

  Equivalence of Partition Functions Leads to Classification of Entropies and Means




Equivalence of Partition Functions Leads to Classification of Entropies and Means







Entropy 2012, 14(8), 1317-1342; doi:10.3390/e14081317




Article



Equivalence of Partition Functions Leads to Classification of Entropies and Means



Michel S. Elnaggar 1,† and Achim Kempf 2,*





1



Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada






2



Department of Applied Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada









†



Present address: Bell Mobility Inc., Mississauga, Ontario L4W 5N2, Canada.






*



Author to whom correspondence should be addressed; Tel.: +1-519-888-4567 (ext. 35462); Fax: +1-519-746-4319.







Received: 24 April 2012; in revised form: 26 June 2012 / Accepted: 9 July 2012 / Published: 27 July 2012



Abstract:



We derive a two-parameter family of generalized entropies, Spq, and means mpq. To this end, assume that we want to calculate an entropy and a mean for n non-negative real numbers {x1,…,xn}. For comparison, we consider {m1,…,mk} where mi = m for all i = 1,…,k and where m and k are chosen such that the lp and lq norms of {x1,…,xn} and {m1,…,mk} coincide. We formally allow k to be real. Then, we define k, log k, and m to be a generalized cardinality kpq, a generalized entropy Spq, and a generalized mean mpq respectively. We show that this family of entropies includes the Shannon and Rényi entropies and that the family of generalized means includes the power means (such as arithmetic, harmonic, geometric, root-mean-square, maximum, and minimum) as well as novel means of Shannon-like and Rényi-like forms. A thermodynamic interpretation arises from the fact that the lp norm is closely related to the partition function at inverse temperature β = p. Namely, two systems possess the same generalized entropy and generalized mean energy if and only if their partition functions agree at two temperatures, which is also equivalent to the condition that their Helmholtz free energies agree at these two temperatures.
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1. Introduction


Two of the most basic concepts of thermodynamics are: (a) the average of measurement outcomes and (b) the uncertainty or entropy about measurement outcomes. Consider, for example, a physical system, A, that is in contact with a heat bath at some fixed temperature, i.e., a canonical ensemble. The measurement of the system’s energy can return any one of its energy eigenstates. What then is (a) the mean energy to expect and (b) how uncertain is the prediction of the measured energy state?



We notice that, in principle, many different notions of energy mean and many different measures of entropy could be employed here. Of course, in thermodynamics, the Boltzmann factor weighted mean as well as the Shannon/von Neumann entropy are of foremost importance. In this paper, we show that also other important notions of average such as the harmonic mean, the geometric mean and the arithmetic mean arise naturally, along with generalized notions of entropy including Rényi entropies [1], all unified in a two-parameter family of notions of means and notions of entropies.



To this end, consider systems (canonical ensembles) in a heat bath. We begin by considering the simplest kind of system, namely the type of system which possesses only one energy level, E. Let us denote its degeneracy by k. Unambiguously, we should assign that system the mean [image: there is no content] and the entropy [image: there is no content]. Let us denote these simple one-level systems by the term reference system.



Now, let X be a system with arbitrary discrete energy levels. Our aim is to assign X a mean and an entropy by finding that reference system M which is in some sense equivalent to X. Then we assign X the same value for the mean and entropy as the reference system M.



But how do we decide if a reference system is in some sense equivalent to system X? Given that we want the reference system M and system X to share two properties, namely a mean and an entropy, we expect any such condition for the equivalence of two systems to require two equations to be fulfilled. Further, since the properties of systems are encoded in their partition function [image: there is no content], we expect that these two equations can be expressed in terms of the partition functions of the two systems in question.



To this end, let us adopt what may be considered the simplest definition. We choose two temperatures, T1 and T2 and we define that a reference system is (T1, T2)-equivalent to system X if the partition functions of the two systems coincide with each other at these two temperatures. Since the Helmholtz free energy [image: there is no content] obeys [image: there is no content], where [image: there is no content] is the Boltzmann constant, this is the same as saying that two systems are put in the same equivalence class if their Helmholtz free energies coincide at these two temperatures.



This allows us now to assign any system X a mean and an entropy. We simply find its unique (T1 and T2)-equivalent reference system M. Then the mean and entropy of X are defined to be the mean and the entropy of the reference system M.



Clearly, the so-defined mean and entropy of a system X now actually depend on two temperatures, namely (T1, T2). As we will show below, in the limit when we let the two temperatures become the same temperature, we recover the usual Boltzmann factor-weighted mean, i.e., the usual mean energy, along with the usual Shannon/von Neumann entropy.



For general (T1, T2), we cover more, however. Namely, we naturally obtain a unifying 2-parameter family of notions of mean that includes for example the geometric, the harmonic, the arithmetic and the root-mean-square (RMS) means. And we obtain a unifying 2-parameter family of notions of entropy that, for example, includes the Rényi family of entropies.



