than the cost of retaining existing
customers [28]. Here, the approaches found in the literature mainly focus on manual
feature engineering [29–34]. Rachid et al. [29] and Berger et al. [30] use a combination of
transactional and behavioral/usage features such as number of sessions, session length,
and conversion rate over all historical sessions. Friedrich et al. [31] and Perisic et al. [32]
extracted RFM-related features [35] to represent the customer. Xiahou and Harada [33]
extracted features based on customer activity and the time of the day.

Recently, CTR prediction has received a lot of attention in industry and academia
alike. In the literature, the task is to determine if an item, e.g., a retrieved item in a search,
recommended product, or ad, is clicked by the customer. For example, Gulhane et al. [36]
and Huang et al. [37] propose an approach to predict the CTR for displayed ads. Other
authors propose a CTR prediction model to optimize the retrieved items of a search
engine [2,38,39]. In contrast to purchase and churn prediction, CTR prediction is typically
approached through deep end-to-end approaches where customer representation and
task solving are learned by the model as a whole. All learning models consist of an
input embedding layer to encode different information from the data [3,39–48]. DIN [42],
DIEN [3], TIEN [43], and MARN [44] are approaches that predict CTR for ads or products
given a sequence of customer behavior. Lu et al. [49] propose a highly tailored hybrid
model combining LightGBM, DeepFM, and DIN leveraging feature engineering, clustering,
and temporal feature extraction for CTR prediction. Geng et al. [50] utilize a large language



J. Theor. Appl. Electron. Commer. Res. 2025, 20, 12 4 of 22

model (LLM) to predict click behavior based on textual customer behavior descriptions.
To enhance the efficiency of the LLM prediction, the authors propose an Aggregated
Hierarchical Encoding.

3. Use Case and Datasets
3.1. Use Case

In today’s e-commerce environment, the offering must be highly personalized to retain
customers. This leads to the need of various amounts of highly adaptable use cases and cam-
paigns, covering the different needs for each customer. However, the increasing complexity
of personalization efforts is paralleled by growing concerns and stringent regulations
surrounding data privacy. As a result, e-commerce companies face the dual challenge of
delivering highly personalized experiences while adhering to both local and international
data protection laws. This necessitates several requirements for a company, which play a
crucial role in the overall system performance, user experience, and regulatory compliance.
One such requirement is the assurance of real-time capability, which is imperative for
e-commerce businesses seeking to offer personalized customer experiences in real-time,
thus maintaining engagement and enhancing conversion rates [10]. Another aspect is the
efficient use of resources. E-commerce platforms often operate with limited resources,
including computational power, memory, and bandwidth. Consequently, systems must be
designed to accommodate varying volumes and types of data while ensuring scalability and
efficiency across diverse use cases. This is particularly crucial as customer interactions can
vary significantly based on factors such as traffic volume or transaction types. In addition,
companies are obligated to ensure data privacy and compliance with regulations specific
to various countries [13–15,51]. Consequently, companies are prohibited from gathering
personal data or retaining it for extended periods. Given the potential for customers to
browse anonymously without logging in, it becomes increasingly challenging to track their
behavior without violating privacy laws. Consequently, the development of customer
behavior models and personalized strategies must judiciously balance personalization with
strict privacy regulations, ensuring that sensitive data are handled appropriately.

Task-specific solutions considering all the aforementioned requirements are therefore
no longer economically suitable and manageable, underlining the need for more universal
solutions. In our use case, we need to directly address this challenge by developing a
solution that enhances customer interactions on online platforms without compromising
data privacy. The goal is to improve the customer experience and increase companies’
return on investment by precisely predicting customer intent in a privacy-compliant manner.
Therefore, we are looking for a UCR that fits all the constraints a company can face.

Figure 1 illustrates the approached use case in this work on a high level. Each in-
teraction is processed by the behavior prediction system, which returns a probability of
predefined e-commerce prediction tasks. In consideration of the possibility that customers
may choose to remain anonymous, that is to say, not currently logged in, the system’s
architecture has been designed to rely exclusively on information derived from the ongoing
session. This approach not only enhances the system’s variability for both known and
unknown users but also ensures adherence to data protection regulations by eliminating
the need for prolonged data storage. Furthermore, as stated before, the system needs to be
real-time capable. According to Miller [52] and Card et al. [53], real-time performance is
achieved in under 0.1 s. The prediction of the behavior prediction system is then used to
make marketing decisions, such as recommendations, advertisements, etc.

In this work, we will focus on the behavior prediction system and its necessary compo-
nents, which include the UCR and the learning model to predict future customer intention.
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Figure 1. The website’s behavior prediction system processes each customer interaction and calculates
the probability for predefined prediction tasks, e.g, purchase, churn, and CTR prediction, after
each interaction. Subsequently, a customized marketing decision can be derived for the customer
in real-time.

3.2. Datasets

For the experiments, we utilized an industrialproprietary dataset collected from a
consumer packaged goods retailer situated in the United States between January 2020 and
May 2020. The dataset consists of 53.8 million customer events, encompassing 6.2 million
sessions. The dataset includes timestamps, session IDs, and various event types (e.g., page
view, product view, add-to-cart, remove-from-cart, purchase, and recommendation click),
as well as the webpage URL and the customer ID if logged in.

In addition, to showcase the transferability of our methodology and achieve replicabil-
ity, we conducted experiments on three publicly available datasets containing customer
interaction records.

