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Abstract:



This a brief review on [image: there is no content] gravity and its relation with k-essence. Modified teleparallel gravity theory with the torsion scalar has recently gained a lot of attention as a possible explanation of dark energy. We perform a thorough reconstruction analysis on the so-called [image: there is no content] models, where [image: there is no content] is some general function of the torsion term, and deduce the required conditions for the equivalence between of [image: there is no content] models with pure kinetic k-essence models. We present a new class of models of [image: there is no content]-gravity and k-essence.
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1. Introduction


Recent astrophysical data imply that the current expansion of the universe is accelerating [1]. There exist different candidates for this acceleration phase. The simplest one is the introduction of the Cosmological Constant Λ in the framework of General Relativity (ΛCDM model), namely an exotic form of energy (the dark energy) whose Equation of State (EoS) parameter w is equal to minus one and dynamically remains near this value, but in principle quintessence/phantom-fluid description is not excluded. Despite the fact that the ΛCDM is a good candidate to describe our universe, the finite but very small value of the Λ causes some well-known problems, such as the difference between the order of Λ predicted by quantum field theory (a.k.a., fine-tuning), as well as the time where such acceleration happen (a.k.a., the coincidence problem). Further, the origin of dark energy is an unsolved question. Also, the existence of an early accelerated epoch, namely the inflation, introduces a new problem to the standard cosmology, and various proposals have been made to construct acceptable inflationary model, including the scalar, spinor [image: there is no content], (non-)abelian vector theory ([image: there is no content]) [image: there is no content], etc.



Another alternative approach to the dark energy puzzle is the modified gravity theories. A typical modified gravity is a generalization of Einstein’s gravity, where some combination of curvature invariants is added into the classical Hilbert–Einstein action of General Relativity. This modification may lead to an accelerated era without invoking the dark energy. The simplest theory of modified gravity is the [image: there is no content] one, where the modification is given by a function of the Ricci scalar only. Another popular modification is given by the string-inspired Gauss–Bonnet modified theories, where a modification via the topological invariant four dimensional Gauss–Bonnet G appears (see the recent reviews [2,3,4,5,6,7,8,9,10,11,12,13]). Also it can be represented by the [image: there is no content] models where T is the trace of the energy-momentum tensor [14,15,16]. The field equations of these theories are much more complicated with respect to the case of General Relativity, since they are fourth order differential equations and it is so difficult to obtain the exact solutions.



Recently a new type of gravity model, the [image: there is no content]-gravity, has been proposed. Its field equations are second order [17,18]. These models are based on the “teleparallel" equivalent of General Relativity (TEGR) [19,20,21,22,23,24,25], which, instead of using the curvature defined via the Levi–Civita connection, uses the Weitzenb[image: there is no content]ck connection that has no curvature but only torsion (see [24,25] for applications to inflation). The fact that the field equations of [image: there is no content] gravity are second order makes these theories simpler than the ones where modification is via curvature invariants, and a deeper investigation on this kind of models is of extreme interest (see [26,27,28,29,30,31,32,33,34,35,36,37,38,39,40] for recent developments).



In this paper we give a brief review on [image: there is no content] gravity and its relation with k-essence. We study some [image: there is no content]-models and models of k-essence. In Section 2 and Section 3, we present some basic facts on [image: there is no content] gravity. In the Section 4, we study some models of [image: there is no content] gravity for the FRW spacetime. Noether symmetry in [image: there is no content] gravity was considered in the Section 5. In Section 6, we consider the torsion-scalar model. We investigate k-essence and its models in Section 7 and Section 8. Section 9 is devoted to the study of the relation between [image: there is no content] gravity and k-essence and in Section 10 we present some generalizations of [image: there is no content] gravity. In the last section we give conclusions and general remarks.