To be precise, let us assume that a system X has only discrete energy levels, {Ei}, where i enumerates all the energy levels counting also possible degeneracies. Notice that {Ei} is formally what is called a multiset, because its members are allowed to occur more than once. Similarly, let us also collect the exponentiation of the negative energies [image: there is no content] in the multiset [image: there is no content]. Either multiset can be used to describe the same thermodynamic system X. Let [image: there is no content] denote the inverse temperature, where [image: there is no content] is the Boltzmann constant. The partition function of system X, i.e., the sum of its Boltzmann factors, then reads:


[image: there is no content]



(1)







For later reference, note that the partition function is therefore related to the lp norm of X = {x1,…,xn} for [image: there is no content] through [image: there is no content].



Now the key definition is that we call two physical systems [image: there is no content]-equivalent if their partition functions coincide at the two inverse temperatures [image: there is no content], i.e., systems [image: there is no content] and [image: there is no content] are [image: there is no content]-equivalent if [image: there is no content] and [image: there is no content]. To be more explicit, one may also call such systems [image: there is no content]-partition function equivalent, or also [image: there is no content]-Helmholtz free energy equivalent, but we will here use the term [image: there is no content]-equivalent for short.



In particular, for any given system X, let us consider the [image: there is no content]-equivalent reference system M which possesses just one energy level, with energy E0 and degeneracy k, where we formally allow k to be any positive number. E0 and k are then determined by the two conditions that the partition function of M is to coincide with that of X at the two inverse temperatures [image: there is no content] and [image: there is no content]. Then, we define [image: there is no content] to be the generalized entropy, and [image: there is no content] to be the generalized mean energy of system [image: there is no content] with respect to the temperatures [image: there is no content].



We will explore the properties of these families of generalized entropies and means in the subsequent sections. First, however, let us consider the special limiting case when the two temperatures coincide (i.e., [image: there is no content]). As will be detailed in the subsequent sections of the manuscript, in this limiting case, the two equivalence conditions of partition functions can be shown to reduce to:


[image: there is no content]



(2a)






[image: there is no content]



(2b)




which can be shown to be equivalent to:


[image: there is no content]



(3a)






[image: there is no content]



(3b)







The conditions (3a) and (3b) physically mean that systems [image: there is no content] and [image: there is no content] have the same partition function and average energy, respectively, at the inverse temperature [image: there is no content]. Notice that this is also the same as saying that the two systems have the same average energy and the same Helmholtz free energy at the inverse temperature [image: there is no content]. Now by employing either pair of conditions, (2) or (3), we then recover indeed the usual thermodynamic entropy of the system X, which is given in the Shannon form at the inverse temperature [image: there is no content] by


[image: there is no content]



(4)







The proofs of Equations (2)–(4) are straightforward. We will spell them out in detail in the subsequent sections where the setting is abstract mathematical.



Before we begin the mathematical treatment, let us remark that entropy is not only a cornerstone of thermodynamics but it is also crucial in information theory. Due to its universal significance, measures of uncertainty in the form of an entropy have been proposed by physicists and mathematicians for over a century [2]. Our approach here for deriving a generalized family of entropies was originally motivated by basic questions regarding the effective dimensionality of multi-antenna systems (e.g., [3,4,5]). After initial attempts in [6] and later in [5,7], we here give for the first time a comprehensive derivation with the proofs and we also include the family of generalized means.



The manuscript is organized as follows. In Section 2, we introduce the proposed family of entropies and means mathematically, and also show some special cases thereof. The axiomatic formulation is presented in Section 3, followed by the study of resulting properties in Section 4. Proofs are provided in the appendices.




2. Mathematical Definition of Generalized Entropies and Means


Let [image: there is no content] be a multiset of real non-negative numbers, where [image: there is no content] denotes the cardinality of X. We assume that X possesses at least one non-zero element. Further, let [image: there is no content] be arbitrary fixed real numbers obeying [image: there is no content]. Let [image: there is no content] be a reference multiset possessing exactly one real positive element [image: there is no content], which is of multiplicity [image: there is no content]. We introduce the following definitions:

	
[image: there is no content] is the number of non-zero elements of X, therefore [image: there is no content]. To simplify notation, the subscript X is omitted when dealing with one multiset at hand.



	
[image: there is no content] is the multiplicity of the maximum elements of X



	
[image: there is no content] is the multiplicity of the minimum elements of X








Our objective is to determine suitable values for [image: there is no content] and [image: there is no content], possibly non-integer, that can serve as mean and effective cardinality of X, respectively, namely by imposing a suitable criterion for the equivalence of X to a reference multiset M. Having two unknowns ([image: there is no content] and [image: there is no content]) in M, we need two equivalence conditions. We choose to impose the equivalence of the p-norms and the q-norms:


[image: there is no content]



(5)




Here, the p-norm [image: there is no content] is defined as usual through:


[image: there is no content]



(6)




with the proviso that [image: there is no content] is replaced by 0 if [image: there is no content] and [image: there is no content]. We remark that, for [image: there is no content], (6) is merely a quasi-norm since the triangle inequality does not hold. Note the singularity [image: there is no content].