The YooChoose dataset was introduced in 2015 for the RecSys Challenge (https:
//recsys.acm.org/recsys15/challenge/ accessed on 1 October 2024) and is often used
as a benchmark dataset for purchase prediction [8,10,19,20,22,27,54]. The dataset contains
information on click and purchase events of a European online retailer including informa-
tion on the session in which a product was purchased, as well as its price and quantity. It
comprises records of approximately 9.2 million sessions with 33 million customer inter-
actions. The records were collected over six months from April 2014 to September 2014.
Each event includes details on the session ID, event time, product, and product category.
A customer ID is not provided. Moreover, the dataset exclusively comprises view and
purchase events.

The RetailRocket dataset serves primarily as a benchmark dataset for churn predic-
tion [30,31]. However, it can also be utilized in certain purchase prediction use cases [26] as
well as in CTR prediction [55]. The data were obtained from an e-commerce website and
were collected over a period of 4.5 months between May and September of 2015, comprising
2.75 million events from 1.4 million customers. The events consist of five attributes: visitor
ID, item ID, timestamp, and event type (view, add-to-cart, and transaction). Furthermore,
the dataset provides supplementary details, such as item prices and categories. No session
information is included.

The OpenCDP dataset was utilized in the 2020 RecSys tutorial (https://recsys.acm.
org/recsys20/tutorials/ accessed on 1 October 2024) and is provided by the REES46

https://recsys.acm.org/recsys15/challenge/
https://recsys.acm.org/recsys15/challenge/
https://recsys.acm.org/recsys20/tutorials/
https://recsys.acm.org/recsys20/tutorials/
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marketing platform (https://rees46.com/de accessed on 1 October 2024). This dataset
contains data on customer behavior from a large online store offering multiple categories
of products. The data cover the period from October 2019 to April 2020. Each entry in the
dataset corresponds to a specific customer event and comprises nine distinct attributes
which are session ID, customer ID, event time, event type (view, add-to-cart, or purchase),
item ID, product category ID, product brand, product price, and product category brand.
It further comprises over 411 million events stemming from approximately 89 million
sessions. Not only does this dataset provide rich information but it is also considerably
larger than other datasets, qualifying it to test the scalability of the presented approach.

4. Methodology
Unlike the majority of current learning approaches, we opted for a two-stage process

instead of an end-to-end approach, as illustrated in Figure 2. In the first step, we generated
self-supervised, pre-trained embeddings as the UCR, which serves as a comprehensive
profile of the customer, constructed exclusively from interaction data and is then stored. It
is hypothesized that the underlying intention of the customer is encoded in their behav-
ior, and therefore, customers with similar behavior have likely a similar intention. This
hypothesis guides the subsequent step, wherein a task predictor learns patterns in the
customer behavior representation and makes predictions about their future behavior. In
the second step, the pre-trained embeddings are utilized as input in a learning model
trained for a specific e-commerce task. This modular approach allows for the creation
of different predictors tailored to various types of behavior, such as purchase likelihood,
churn probability, and CTR prediction using only one customer representation. Each pre-
dictor is trained independently, leveraging the UCR to maximize prediction accuracy while
maintaining strict adherence to data privacy regulations. Furthermore, this strategy was
chosen to circumvent a typical learning behavior found in end-to-end approaches where
a task-specific pattern learning is observed. Thereby, extraneous information about the
customer is disregarded which is often used in other state-of-the art end-to-end approaches.
An alternative approach involves pre-training a model with a general task, such as pre-
dicting the subsequent activity in a sequence. However, this method entails pre-training a
model with a typically substantial number of parameters, followed by re-training it for the
specific target tasks. In this instance, it is more efficient, in terms of both parameter count
and training effort, to acquire a suitable UCR and use it in a task-based model. Here, the
use of self-supervised pre-trained embeddings becomes crucial. As mentioned before, we
want to capture the customer intention by using their activities. Therefore, the context and
similarities need to be encoded in the UCR. In the latent vector space, similarities can be
expressed through embeddings.

A decade ago, Mikolov et al. [56] demonstrated that the similarity between two words
(wi, wj) in a given vector space is connected to their respective contexts (C(wi), C(wj)) in
which the context is defined by the surrounding words. With our approach, we will show
that this analogy also applies to sequences of customer interactions. For this, we use the
skip-gram approach which is shown in Figure 3. Specifically, given a customer activity aj

with j ∈ N, we describe the context C(aj) with length 2 × m with m ∈ N of this activity aj.
The context C(aj) is described by the activities {aj−1, aj−2, . . . , aj−m} that happened before
activities {aj+1, aj+2, . . . , aj+m} and that happened after activity aj of the same customer.
The goal is to learn the embedding representation ea for all possible customer activities
aj ∈ {a0, a1, . . . , an} with j, n ∈ N, 0 ≤ j ≤ n using a single-layer neural network with

https://rees46.com/de
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trainable parameters θ that maximizes the likelihood of the context C(aj). This yields the
objective function,

L(θ) =
n

∏
j=0

m

∏
α=−m;α ̸=0

P(aj+α|aj; θ). (1)

Figure 2. Decoupled, two-stage approach for predicting customer behavior based on historical
interaction data: In the first stage, universal customer representations are learned, which are used as
input in the second stage to train task-specific prediction models.