2. General Aspects of [image: there is no content] Gravity


The action of [image: there is no content]-gravity reads [17,18,26]


[image: there is no content]



(1)




where


[image: there is no content]



(2)




Here T is the torsion scalar, [image: there is no content] and [image: there is no content] is the matter Lagrangian. Here [image: there is no content] are the components of the vierbein vector field [image: there is no content] in the coordinate basis [image: there is no content]≡eAμ∂μ. Note that in the teleparallel gravity, the dynamical variable is the vierbein field [image: there is no content](xμ). To derive the equations of motion we consider the metric


[image: there is no content]



(3)




where


[image: there is no content]=eμadxμ,dxμ=eaμ[image: there is no content]



(4)




[image: there is no content] being the metric of space-time, [image: there is no content] the Minkowski’s metric, [image: there is no content] the tetrads and eμa and their inverses eaμ the tetrads basis. We note that the tetrad basis satisfy the relations


eμaeaν=δμν,eμaebμ=δba



(5)




The root of the metric determinant is given by


e=−g=det[eμa]



(6)




The standard Weitzenböck’s connection reads


Γμνα=eiα∂νeμi=−eμi∂νeiα



(7)




Then the components of the torsion and the contorsion are given by


Tμνα=Γνμα−Γμνα=eiα∂μeνi−∂νeμi



(8)






Kαμν=−12Tαμν−Tανμ−Tαμν



(9)




Now we define another tensor from the components of torsion and the contorsion as


Sαμν=12Kαμν+δαμTββν−δανTββμ



(10)




Finally, we define the torsion scalar as usual


T=TμναSαμν



(11)




Let us derive the equations of motion from the Euler–Lagrange equations. In order to use these equations we first write the quantities


∂L∂eμa=F(T)eeaμ+eFT(T)4eaαTνασSσμν+∂[image: there is no content]∂eμa



(12)




and


∂α∂L∂(∂αeμa)=−4FT(T)∂αeeaσSσμν−4eeaσSσμα∂αTFTT(T)+∂α∂[image: there is no content]∂(∂αeμa)



(13)




where [image: there is no content] and [image: there is no content]. Now we use the Euler–Lagrange equation


∂[image: there is no content]∂eμa−∂α∂[image: there is no content]∂(∂αeμa)=0



(14)




Substituting the expressions (12) and (13) into the later equation, we get the equations of motion of the [image: there is no content] gravity (after multiplying by e−1eβa/4)


Sβμα∂αTfTT(T)+e−1eβa∂αeeaσSσμα+TνβσSσμνfT(T)+14δβμf(T)=4πTβμ



(15)




where


Tβμ=−e−1eβa16π∂[image: there is no content]Matter∂eμa−∂α∂[image: there is no content]Matter∂(∂αeμa)



(16)




is the gravitational energy momentum tensor.




3. The FRW Space-Time


We will assume a flat homogeneous and isotropic FRW universe with the metric


[image: there is no content]



(17)




where t is cosmic time and [image: there is no content] is the scale factor. Then the modified Friedmann equations and the continuity equation read (see, e.g., [17,18,26])


[image: there is no content]



(18)






[image: there is no content]



(19)






[image: there is no content]



(20)




This set can be rewritten as


[image: there is no content]



(21)






[image: there is no content]



(22)






[image: there is no content]



(23)




if we consider the following equivalent form of the action


S=∫d4xe[12κ2(T+f(T))+[image: there is no content]]



(24)




where [image: there is no content] Some properties of [image: there is no content]-gravity were studied in [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36]. The field equations (21)–(23) are equivalent to


[image: there is no content]



(25)






[image: there is no content]



(26)






[image: there is no content]



(27)




where


[image: there is no content]



(28)






[image: there is no content]










[image: there is no content]



(29)






[image: there is no content]



(30)




By using these equations we may construct high hierarchy of [image: there is no content] gravity. For the case [image: there is no content] such hierarchy is written as


[image: there is no content]



(31)




where [image: there is no content] and (for [image: there is no content])


[image: there is no content]



(32)






[image: there is no content]



(33)






[image: there is no content]



(34)




and so on. From the system (25)–(27) one has that any solution of the Equation (25) automatically solves the Equations (26) and (27). It means that by solving the Equation (25), we have also a solution for the Equations (26) and (27). Finally we introduce the effective EoS parameter


[image: there is no content]



(35)








4. Specific Models of [image: there is no content] Gravity in FRW Universe


Some explicit models of [image: there is no content] gravity have recently appeared in the literature (see, e.g., [17,18,26,27,30,31,34,37]). Here, we would like to present some new models of modified teleparallel gravity.