Solving for [image: there is no content] and [image: there is no content] in (5), we obtain:


[image: there is no content]



(7)







We call [image: there is no content] and [image: there is no content] the norm-induced effective cardinality and generic mean of order [image: there is no content] for the multiset X, respectively. Let us now express (7) in a logarithmic form and define the entropy [image: there is no content] as follows:


[image: there is no content]



(8a)






[image: there is no content]



(8b)







Notice that [image: there is no content] and [image: there is no content], i.e., both the entropy and mean are symmetrical with respect to the order [image: there is no content].



Next, we express [image: there is no content] and [image: there is no content] in the limiting case when [image: there is no content]. For [image: there is no content] we find:


[image: there is no content]



(9)




where the last step is obtained by straightforward manipulations. Similarly, we find for [image: there is no content]:


[image: there is no content]



(10)




where in the second to last step, we used the fact that [image: there is no content], and the last step is obtained by straightforward manipulations.



It is worthwhile to mention the following useful relation linking [image: there is no content], [image: there is no content] and [image: there is no content], which is readily deduced from (9) and (10):


[image: there is no content]



(11)







We remark that in the early phase of this work [5], each author independently suggested either [image: there is no content] or [image: there is no content] as two possible distinct notions for the effective cardinality. In [7], it was reported that the average energy and Shannon entropy of a thermodynamic system are obtained by starting from equivalence of partition functions of two systems at two temperatures when the two temperatures coincide as mentioned in the introduction. Clearly, the limiting operation in (9) makes the connection and establishes (7) as the general definition of this norm-induced family of entropies and means.



In fact, for the case of degenerate order, ([image: there is no content]), the quantities [image: there is no content], [image: there is no content], and [image: there is no content], could have been obtained as well through a differential equivalence of the [image: there is no content]-norm. To see this, we impose the following two conditions:


[image: there is no content]



(12)




After employing [image: there is no content] and solving for [image: there is no content] and [image: there is no content], we ultimately obtain [image: there is no content] and [image: there is no content] as given by (9) and (10). The condition (12) is the mathematical equivalent of the aforementioned physical condition (2) imposed on the two thermodynamic systems, which yielded the Shannon entropy form (4).



From (9), it is obvious that [image: there is no content] is the Shannon entropy of the distribution [image: there is no content], which is called the escort distribution of order [image: there is no content] [8] of [image: there is no content]. On the other hand, [image: there is no content] is a more general expression of the Rényi entropy of order [image: there is no content]. For a probability distribution [image: there is no content], the Rényi entropy of order [image: there is no content] is given by [9]:


[image: there is no content]



(13)







By setting the order [image: there is no content] in [image: there is no content], we obtain from (8):


[image: there is no content]



(14)







By comparing (13) and (14), we readily identify [image: there is no content] as the Rényi entropy of order [image: there is no content] for a complete statistical distribution given by [image: there is no content], where the multiset elements add to 1. Formally:


[image: there is no content]



(15)







In the degenerate case (when [image: there is no content]), [image: there is no content] is the Shannon entropy of the latter distribution. For [image: there is no content], [image: there is no content] from (8) can be rearranged as a generalization of (13):


[image: there is no content]



(16)




which can be viewed as the Rényi entropy of order [image: there is no content] for the [image: there is no content] order escort distribution [image: there is no content].



Rényi defined his entropy for [image: there is no content]. We relax this condition further and allow [image: there is no content] and [image: there is no content] to be defined for any real indices [image: there is no content] such that [image: there is no content]. Accordingly, we obtain the following properties:


[image: there is no content]



(17)







When at least one order [image: there is no content] is zero, we find the interesting results:


[image: there is no content]



(18)






[image: there is no content]



(19)






[image: there is no content]



(20)







We recognize [image: there is no content] in (19) as the Hartley entropy [10], which will be shown later to be the maximum value of any entropy. From (20), we obtain a famous family of generic p-means of the non-zero elements of X: particularly [image: there is no content] are the minimum, harmonic mean, arithmetic mean, root-mean-square mean, and maximum, respectively. In the limiting case [image: there is no content], we obtain [image: there is no content], which is the geometric mean. In Table 1, we summarize these and other particular cases of means and entropies at specific [image: there is no content]. The key point is that each [image: there is no content] uniquely defines an entropy [image: there is no content] with a corresponding mean [image: there is no content], such that each pair of [image: there is no content] and [image: there is no content] is coupled in this sense.



Table 1. Special cases of [image: there is no content] and [image: there is no content]. Note that [image: there is no content] and [image: there is no content] (Property 4.3).