Figure 3. The architecture of our embedding approach. The customer activity aj is the input to the
embedding layer ea, which then predicts its context {aj−m, aj−m+1, . . . , aj+m−1, aj+m}/aj.

In the second stage of our approach, we require a learning model capable of processing
sequences of customer activities. Recurrent Neural Networks (RNNs) are a class of neural
networks designed to process sequential data by maintaining a hidden state that evolves
over time. However, RNNs suffer from limitations in capturing long-range dependencies
due to challenges such as vanishing gradients. LSTMs are well suited for this purpose.
They address vanishing gradients by introducing gating mechanisms that allow them to
effectively capture dependencies. Therefore, LSTMs use a memory cell c_t that can hold
information for long periods of time and is controlled by three gates, namely, input, forget,
and output, that regulate the flow of information. The forget gate learns what information
to discard from the memory cell. The input gate learns what new information to add to the
memory cell, and the output gate generates the new hidden state based on the memory
cell. The gating mechanisms allow LSTMs to effectively learn long-term dependencies,
making them suitable for sequential data [57]. It is important to note that we conducted
extensive experiments to identify the best-suited learning model for our tasks, which we
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will discuss in detail in Section 7. The objective for the learning model is to predict P(xi|si),
where si is a customer activity sequence with si = {ai0 , ai1 , . . . , ain} of length n ∈ N and xi

is a potential future customer behavior, such as a purchase, click or churn.

5. Experimental Setup
After outlining our embedding approach, we will provide a comprehensive description

of the experiments. This is done to ensure reproducibility. Figure 4 depicts the process
employed for our approach, commencing with data preparation. Thereafter, a customer
representation is derived through the learning of the UCR embedding representation.
Thereafter, the model is trained for the given task. Finally, the approach’s performance is
evaluated. A similar pipeline is used for the tested baseline approaches, which is described
in detail at the end of this section.

All approaches were implemented with Python 3.10 [58] using NumPy [59] and
Pandas [60] for data preprocessing and PyTorch [61] as the deep learning framework as
well as Sci-Kit Learn [62,63] for machine learning tasks and evaluation. Data preprocessing
and evaluation were completed on a commercial machine equipped with an Intel i9-
10885H CPU and 64GB RAM, operating on Windows 10. The training of the model and
hyperparameter search were executed on an x86 architecture with GNU/Linux (Kernel
Version 6.5.3) equipped with 96 Intel Xeon Platinum 8168 CPUs @ 2.70 GHz, 756 GB
RAM, and eight Nvidia Tesla V100 GPUs. For each approach, ours and the baselines, we
performed a systematic hyperparameter search using the Optuna library [64]. It uses a tree-
structured Parzen estimator to model the hyperparameter space probabilistically. Optuna
adaptively balances exploration and exploitation by suggesting parameter configurations
based on past evaluations, ensuring an efficient search for optimal hyperparameters. We
performed 10-fold cross-validation to tune the hyperparameters, evaluating up to 100 trials.

Figure 4. The experimental pipeline conducted in this study to evaluate our approach.

5.1. Data Preprocessing

For data preprocessing, we standardized the structure of all four datasets, eliminated
anomalies, and ensured that each dataset contained events with session IDs, interaction
objects, and timestamps. A session is defined as a sequence of activities performed by a
single customer. The industrial datasets YooChoose and OpenCDP provide this information.
However, the RetailRocket dataset does not have any such information. Therefore, we
extracted sessions by identifying activities that lasted more than a day for the same customer.
Our argument is that a session lasting more than a day provides a more comprehensive
view of customer intent, as many purchase decisions involve multiple visits spread over
hours within the same day. Furthermore, a short window risks arbitrarily dividing a
continuous customer journey into multiple sessions if the customer pauses. Anomalies
were eliminated in the subsequent steps. All sessions with less than three interactions or
more interactions than the 99.5th percentile were excluded. In a real-world setting, it is
not practical to make predictions based on only one or two customer interactions, or on
sessions with over one hundred interactions. Regarding our industrial dataset, we used the
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URLs rather than product IDs as interactions. Therefore, we excluded user-specific query
parameters in the URLs to avoid over-specification. This helps to reduce the number of
unique URLs and facilitates the generalization of the trained representation. It is important
to note that, in order to demonstrate the effectiveness of customer behavior prediction
without relying on personal customer information, we only use customer data to generate
ground-truth labels. These data are not used to create the UCR or train the model. To
ensure this, we remove all customer information, including customer IDs, from the dataset.

A session is labeled as a purchase if a purchase event exists in that session. There
are a variety of ways to generate churn labels. For instance, examining the most recent
month of data to identify customer activity, as referenced in [30,31], and categorizing these
sessions as either “not churning” or employing more rigorous criteria necessitates the
validation of transaction occurrences [65–67]. We consider a session as churn if there is no
follow-up session. This method reduces dependency on the previous month’s time period
and eliminates the necessity of labeling the entire last month as churn and disregarding
it. As the customer ID is unavailable in the YooChoose dataset, determining churn in that
dataset is not possible. Similarly, to churn we have to assign click labels to the dataset for
CTR prediction. For our own industrial dataset, we have recommendation click events that
show if a recommendation is clicked by the customer which we use to label a session. This
is not given for the other datasets. Therefore, we adhered to the commonly used approach
to generate click labels in the literature. The raw dataset has 100% positive click labels. To
obtain negative labels, 50% of the sessions have a randomly chosen item added which was
not clicked by the customer before [3,4,42,43,68,69].