4.1. Example 1: The M13-Model


Let us consider the M13-model. Its Lagrangian is


[image: there is no content]



(36)




We consider the particular case where [image: there is no content] and [image: there is no content]. Thus,


F=ν−1T−1+ν0+ν1TFT=−ν−1T−2+ν1,FTT=2ν−1T−3



(37)




By substituting these expressions into (18) and (19) we obtain


[image: there is no content]



(38)






[image: there is no content]



(39)




where


[image: there is no content]



(40)






[image: there is no content]



(41)




The effective EoS parameter is given by


[image: there is no content]



(42)




Let us set [image: there is no content]. Thus,


ρeff=k−2[−1.5ν−1T−1−0.5ν0]peff=k−2[6ν−1H˙T−2+1.5ν−1T−1+0.5ν0]



(43)




and


weff=peffρeff=6ν−1H˙T−2+1.5ν−1T−1+0.5ν0−1.5ν−1T−1−0.5ν0=−1−6ν−1H˙T−21.5ν−1T−1+0.5ν0



(44)








4.2. Example 2: The M21-Model


Our next example is the M21-model


[image: there is no content]



(45)




Now


FT=1+αδTδ−1lnT+αTδ−1,FTT=αδ(δ−1)Tδ−2lnT+α(2δ−1)Tδ−2



(46)




As a consequence, Equations (18) and (19) take the form


[image: there is no content]



(47)






[image: there is no content]



(48)




One has


[image: there is no content]



(49)






[image: there is no content]



(50)




The special case [image: there is no content] deserves a separate consideration. In this case the above equations take a simpler form


−T−2αT0.5=2k2ρmT−4H˙+2αT0.5−4αH˙T−0.5=2k2pm



(51)




For the effective energy density and pressure we get


ρeff=k−2αT0.5,peff=−k−2αT−0.5(T−2H˙)



(52)








4.3. Example 3: The M22-Model


Now we consider the M22-model


F=T+f(y),y=tanh[T]



(53)




Thus


FT=1+fy(1−y2)FTT=fyy(1−y2)2−2y(1−y2)fy



(54)




so that Equations (18) and (19) take the form


[image: there is no content]



(55)






[image: there is no content]



(56)




We have


[image: there is no content]



(57)






[image: there is no content]



(58)




The EoS parameter reads


[image: there is no content]










[image: there is no content]



(59)








4.4. Example 4: The M25-Model


In this subsection we will consider the M25-model


[image: there is no content]



(60)




where [image: there is no content]. We take the case [image: there is no content] and [image: there is no content], namely


[image: there is no content]



(61)




Thus


Fξ=−ν−1ξ−2+ν1Fξξ=2ν−1ξ−3



(62)




and


FT=(−ν−1ξ−2+ν1)e−ξFTT=(2ν−1ξ−3+ν−1ξ−2−ν1)e−2ξ



(63)




In this case, Equations (18) and (19) lead to


[image: there is no content]



(64)






[image: there is no content]



(65)









5. Noether Symmetry in [image: there is no content] Gravity


In this section we want to present a brief review on Noether symmetry in [image: there is no content] gravity following to the paper [41]. Generally speaking, Noether symmetry is a power method to select models motivated at a fundamental level. It also allows to construct the exact solution of the model. We start from the point-like Lagrangian of [image: there is no content] gravity:


[image: there is no content]



(66)




We now use the Euler–Lagrange equation:


ddt∂[image: there is no content]∂q˙i−∂[image: there is no content]∂[image: there is no content]=0



(67)




where [image: there is no content] are the generalized coordinates of the phase space and [image: there is no content]=a and T. Then we have


a3fTTT+6[image: there is no content]a2=0



(68)






f−fTT+2fTH2+4fTa¨a+HfTTT˙=0



(69)




Hence as [image: there is no content] we obtain


[image: there is no content]



(70)




that is the Euler constraint of the dynamics. Next using [image: there is no content], we obtain


48H2fTTH˙−4fT3H2+H˙−f=0



(71)




i.e., the modified second Friedmann equation. Now let us consider the Hamiltonian corresponding to Lagrangian [image: there is no content] [41]:


H=∑i∂[image: there is no content]∂q˙iq˙i−[image: there is no content]



(72)




so that


[image: there is no content]



(73)




Assuming that the total energy [image: there is no content] (Hamiltonian constraint) and from Equation (70), we get


[image: there is no content]



(74)




that is nothing but the first Friedmann equation.