	
Order [image: there is no content]

	
[image: there is no content]

	
[image: there is no content] name

	
[image: there is no content]

	
[image: there is no content] name




	
[image: there is no content]

	
[image: there is no content]

	
Boltzmann-Hartley entropy

	
[image: there is no content]

	
Generic [image: there is no content] mean. Specific q values are harmonic (-1), arithmetic (1), root-mean-square (2), maximum ([image: there is no content]), minimum ([image: there is no content])




	
0,0

	
[image: there is no content]

	
Boltzmann-Hartley entropy

	
[image: there is no content]

	
Geometric mean




	
[image: there is no content]

	
[image: there is no content]

	

	
[image: there is no content]

	
maximum




	
[image: there is no content]

	
[image: there is no content]

	

	
[image: there is no content]

	
maximum




	
[image: there is no content]

	
[image: there is no content]

	

	
[image: there is no content]

	
minimum




	
[image: there is no content]

	
[image: there is no content]

	

	
[image: there is no content]

	
minimum




	
[image: there is no content]

	
[image: there is no content]

	
Rényi entropy, order [image: there is no content], of the complete distribution [image: there is no content]

	
[image: there is no content]

	
“Rényi-like” mean




	
1,1

	
[image: there is no content]

	
Gibbs-Shannon entropy

	
[image: there is no content]

	
“Shannon-like” mean












A typical plot for [image: there is no content], [image: there is no content] and [image: there is no content] is shown in log scale in Figure 1, illustrating some of the properties to be discussed hereafter. In particular, we notice:

	
[image: there is no content] has a two-sided singularity at [image: there is no content].



	
[image: there is no content] is non-decreasing/non-increasing for negative/positive [image: there is no content], respectively, and is guaranteed to be maximized at [image: there is no content]. This is discussed more generally in Property 4.6.



	
[image: there is no content] ranges from [image: there is no content] to [image: there is no content] and is always non-decreasing with respect to [image: there is no content]. This is discussed more generally in Property 4.6.



	
[image: there is no content] has a specific property of making [image: there is no content].







Figure 1. Typical plot for [image: there is no content], [image: there is no content] and [image: there is no content] in log scale.



[image: Entropy 14 01317 g001]









3. An Axiomatic Approach to the Generalized Entropies and Means


In order to simplify the conceptual underpinnings, let us now describe the generalized entropies [image: there is no content] and means [image: there is no content], through two simple axioms.



3.1. Axioms for the Generalized Entropy


Let [image: there is no content] be fixed real numbers obeying [image: there is no content]. Consider a map, [image: there is no content], which maps multisets of positive real numbers into the real numbers. We call [image: there is no content] a generalized entropy of order [image: there is no content] if it obeys the following two axioms:

Entropy Axiom 1: 

[image: there is no content] of a uniform multiset [image: there is no content], [image: there is no content], with multiplicity [image: there is no content], equals [image: there is no content], (where the base of the logarithm is arbitrarily chosen), i.e.,


[image: there is no content]



(21)









Entropy Axiom 2: 

If [image: there is no content], the map [image: there is no content] depends only on the ratio of the multiset’s p and q norms, i.e., [image: there is no content] is some function, [image: there is no content], of this ratio:


[image: there is no content]



(22a)







If [image: there is no content], the map [image: there is no content] depends only on the ratio of the multiset’s q norm to its derivative, i.e., [image: there is no content] is some function, [image: there is no content], of this ratio:


[image: there is no content]



(22b)











To see that (22b) arises in the limit from (22a) we notice that, since the logarithm is strictly monotone, (22a) is equivalent to saying that [image: there is no content] is some function [image: there is no content] of some finite number times the logarithm of the ratio of norms:


[image: there is no content]



(23)







Choosing [image: there is no content] and taking the limit [image: there is no content] we obtain (22b) with [image: there is no content].



Proposition: The two entropy axioms in (21) and (22) uniquely define [image: there is no content] and [image: there is no content], namely as given in section 2 by (8) and (9).



Proof: 

Entropy Axiom 2 implies that for any two multisets [image: there is no content] and [image: there is no content]:


[image: there is no content]



(24a)






[image: there is no content]



(24b)









Choosing for[image: there is no content]the uniform multiset [image: there is no content] of Axiom 1, and taking the logarithm of both sides yields:


[image: there is no content]



(25)







Using that [image: there is no content], we now uniquely obtain the formulas for [image: there is no content] and [image: there is no content] given in (8) and (9), respectively. We note that the functions [image: there is no content] and [image: there is no content] are therefore:


[image: there is no content]



(26)




Remarks:

	
Even though [image: there is no content] is treated as an integer representing the multiplicity in Axiom 1, this condition is tacitly relaxed in Axiom 2 to include non-integer values, which we may call the effective cardinality (or effective dimensionality) of order [image: there is no content].



	
The logarithmic measure of Axiom 1 is directly connected to the celebrated Boltzmann entropy formula [image: there is no content], where [image: there is no content] is the Boltzmann constant and [image: there is no content] is the number of the microstates in the system. The logarithmic measure is also connected to the so-called “Hartley’s measure” [11,12], which indicates the non-specificity [13] and does not require a probability distribution assumption. In Axiom 1, a multiset of equal positive numbers is all that is required. In fact, Axiom 1 encompasses the additivity and monotonicity axioms [12,13], which are equivalent to the earlier Khinchin’s axioms of additivity, maximality and expansibility [14].



	
In Axiom 2, note that the p-norm definition is relaxed to include the values [image: there is no content], which would result in the triangle inequality to be violated should the multisets be treated as vectors.