The final step is to divide the dataset into training and testing sets. To be as close to the
real world as possible and to minimize feature leakage, we designated the last month of all
datasets as the test set, and therefore, to be used exclusively for evaluating the approaches.
Table 1 summarizes the statistical information of all four datasets after preprocessing.

Table 1. Statistics of the four datasets used in our research after preprocessing and splitting into
training and test sets.

Dataset Num. Sessions Purchase Churn Click

YooChoose train 3,731,708 310,851 % 1,865,854
(8.3%) (50%)

test 676,286 59,675 % 338,143
(8.8%) (50%)

RetailRocket train 165,842 7818 149,810 82,921
(4.7%) (90.3%) (50%)

test 19,741 896 18,980 9870
(4.5%) (96.1%) (50%)

OpenCDP train 32,930,752 3,738,748 5,829,219 16,465,376
(11.3%) (17.7%) (50%)

test 6,121,525 674,628 2,604,572 3,060,762
(11%) (42.5%) (50%)

industrial train 1,288,795 82,710 1,212,607 17,632
(6.4%) (94.1%) (1.3%)

test 119,513 7594 117,119 1447
(6.4%) (97.8%) (1.4%)

5.2. Embedding Training

To train our embedding-based UCR as described in Section 4, we generate context
data from the training data. Customer interaction is defined by the concatenated event
type and URL/product ID as “event_type:URL” or “event_type:product_ID”. For the
YooChoose dataset which solely comprises view events, the customer activity is restricted
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to the item ID. Subsequently, trigrams are created consisting of the current interaction ai

and its preceding ai−1 and subsequent interaction ai+1 that results in a triple (ai, ai+1, ai−1).
To address the initial and final customer activity of a sequence, we introduce “start” and
“end”. The e-commerce domain is constantly changing with new products or promotions
being added frequently, hence the need for the representation to accommodate new and
therefore unknown customer activities. It is known as the “Out of Vocabulary” problem
in natural language processing. To address this issue, we introduce an unknown token
and randomly replace activities of the trigrams in the training process, with a probability
equal to the ratio between known and unknown activities which is commonly used in the
literature [27,70]. Table 2 presents the statistics of the used context data.

Table 2. Statistics for the training datasets utilized to create a customer representation through
embedding training.

Dataset Num. Trigrams Num. Activities Unknown Activities

YooChoose 1,719,739 27,016 2511
RetailRocket 750,056 119,702 8071
OpenCDP 103,881,685 509,286 69,770
industrial 2,812,129 66,205 2771

For the embedding training process, we utilized the cross-entropy loss and Adam
optimizer algorithm [71] to predict the context of the activity. As mentioned before, we
searched the optimal hyperparameters including the embedding dimension, batch size,
and learning rate with the objective of minimizing the training loss. For the embedding
dimension, the search of the search space 2n, 2 ≤ n ≤ 10 results in an embedding dimension
of 32 for each use case except the OpenCDP dataset in which an embedding dimension
of 64 is used. We train the embeddings with a batch size of 1024 and a learning rate of
1.921 × 10−3. The embeddings are trained for 100 epochs. In order to deal with the high
number of distinct activities in the OpenCDP dataset, we used the Adaptive Log Softmax
With Loss [72] to speed up the embedding training.

5.3. Model Training

For each task and dataset, we trained a task-specific LSTM that receives the embedded
UCR extracted from the sessions as input. The three selected tasks, purchase, churn, and
CTR, are all binary classification problems, which allows for utilizing the Binary Cross
Entropy With Logit Loss function and Adam as the optimizer. We implemented a consistent
architecture across all tasks and use cases while adjusting the hyperparameters. We used
the Optuna framework to conduct a hyperparameter search with 10-fold cross-validation
maximizing the F1-score. As a result, we implemented a single-layer LSTM with a hidden
size equal to that of the embedding size.

As shown in Table 1, our datasets were notably imbalanced for all tasks, except for click
labels in the three publicly available datasets. Hence, we utilized three different sampling
strategies, which resulted in training each learning model three times for every prediction
task. We deployed SMOTE [73] for oversampling, utilized a random undersampler, and
did not implement any sampling at all. The outcomes were consistent across all use cases
and tasks: undersampling yielded the most favorable results overall. Consequently, we
will concentrate solely on analyzing the outcomes acquired through undersampling in
subsequent studies.

5.4. Evaluation

The final stage of our experiments involves evaluating the tested approaches. We
utilize a variety of metrics to measure if all four aforementioned requirements are fulfilled.
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We ran ten training runs, each with random initialization, to eliminate any favorable
starting conditions that might affect our results. The reported score metrics represent the
average of these ten runs. To evaluate the requirement performance, we use the F1-score
and the Area Under the Curve (AUC) score. For the requirement flexibility, we take into
account if it is possible to use the approach on all datasets and solve all tasks. To ensure
the data protection compliance requirement, we verify that the approach can be applied
without personal customer information and for known and unknown customers alike.
Finally, for the real-time requirement, we measure how many customer representations and
predictions can be completed within 0.1 s without taking into account any parallelization.

5.5. Baseline Approaches

We performed a comparative analysis with alternative baseline approaches for each
task and assessed them alongside strategies that generate universal customer models. As a
result of our assessment, we carried out preliminary experiments to determine the most
effective baseline models for each task. While performance was the primary measure, other
essential factors were also taken into consideration, such as the ability of an approach to
represent a customer solely based on their activities.

Purchase Baseline: The approach of Esmeli et al. [10] serves as the baseline for
purchase prediction because it does not rely on historical customer information and outper-
forms other approaches like the ones named in Section 2 on the YooChoose dataset. The
authors represent customers using twelve features observed during the ongoing session
and input the resulting representation into various machine learning classifiers, such as
Decision Trees, RF, or Naive Bayes. To solve the prediction tasks, we employed the RF
Classifier, which outperformed other models, such as Decision Trees, Naive Bayes, Support
Vector Machine, Gradient Boosting, and Multi-Layer Perceptrons.

Churn Baseline: The baseline approach for churn prediction is the approach proposed
by Berger et al. [30]. Their customer representation relies on 26 features obtained from all
available customer data. However, not all features were feasible to utilize because some
rely on historical customer information, which we do not use. For example, features related
to purchasing in ongoing sessions (the authors in their research referred to ongoing sessions
as the last session since their approach was not applied in real-time) are not available
in a real-world scenario. After adjustment, we utilize 18 proposed features comprised
of seven session-based features, four purchase-based features extracted from the entire
history of customer interactions, three behavior change features, and four application-
based interaction features. Similar to the purchase baseline, the RF Classifier is the best-
performing model for each task.

CTR Baseline: According to the literature, CTR prediction involves several deep
learning-based methods. We implemented these methods using the Deep-CTR library [74],
which provides various models for CTR prediction. We evaluate several models on the
Amazon Review dataset [75] which is used to benchmark CTR prediction and based on
the performance the used baseline approach is the Deep Interest Network (DIN) [42], an
end-to-end model containing multiple neural network layers. Its unique component is the
activation unit responsible for processing the user behavior sequence. For that approach,
the authors categorize the extracted features from the data into user profile features, user
behavior features, ad features, and context features. None of the datasets contain personal
customer information and therefore we only use behavior features for our experiments,
which encompass activity, event type, and product category if the activity relates to an
interaction with an item.

UCR Baseline: As the baseline for UCR, we chose the Deep User Perception Network
(DUPN) [4]. It employs an end-to-end LSTM with multiple embedding inputs and attention.
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Additionally, it obtains customer-related features alongside the sequence information,
which we do not incorporate in our experiments as it is not available in our datasets. The
remaining components are utilized as previously described. As input, we use activity-
property pairs that consist of the activity, event type, timestamp, and category.

6. Results
Table 3 presents the resulting AUC and F1-scores of our experiments. The purchase

baseline approach achieves the highest AUC score in predicting customer purchase intent
on the YooChoose dataset, the same dataset used in the initial research paper. Similarly,
we observed that the churn baseline achieves impressive churn prediction results on the
RetailRocket dataset, which serves as the benchmark dataset in its initial research paper.
However, the performance of both approaches on other use cases or tasks is only adequate
and lags behind the performance of the other approaches investigated. These approaches
were not designed for handling UCR and we argue that the use of feature engineering
approaches in research presents a widespread issue of over-engineering customer represen-
tation, resulting in the approach outperforming the state-of-the-art on the benchmark at
the cost of added manual effort and data analysis for every new task and use case. This
presents a significant concern in real-world applications. Furthermore, the limited appli-
cability of such approaches is another constraint. The three public datasets demonstrate
the challenge of predicting CTRs objectively. Without significant inclusion of features,
determining whether a customer will click on the shown product remains difficult.

Table 3. Performance of each tested approach. Bold blue markings indicate the best F1 and AUC
scores for each task. Note, that the reported values are the average of ten different initializations and
the standard deviation is smaller than 10−3.

YooChoose RetailRocket OpenCDP Industrial
Approach Score Purchase Click Purchase Churn Click Purchase Churn Click Purchase Churn Click

Purchase Baseline F1 0.657 % 0.585 0.690 % 0.779 0.556 % 0.632 0.585 0.446
AUC 0.690 % 0.578 0.772 % 0.836 0.508 % 0.679 0.551 0.527

Churn Baseline F1 0.597 % 0.643 0.902 % 0.522 0.565 % 0.491 0.662 0.469
AUC 0.627 % 0.629 0.928 % 0.563 0.563 % 0.596 0.629 0.498

CTR Baseline F1 0.612 0.733 0.663 0.575 0.661 0.874 0.528 0.891 0.748 0.625 0.933
AUC 0.609 0.781 0.724 0.592 0.663 0.923 0.488 0.951 0.805 0.659 0.963

UCR Baseline F1 0.671 0.660 0.629 0.980 0.357 0.867 0.567 0.021 0.748 0.987 0.934
AUC 0.679 0.705 0.637 0.667 0.496 0.916 0.537 0.499 0.807 0.713 0.971

Our F1 0.676 0.777 0.674 0.980 0.660 0.875 0.568 0.612 0.766 0.989 0.945
AUC 0.683 0.890 0.707 0.706 0.659 0.922 0.567 0.549 0.821 0.731 0.981

The three approaches for learning a customer representation from data can be effec-
tively implemented in all tested use cases and tasks. Additionally, the approaches showed
minimal difficulty in transferring to other use cases and tasks, requiring less effort than the
baseline approaches used for purchase and churn prediction.