3.2. Axioms for the Generalized Mean


We define the pth moment of the multiset [image: there is no content] as:


[image: there is no content]



(27)







The nomenclature “pth moment” is motivated by the fact that for the density function [image: there is no content], where [image: there is no content] is the Dirac delta function, the pth moment is indeed:


[image: there is no content]



(28)







Let [image: there is no content] be fixed real numbers obeying [image: there is no content]. Consider a map, [image: there is no content], which maps multisets of positive real numbers into the real numbers. We call [image: there is no content] a generalized mean of order [image: there is no content] if it obeys the following two axioms:

Mean Axiom 1: 

[image: there is no content] of a uniform multiset [image: there is no content], [image: there is no content] is [image: there is no content]. Formally:


[image: there is no content]



(29)









Mean Axiom 2: 

If [image: there is no content], the map [image: there is no content] depends for any multiset X only on the ratio of the multiset’s pth and qth moments, [image: there is no content] and [image: there is no content], i.e., [image: there is no content] is some function, [image: there is no content], of their ratio:


[image: there is no content]



(30a)







If [image: there is no content], the map [image: there is no content] is a function only of the ratio:


[image: there is no content]



(30b)







The fact that (30b) is the limit of (30a) follows by the same reasoning as in (23).





Proposition: 

The two mean axioms in (29) and (30) uniquely define [image: there is no content], namely as given in (7) and (10).





Proof: 

Axiom 2 implies for any two multisets [image: there is no content] and [image: there is no content] that:


[image: there is no content]



(31)











Choosing the multiset [image: there is no content] to be the uniform multiset [image: there is no content] from (29) we obtain


[image: there is no content]



(32)







We can now use that [image: there is no content], to obtain [image: there is no content] and [image: there is no content] as given in (7) and (10), respectively. Accordingly the functions [image: there is no content] and [image: there is no content] are found to be


[image: there is no content]



(33)







We have obtained axiomatizations of the generalized entropies and means which revealed, in particular, that the generalized entropies can be characterized as those entropies that cover the reference multiset case (the multiset of equal elements) and that are functions of only the ratio of the multisets’ [image: there is no content] and [image: there is no content] norms. Similarly, the axiomatization also revealed that the generalized means can be characterized as those means which cover the reference multiset case and which are functions of only the ratio of the multisets’ pth and qth moments [image: there is no content] and [image: there is no content]. We will now develop an axiomatization that links up with Section 2, yielding simultaneously a unique family of generalized entropies and means.




3.3. Unifying Axioms for Generalized Entropies and Means


We notice that, as is straightforward to verify:


[image: there is no content]



(34)







This means that we can describe the generalized entropies and means also through a unifying set of axioms. To this end, let [image: there is no content] be fixed real numbers obeying [image: there is no content]. Consider maps [image: there is no content] and [image: there is no content], which map multisets of positive real numbers into the real numbers. We call [image: there is no content] and [image: there is no content] generalized entropies and means of order [image: there is no content] respectively, if they obey the following two axioms:

Unifying Axiom 1: 

[image: there is no content] and [image: there is no content] applied to a multiset of k equal elements [image: there is no content], [image: there is no content] yield the values [image: there is no content] and [image: there is no content], respectively.





Unifying axiom 2: 



[image: there is no content]



(35)









Proposition: 

The maps [image: there is no content] and [image: there is no content] are unique and given by Equations (7)–(10).





Proof: 

The proofs are straightforward and proceed similarly to the proofs of the propositions related to the entropy and mean axioms.









4. Properties of [image: there is no content] and [image: there is no content]


We list in this section useful properties of [image: there is no content], [image: there is no content] and [image: there is no content] with proofs in the appendix. The definitions of [image: there is no content], [image: there is no content] and [image: there is no content] are given by (7)–(10). We also add two plots for an example multiset [image: there is no content] in Figure 2 and Figure 3 in order to provide some numerical illustration of the properties hereunder.


Figure 2. Numerical example showing the multiset elements [image: there is no content]versus their index[image: there is no content]; with their corresponding mean [image: there is no content] and effective cardinality [image: there is no content] for different values of [image: there is no content].



[image: Entropy 14 01317 g002]





Figure 3. Numerical example for the multiset [image: there is no content] showing its mean [image: there is no content] and effective cardinality [image: there is no content] plotted versus [image: there is no content] for fixed values of [image: there is no content].



[image: Entropy 14 01317 g003]










4.1. Scaling


Given a multiset [image: there is no content] and a constant [image: there is no content], we have:


[image: there is no content]



(36)







That is the entropy is invariant of the scaling, whereas the mean varies linearly with scaling. The proof is straightforward, based on (7).




4.2. Symmetry with Respect to the Elements of [image: there is no content]


[image: there is no content] does not depend on the order of the elements of [image: there is no content].




4.3. Symmetry with Respect to the Order [image: there is no content]


By exchanging[image: there is no content] and [image: there is no content] in (8), we readily find that:


[image: there is no content]



(37)








4.4. Sign Change of the Order [image: there is no content]


From (17), for [image: there is no content], we obtain:


[image: there is no content]



(38)








4.5. Range of [image: there is no content]


Let [image: there is no content] be the number of the non-zero elements in [image: there is no content]. Therefore:


[image: there is no content]



(39)







The minimum value occurs when [image: there is no content] has exactly one non-zero element. For [image: there is no content], the maximum value occurs when all the non-zero elements of [image: there is no content] are equal. When either [image: there is no content] or [image: there is no content] is zero, [image: there is no content] yields the maximum value, [image: there is no content], for any distribution of [image: there is no content], which is physically intuitive since the zeroth order renders all the non-zero multiset elements to an equal value and thus we reach the equiprobable case leading to maximum entropy. The proof of this property is in Appendix A.3.