The CTR baseline shows exceptional F1 and AUC performance for CTR prediction on
both the RetailRocket and OpenCDP datasets. In addition, it also delivers exceptionally
positive purchase prediction performance on the OpenCDP dataset. The CTR baseline
demonstrates robust performance in predicting both CTR and purchases. Nonetheless, it
persistently underperforms in the churn prediction task.

The UCR baseline persistently ranks among the top three approaches in almost all
experiments. Nevertheless, it underperforms in CTR prediction for the RetailRocket and
OpenCDP datasets. However, it excels in our industrial use case, outperforming the
CTR baseline.
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Our approach consistently outperforms other tested approaches across the tested use
cases and tasks, as evidenced by its high F1 and AUC scores. Even in situations where
our approach falls short of the top performer, it consistently ranks above the UCR baseline
and secures the second-place position. The experiments conducted on our dataset provide
further evidence of the superior performance of our approach in comparison to the other
approaches in which all other approaches are outperformed by our approach in both the F1
and AUC metrics. Based on the results, we assume that self-supervised pre-training in the
context of our approach proves beneficial in obtaining a UCR because we infer similarities
between activities rather than learning task-dependent features from the data. Furthermore,
our approach prides itself on its simplicity, resulting in a reduced number of parameters
and less overfitting, which will be further analyzed and discussed in the next Section 7.
Additionally, we hypothesize that our approach’s superior performance in each task in our
use case results from URLs as activities, which allows for a more nuanced understanding
of customer behavior than is available in the other three datasets, which solely provide
information on mere product ids. This results in more precise customer representations,
enabling a finer distinction between customers and leading to improved predictive capabil-
ities. This advantage promotes our approach to learning and understanding the context of
customer activities better.

Table 4 presents the results of our real-time evaluation. Specifically, it shows the
number of predictions the approaches can generate within 0.1 s. The purchase and churn
baseline values are rounded up to the nearest tenth, while the other three approaches are
rounded down to a full thousand.

Table 4. The number of predictions performed within 0.1 s for each approach.

Approach Number of Predictions in 0.1 s

Purchase Baseline 170 −194%
Churn Baseline 30 −199%
CTR Baseline 7000 −52%
UCR Baseline 10,000 −18%
Our 12,000 +0%

When choosing an approach for a real-world prediction system, it is essential to factor
in all of our requirements beyond performance. In particular, as discussed previously,
data privacy has become increasingly important. Therefore, all evaluated approaches rely
exclusively on available interaction data for making predictions and are compliant with data
protection regulations, following some adjustments we made beforehand. Additionally,
all tested approaches can generate predictions within 0.1 s. Nonetheless, the purchase
and churn baseline cannot make a sufficient amount of predictions to deal with too many
simultaneous customer accesses in real-time without adding additional compute resources
and parallelization, which increases operational costs. Both approaches do not have the
required flexibility to handle all tasks and datatypes, which is indispensable for our real-
world application without extensive modification and manual effort accompanied by data
analysis and laborious testing.

On the contrary, the CTR baseline, UCR baseline, and our approach fulfill our flexibility
requirement. Adding or removing information can be done with less effort. It should be
noted that the degree of ease of implementation depends on the embedding technique used.
We have fully implemented all three approaches such that the inclusion of an extra feature is
easily accomplished through a configuration file update. Although further effort is required,
this process is considerably simpler than the conventional feature engineering approach.
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In the context of real-world applications, a critical consideration is the low-resources
requirement to minimize costs. The training of an RF can be completed in a brief period,
with minimal computational demands. Conversely, neural networks necessitate a greater
allocation of resources. The utilization of the CTR baseline considerably extends the
training duration, rendering it ill suited for our live prediction system. While this approach
demonstrates exceptional performance in specific scenarios, it imposes substantial resource
requirements, leading to higher costs for the enterprise.

Table 5 summarizes which approach meets which requirement. The CTR baseline,
UCR baseline, and our approach meet all requirements and are therefore suitable for our
real-world applications. They are real-time capable and ensure privacy compliance by
accommodating unknown customers, and the information gathered during the ongoing ses-
sion is sufficient for precise predictions. We can achieve UCR through learned embeddings
without the need for complex models, which is especially beneficial for smaller companies.

Table 5. Requirements that the tested approaches meet that we need for a prediction system to be
applied in a real-world application.

Approach Performance Flexibility Data Protection Real-Time

Purchase Baseline !

Churn Baseline !

CTR Baseline ! ! ! !

UCR Baseline ! ! ! !

Our ! ! ! !

7. Further Discussion and Analysis
Our two-stage approach has been developed through a series of experiments, during

which we investigated which combinations of embeddings and models offer the best per-
formance. We also tested end-to-end approaches. The following investigations were carried
out: Use of different features, such as time of interaction, event type, product category, and
product price, if given. The utilization of distinct models of simple multilayer perceptrons
(MLPs) with varying depth and width, in conjunction with residual connections, LSTM
units, and gated recurrent units (GRUs), as well as compact transformer architectures
comprising up to six layers, was undertaken. Additionally, the approaches were trained
with varying numbers of epochs.