4.6. Monotonicity of [image: there is no content] and [image: there is no content] with respect to [image: there is no content]


We have the following results for the monotonicity of [image: there is no content] and [image: there is no content] with respect to [image: there is no content]. The proofs are in Appendix B and Appendix C, respectively:


[image: there is no content]



(40)






[image: there is no content]



(41)




where equality holds when all the non-zero elements[image: there is no content]are equal. Accordingly, for [image: there is no content] and [image: there is no content], by fixing one order (say [image: there is no content]), [image: there is no content] is always non-decreasing with respect to the other order ([image: there is no content]); whereas [image: there is no content] is non-decreasing for [image: there is no content], non-increasing for [image: there is no content], with a maximum value at [image: there is no content]. The result is true when switching [image: there is no content] from the symmetry Property 4.3.



Similarly, for the degenerate case [image: there is no content], [image: there is no content] is always non-decreasing with respect to [image: there is no content]; whereas [image: there is no content] is non-decreasing for [image: there is no content], non-increasing for [image: there is no content], with a maximum value at [image: there is no content]. In all cases, both the mean and entropy are invariant with respect to the order [image: there is no content] if and only if all the non-zero elements [image: there is no content] are equal.



This property explains the monotonicity of the curves in Figure 1 and Figure 3.




4.7. Range of [image: there is no content]


From Property 4.6, [image: there is no content] is non-decreasing with respect to [image: there is no content]. From Table 1, we know that [image: there is no content] and [image: there is no content]. Therefore, [image: there is no content], which is an intuitive range for a mean. This is also true in the degenerate case [image: there is no content], i.e.,


[image: there is no content]



(42)




where, as usual, equality holds when all the non-zero elements [image: there is no content] are equal.




4.8. Additivity of the Joint Multiset Entropy


For the two probability distribution multisets [image: there is no content] and [image: there is no content], we define the joint multiset [image: there is no content]. Therefore, we have:


[image: there is no content]



(43)







The proof is straightforward by using the fact that [image: there is no content] along with (7)–(10), Property 4.8 is true for both [image: there is no content] and for the degenerate case [image: there is no content].




4.9. Sub-Additivity of the Effective Cardinality Subject to the Multiset Additive Union Operation


Let [image: there is no content] denote a multiset additive union operation [15] (page 50), e.g., [image: there is no content]. Let [image: there is no content] and [image: there is no content] be two multisets of non-negative real numbers. Moreover, let [image: there is no content] and [image: there is no content] be two positive real scaling factors of the elements of [image: there is no content] and [image: there is no content], respectively. Then:


[image: there is no content]



(44)




where the equality holds under the following condition for the value [image: there is no content]:


[image: there is no content]



(45)







This property is a generalization of the effective alphabet size of two disjoint alphabets mixture as discussed in [16] (Problem 2.10). To see this, set [image: there is no content] and note that [image: there is no content] for a complete probability distribution. Accordingly, [image: there is no content] represents the effective alphabet size of [image: there is no content] corresponding to the entropy [image: there is no content]. The proof is in Appendix D.




4.10. Effective Rank of a Matrix


Let [image: there is no content] be the multiset of the singular values of a matrix [image: there is no content]. Then, [image: there is no content]. Accordingly, for general [image: there is no content], [image: there is no content] can be viewed as a biased effective rank of [image: there is no content] corresponding to the order [image: there is no content]. From Property 4.5, we have [image: there is no content]. The minimum value occurs when [image: there is no content]has exactly one non-zero singular value (the rank of [image: there is no content] is 1). The maximum value, [image: there is no content], is reached for any [image: there is no content] when all the non-zero singular values are equal. The effective rank can be helpful to determine, in a well-defined [image: there is no content] sense, how to view an ill-conditioned matrix, which is a full-rank from a mathematical perspective, but is effectively behaving as if possessing a lower rank. Such ill-conditioned matrices often arise in problems of oversampling or determining the degrees of freedom, where the singular values, ordered in non-increasing order by definition, exhibit some sort of “knee cut-off”, similar to[image: there is no content]in Figure 2. A biased effective rank can help to compare matrices when the knee cut-off is not sharp, thus giving more weight to the small or large singular values according to the order [image: there is no content] in a consistent manner for different matrices. An example thereof is the evaluation of the degrees of freedom of some applications such as multi-antenna systems [3,4,5,6], optical imaging systems [20], or in general any case of similar limitation to space-bandwidth product [21].