Thereby, our experiments yielded the following insights: End-to-end approaches
exhibit overfitting during training, resulting in a decline in test performance as the number
of epochs increases. This phenomenon is also observed when a two-stage approach is
employed with deep models like transformers. The LSTM offers the optimal performance
in our use case. The addition of additional features in the embedding only marginally
enhances performance. Datasets lacking event-type information exhibit a positive effect by
embedding category or time information of the interaction. However, one disadvantage
is that the inference runtime increases with each additional feature. Event types can
be encoded in the interaction without any loss of performance and do not lead to any
additional runtime during inference. In terms of pre-trained embedding approaches, Skip-
Gram is slightly superior to Continuous Bag of Words (CBOW). Embedding pretraining
of a few epochs results in a satisfactory representation. However, as the embeddings are
trained for longer, their effectiveness increases, reaching the optimal performance level
between 60 and 100 epochs depending on the data used, after this point, no discernible
improvement in prediction performance could be identified.

In the following, we will examine in more detail why we chose to use an LSTM for
task prediction rather than a Transformer, which is the go-to architecture in NLP for large
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language models and is increasingly popular in computer vision. Table 6 presents the
results of three Encoder-Transformer models with one, three, and six layers, respectively.
Each model utilizes four attention heads and a 128-dimensional feed-forward layer. For the
binary classification head, we apply average pooling over the encoder output. All other
configurations follow the original BERT architecture as proposed by Devlin et al. [76].

Table 6. Performance of three different Transformer-Encoder models and LSTM with our proposed
UCR.

YooChoose RetailRocket OpenCDP Industrial
Approach Score Purchase Click Purchase Churn Click Purchase Churn Click Purchase Churn Click

LSTM F1 0.676 0.777 0.674 0.980 0.660 0.875 0.568 0.612 0.766 0.989 0.945
AUC 0.683 0.890 0.707 0.706 0.659 0.922 0.567 0.549 0.821 0.731 0.981

Transformer-1 F1 0.651 0.641 0.635 0.616 0.346 0.827 0.497 0.027 0.754 0.663 0.666
AUC 0.652 0.625 0.647 0.579 0.497 0.874 0.550 0.499 0.810 0.701 0.494

Transformer-3 F1 0.628 0.646 0.633 0.624 0.323 0.845 0.550 0.022 0.753 0.661 0.605
AUC 0.663 0.652 0.634 0.588 0.495 0.896 0.554 0.499 0.809 0.706 0.487

Transformer-6 F1 0.592 0.646 0.628 0.626 0.322 0.847 0.564 0.101 0.758 0.661 0.597
AUC 0.643 0.634 0.632 0.603 0.492 0.906 0.557 0.500 0.812 0.704 0.496

The results of our experiments indicate that using an LSTM for prediction yields
more accurate results than the evaluated Transformer-based models. This finding seems
unexpected, given the popularity and proven effectiveness of Transformer architectures
in a wide range of machine learning tasks, particularly in sequence modeling and natural
language processing.

Interestingly, we also observe that smaller Transformer models outperform larger ones
on smaller datasets like YooChoose or RetailRocket. We hypothesize that the larger models
overfit the training data, leading to poorer generalization on test samples. This hypothesis
is supported by examining the training and test logs for all tested approaches, including
the UCR-baseline and CTR-baseline. Notably, the UCR-baseline and CTR-baseline achieve
near-perfect F1 and AUC scores between 20 and 30 training epochs when validated on the
training data. Similar trends are observed for the Transformer-based models, which show
peak performance around 40 epochs of training. However, their performance on the test
data deteriorates with continued training.

Consequently, a more detailed analysis was conducted. Figure 5 illustrates the AUC
scores for purchase prediction on the test data for the UCR-baseline DUPN, the CTR-
baseline DIN, the three Transformer models, and LSTM across different training epochs.
As is evident, all models demonstrate a decline in performance over time, particularly
DUPN and DIN. The observed overfitting can be attributed to the excessive number of
parameters in the models. For instance, DIN has a total of 747,186 parameters, while DUPN
has 212,710 parameters. In contrast, the one-layer Transformer has only 25,441 parameters,
the three-layer Transformer has 50,849 parameters, and the six-layer Transformer has
88,961 parameters. In contrast, the LSTM model utilizes a comparatively modest number of
parameters, with a total of 8481, a factor that likely contributes to its superior generalization
across diverse use cases and tasks.This behavior is consistent across all the investigated
tasks and datasets.

These results raise intriguing questions about the relationship between model com-
plexity, dataset size, and generalization. While the success of Transformers on large-scale
datasets is well documented, our findings suggest that on smaller datasets, the simplicity
and parameter efficiency of LSTMs can provide a significant advantage. This outcome is
particularly noteworthy in light of the prevalent claim that Transformer architectures excel
in modeling long-range dependencies more efficiently than LSTMs.
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One potential explanation for the observed discrepancy in performance is the inherent
characteristics of the datasets themselves. Small datasets may not provide sufficient diverse
training examples to fully leverage the capacity of larger models, such as Transformers with
multiple layers. In such scenarios, the augmented model capacity may lead to overfitting
rather than enhanced generalization. Conversely, the reduced parameter count of the LSTM
enables it to achieve a more optimal balance between learning capacity and generalization.

Another consideration is the training dynamics of the two architectures. Transformers
rely heavily on self-attention mechanisms, which can be sensitive to noise and sparsity
in the data, particularly in smaller datasets. LSTMs, with their sequential structure and
built-in gating mechanisms, seem to be more robust to such challenges, allowing them to
capture meaningful patterns more effectively in data-constrained scenarios.