4.11. Geometrical Interpretation of [image: there is no content] and [image: there is no content] on Log Scale, with Thermodynamics Analogy


For the multiset [image: there is no content], after taking the logarithm of both sides of (5), we obtain a simple relation between [image: there is no content], [image: there is no content] and [image: there is no content] as in (11):


[image: there is no content]



(46)







Accordingly, a secant cutting the function [image: there is no content] at [image: there is no content] and [image: there is no content] will have a slope and intercept of [image: there is no content] and [image: there is no content], respectively, as shown in Figure 4. Based on the discussion of Section 1, (46) readily yields the following analogous expressions for a thermodynamics system described by the Boltzmann factors [image: there is no content]:


[image: there is no content]



(47)






Figure 4. A secant of [image: there is no content]versus [image: there is no content].



[image: Entropy 14 01317 g004]






In the limiting case, when [image: there is no content], the secant in Figure 4 becomes a tangent and we get the Gibbs–Shannon entropy at the inverse temperature [image: there is no content]. Consequently, (47) can be re-written after introducing the Boltzmann constant [image: there is no content] and using the absolute temperature [image: there is no content] as:


[image: there is no content]



(48)




where [image: there is no content] is the Helmholtz free energy of the system.







5. Discussion and Conclusions


A two-parameter family of cardinalities, entropies and means has been derived for multisets of non-negative elements. Rather than starting from thermodynamic or information theoretic considerations to derive entropies and means, see e.g., [9,17,18,19], we here defined the generalized entropies and means through simple abstract axioms. There are other families of entropies in the literature (e.g., [23]), which are a generalization of Shannon entropy. The generalized entropy in this manuscript is shown to preserve the additivity (Property 4.8), which is not the case with the generalized entropies based on Tsallis non-additive entropy as in [23].



Our first two axiomatizations treat the generalized entropies and means separately. It revealed that the generalized entropies are exactly those entropies that are functions of only the ratio of the multisets’ [image: there is no content] and [image: there is no content]norms. It also revealed that the generalized means are exactly those means that are functions only of the ratio of the multisets’ pth and qth moments, [image: there is no content] and [image: there is no content]. Subsequently, our unifying axiomatization characterized the generalized entropies and means together. This showed that if two multisets have exactly the same [image: there is no content] and [image: there is no content] norms, then they share the same generalized entropy and mean.



We presented several key features of the new families of generalized entropies and means, for example, that the family of generalized entropies contains and generalizes the Rényi family of entropies, of which the Shannon entropy is a special case, thus including some of the desiderata for entropies [22]. We also showed the monotonicity with respect to [image: there is no content], extreme values, symmetry with respect to [image: there is no content], and additivity preservation. The effective cardinality [image: there is no content] measures the distribution uniformity of the multiset elements in the sense of the p- and q-norm equivalence to a reference flat multiset. From an information theory perspective, [image: there is no content] and [image: there is no content] represent a two-parameter entropy of order [image: there is no content] and its corresponding effective alphabet size, respectively, when a probability distribution is constructed after proper normalization of the multiset elements. Furthermore, we recall that knowing the [image: there is no content] and [image: there is no content] norms of a multiset is to know the multiset’s pth and qth moments. Our findings here therefore imply that knowledge of a multiset’s pth and qth moments is exactly enough information to deduce the multiset’s (p,q) entropy and (p,q) mean. Further, knowledge of sufficiently many moments of a multiset can be sufficient to reconstruct the multiset. Conversely, it should be interesting to examine how many (p,q)-entropies and/or (p,q)-means are required to completely determine the multiset.



Regarding the thermodynamic interpretation, we noticed that to require that the [image: there is no content] and [image: there is no content] norms of multisets coincide is mathematically equivalent to requiring that the two partition functions of two thermodynamic systems coincide at two temperatures. This in turn is equivalent to requiring that the Helmholtz free energy of the two thermodynamic systems coincide at two temperatures. The Helmholtz free energy represents the maximum mechanical work that can be extracted from a thermodynamic system under certain idealized circumstances. This suggests that there perhaps exists a thermodynamic interpretation of the generalized entropies and means in terms of the extractability of mechanical work. In this case, the fact that the generalized entropies and means depend on two rather than one temperature could be related to the fact that the maximum efficiency of a heat engine, obtained in Carnot cycles, is a function of two temperatures. We did show that in the limiting case, when the two temperatures become the same, one recovers the usual Boltzmann factor weighted mean energy as well as the usual Shannon/von Neumann entropy.
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Appendix A. Proof of Property 4.5: Range of [image: there is no content]


A.1. Non-Increasing [image: there is no content]with Respect to p


We want to show that [image: there is no content] is non-increasing with respect to p. This is equivalent to showing that [image: there is no content].


[image: there is no content]











Therefore, [image: there is no content] for p<q. The equality occurs only when [image: there is no content], i.e., when [image: there is no content] includes exactly one non-zero element. Note that there is a singularity for [image: there is no content] such that [image: there is no content] and [image: there is no content]. The property herein applies over the intervals [image: there is no content] and [image: there is no content]




A.2. Non-Decreasing Generalized p-Mean with Respect to p


Let [image: there is no content] be a multiset of [image: there is no content] strictly positive numbers. For p < q, we want to show that [image: there is no content]. To this end, we define [image: there is no content], where [image: there is no content] and [image: there is no content], i.e., [image: there is no content] have the same sign. Clearly, [image: there is no content] and thus [image: there is no content] is convex. From Jensen’s inequality,


[image: there is no content]










[image: there is no content]










[image: there is no content]











By setting [image: there is no content], the proof is complete. Equality holds when all [image: there is no content] are equal.




A.3. Proof of Property 4.5: [image: there is no content]


We start by proving that [image: there is no content]. From Lemma A.1, for p < q, we have [image: there is no content]. Therefore, [image: there is no content], [image: there is no content] and have the same sign. Since [image: there is no content], we get [image: there is no content]. Following the same steps for p > q yields the same result. Finally, when [image: there is no content], we have [image: there is no content]. In all cases, the equality holds when [image: there is no content] includes exactly one non-zero element.



Next, we show that [image: there is no content]. From Lemma A.2, assuming both [image: there is no content] have the same sign, for p < q, we have [image: there is no content]. Taking the logarithm yields [image: there is no content]. For p > q, we obtain the same result.



When [image: there is no content], we have:


[image: there is no content]








where [image: there is no content] was used. In all cases, equality holds when all the non-zero elements of [image: there is no content] are equal.





Appendix B. Proof of Property 4.6: Monotonicity of [image: there is no content]


B.1. Non-Degenerate Case [image: there is no content]


We have [image: there is no content]. Accordingly:


[image: there is no content]








where we inserted another summation index for the last two terms in the last step. Therefore:


[image: there is no content]








where we have multiplied the last two terms in the second step by [image: there is no content]. Consequently:


[image: there is no content]








where we have used the fact that [image: there is no content]. The equality occurs only when [image: there is no content] for every [image: there is no content], implying that each [image: there is no content] is either zero or some fixed value [image: there is no content].



Accordingly, after multiplying the last inequality by [image: there is no content], we obtain:


[image: there is no content]








where the equality holds when all the non-zero elements [image: there is no content] are equal.



Since p and q are assumed to have the same sign (from the condition [image: there is no content]), we deduce that, with respect to either p or q (while fixing the other order), [image: there is no content] is non-decreasing for negative order p,q, non-increasing for positive order p,q, with a maximum value at either [image: there is no content] (note that [image: there is no content]). [image: there is no content] is invariant to p,q if and only if all the non-zero elements [image: there is no content] are equal.




B.2. Degenerate Case [image: there is no content]


From Appendix B.1, if [image: there is no content], then [image: there is no content]. In the limiting case, when [image: there is no content] and [image: there is no content], and knowing from (9) that this limit exists, we readily obtain [image: there is no content]. In a similar fashion, for negative indices values [image: there is no content], we get [image: there is no content]. In any case, the equality occurs when all the non-zero elements [image: there is no content] are equal. [image: there is no content] has a maximum value when [image: there is no content]. Accordingly:


[image: there is no content]













Appendix C. Proof of Property 4.6: Monotonicity of [image: there is no content]


C.1. Non-Degenerate Case [image: there is no content]


We have from (5) [image: there is no content]. Differentiating with respect to p, we get:


[image: there is no content]








Since [image: there is no content] (Property 4.5), therefore (5) confirms that [image: there is no content] as well because the norm is defined to discard any zero elements (6). From Appendix B, [image: there is no content]. Therefore:


[image: there is no content]








with equality when all the non-zero elements [image: there is no content] are equal.




C.2. Degenerate Case [image: there is no content]


From (9), [image: there is no content], accordingly:


[image: there is no content]











Moreover, from (9), [image: there is no content]. Consequently, [image: there is no content], where we used the result of Appendix B.2. Therefore, since [image: there is no content], we get:


[image: there is no content]














Appendix D. Proof of Property 4.9: Sub-Additivity of the Effective Cardinality


For [image: there is no content], we want to show that [image: there is no content], where [image: there is no content]. Our objective is to find a condition in terms of [image: there is no content] and [image: there is no content] that maximizes [image: there is no content]. We have:


[image: there is no content]



(49)







By setting [image: there is no content] and [image: there is no content], we obtain the following two conditions:


[image: there is no content]



(50)






[image: there is no content]



(51)







From (50) and (51), we have:


[image: there is no content]



(52)







Accordingly, the required proportionality condition is:


[image: there is no content]



(53)







From (49), we have:


[image: there is no content]



(54)







Substituting [image: there is no content] from (50) in (54) yields:


[image: there is no content]








where we employed (52) to obtain the second to last step. Consequently, since [image: there is no content] and [image: there is no content] cancel out in the last step, we get:


[image: there is no content]








.



In order to confirm that (53) is indeed a maximizing condition of [image: there is no content], consider the following example. Let [image: there is no content] and [image: there is no content] with multiplicity [image: there is no content] and [image: there is no content], respectively. From the range of [image: there is no content] (Property 4.5), we know that [image: there is no content] only when all the elements are equal, i.e., when [image: there is no content]. Indeed, (53) confirms this maximizing condition and thus [image: there is no content].



By taking the limit when [image: there is no content], (53) becomes


[image: there is no content]



(55)




and [image: there is no content].
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