Overall, our findings highlight the importance of aligning model architecture and
complexity with the characteristics of the dataset. While Transformers are a powerful
tool, their advantages may not always manifest in settings with limited data or specific
types of sequence prediction tasks. Further research is needed to better understand these
dynamics and to develop adaptive approaches that leverage the strengths of both LSTMs
and Transformers in a principled manner.

Figure 5. Test AUC performance of the neural learning models for purchase prediction for the
industrial dataset over 80 epochs.

A key consideration for practical applications is the scalability of the proposed ap-
proach and its relevance to e-commerce businesses of different sizes. Smaller e-commerce
businesses, which often lack access to vast amounts of data, could benefit significantly
from the findings of this study. Our two-step approach combining embeddings and LSTMs,
with its reduced computational and memory requirements, is well suited for deployment
in such environments. The proven robustness and efficiency of embeddings make them
an attractive option for startups or mid-sized enterprises seeking to implement predictive
analytics with a constrained infrastructure.

In contrast, larger e-commerce enterprises, which typically have access to extensive
datasets, may find Transformers advantageous due to their capacity to capture complex,
long-range dependencies inherent in large-scale interactions. However, while our experi-
ments demonstrate the approach’s feasibility on mid-sized datasets, testing the method on
very large-scale datasets was beyond the scope of this study. The ability to handle such
datasets effectively is vital for large enterprises with high volumes of user interactions.
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Therefore, for larger e-commerce enterprises, where extensive datasets are readily available,
additional performance considerations must be evaluated.

All research is subject to certain limitations, which must be discussed in order to pro-
vide a transparent assessment of the methods employed. Our experiments demonstrate that
our approach outperforms other baseline models for prediction tasks across all investigated
datasets. This finding, while robust, raises certain limitations that warrant discussion.

Firstly, our results and analysis suggest that model complexity, as characterized by the
number of parameters, plays a critical role in generalization, particularly on smaller datasets.
Larger models appear to suffer from overfitting despite their architectural advantages in
capturing long-range dependencies. However, attributing the superior performance of
our approach solely to their smaller parameter count may oversimplify the relationship
between model architecture and dataset characteristics. While the smaller datasets, such
as YooChoose and RetailRocket, are representative of real-world applications, they may
not fully capture the complexity or diversity of interactions found in larger-scale datasets
where larger models like Transformer architectures excel. This dataset constraint limits the
generalizability of our findings to small-to-medium-scale data scenarios. Testing on more
extensive datasets, potentially with billions of interactions, could yield different results and
should be investigated in the future. Nonetheless, it is important to acknowledge that the
majority of enterprises lack access to such extensive large datasets, highlighting the need
for our approach.

Furthermore, we acknowledge a notable limitation in the preparation of the datasets:
the need to generate churn and click labels for prediction due to the unavailability of these
labels in their original form.

The generation of these labels introduces potential biases and uncertainties. Labeling
churn, for example, often relies on assumptions such as a specific duration of inactivity
to define a “churned” customer. Similarly, click labels may be derived based on interac-
tions that meet certain thresholds, such as time spent on a page or the number of items
clicked during a session. These assumptions, while necessary, might not fully capture the
underlying behaviors they aim to represent, potentially leading to noise in the data or
misclassification of customer behavior.

The impact of these biases can extend to the predictive models, potentially influencing
their performance and generalizability. Models trained on generated labels might learn
to overfit to the heuristic patterns rather than the true underlying behaviors. By using a
diverse set of datasets, we aimed to reduce over-reliance on any single labeling heuristic.
Despite these measures, the inherent limitations of label generation must be acknowledged.

8. Summary and Outlook
E-commerce is an integral part of modern society, opening up a wide range of oppor-

tunities. One form that is frequently sought is personalization. In this context, companies
with small amounts of data and fewer resources need to be able to establish contact with
their customers in e-commerce. Parameter-intensive and therefore data-hungry deep learn-
ing models are rarely feasible for such companies. Furthermore, the use of such models
is not always advisable. However, our experiments show that a learning approach does
not require such complexity to solve various e-commerce tasks. A self-supervised, trained
embedding as a universal customer representation and an LSTM prove to be sufficient to
compete with state-of-the-art task-solving performance and furthermore fulfill the crite-
ria required by real-world applications. Additionally, our results show that approaches
utilizing customer modeling by experts can no longer compete with learning approaches.

In the future, we plan for the system to be evaluated by marketing experts who should
evaluate the reasonableness of the representation. In order to assess plausibility, we will
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investigate visualization and ablation studies that provide insights into the embedding-
based UCR and its usage.

Currently, we have only analyzed the ongoing session, but if accessible, we intend to
expand our approach to include the prior user history. In order to achieve this, it may be
worthwhile to augment the embeddings with time-based activity data. There is existing
literature on this topic, such as time2vec [77] or TEE [54].

Continual retraining is a limitation of our approach we want to tackle in the future.
Therefore, we plan to investigate approaches on how to incrementally add new activities in
the pre-trained embedding space without losing previously learned knowledge.

Another next step is to develop a marketing decision system. Currently, it is tailored
for human understanding, utilizing customer intention probabilities that result from the
prediction system to make marketing decisions. Theoretically, we could directly link it with
the embedding representation to make more efficient and improved decisions. However,
as a disadvantage, this would result in increased difficulties when it comes to reasoning,
which should be considered.
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