Now we want to present the Noether symmetry for [image: there is no content] gravity in the FRW metric case. To do it, we introduce the generator of Noether symmetry as [41]


[image: there is no content]=α∂∂a+β∂∂T+α˙∂∂a˙+β˙∂∂T˙



(75)




where [image: there is no content] and [image: there is no content]. As is well known, Noether symmetry exists if the equation


L[image: there is no content][image: there is no content]=[image: there is no content][image: there is no content]=α∂[image: there is no content]∂a+β∂[image: there is no content]∂T+α˙∂[image: there is no content]∂a˙+β˙∂[image: there is no content]∂T˙=0



(76)




has solution. Here L[image: there is no content][image: there is no content] is the Lie derivative of the Lagrangian [image: there is no content] with respect to the vector [image: there is no content]. The corresponding Noether charge reads as


Q0=∑iαi∂[image: there is no content]∂q˙i=α∂[image: there is no content]∂a˙+β∂[image: there is no content]∂T˙=const



(77)




From Equation (76) and using the relations α˙=(∂α/∂a)a˙+(∂α/∂T)T˙, β˙=(∂β/∂a)a˙+(∂β/∂T)T˙, we come to the equation


3αa2f−fTT−βa3fTTT−6[image: there is no content]αfT+βafTT+2afT∂α∂a−12aa˙T˙∂α∂T=0



(78)




Now we impose that the coefficients of [image: there is no content], [image: there is no content] and [image: there is no content] in Equation (78) to be zero. Then we get


a∂α∂T=0



(79)






αfT+βafTT+2afT∂α∂a=0



(80)






3αa2f−fTT−βa3fTTT=0



(81)




As is known, the constraint (81) is sometimes called Noether condition. The corresponding Noether charge looks like


[image: there is no content]



(82)




From Equation (79) it follows that [image: there is no content]. On the other hand, Equation (81) gives us


[image: there is no content]



(83)




Hence we have


[image: there is no content]



(84)




which we recast as


1−aαdαda=3f2fTT



(85)




We split the last equations into two equations as


[image: there is no content]



(86)






[image: there is no content]



(87)




These equations have the solutions [41]


[image: there is no content]=μTn



(88)






α(a)=[image: there is no content]a1−3/(2n)



(89)




where μ and [image: there is no content] are real constants. So from Equation (83), we get


β(a,T)=−3[image: there is no content]na−3/(2n)T



(90)




Finally we can conclude that the existence of explicit non-zero solutions of [image: there is no content], α and β, implies the existence of Noether symmetry. Note that Noether symmetry allows us to construct the exact solution of [image: there is no content] for the given [image: there is no content] model. For example, from Equation (82) it follows [41]


ac1a˙=c2



(91)




where


c1=32n−1,c2=Q0−12[image: there is no content]μn(−6)n−11/(2n−1)



(92)




Its solution reads as


a(t)=−(1+c1)(c3−c2t)1/(1+c1)=(−1)1+2n/3·32n(c2t−c3)2n/3



(93)




where [image: there is no content]. This solution describes the accelerated expansion of the universe as


a(t)∼t2n/3



(94)




where its prefactor (−1)1+2n/3·32nc22n/3 is not important. As is well-known, in order to get the expanding universe, the constraint [image: there is no content] is required.




6. The Torsion–Scalar Model


In this section we would like to study the [image: there is no content] gravity in the presence of matter whose Lagrangian is


[image: there is no content]



(95)




where ϕ is a scalar field and [image: there is no content] is the potential depending on ϕ. The equations of motion assume the form


[image: there is no content]



(96)






[image: there is no content]



(97)






[image: there is no content]



(98)




where [image: there is no content] for the usual case and [image: there is no content] for the phantom case. From this system we get


ϵϕ˙2=−8H˙TFTT−4H˙FT,V=4H˙TFTT−2(T−H˙)FT+F



(99)




where dot denotes the derivative with respect to the time. If we compare these equations with (23)–(25) we have


ρ=12ϵϕ˙2+V,p=12ϵϕ˙2−V



(100)




For simplicity we restrict ourself to the case [image: there is no content]. Thus,


ϵϕ˙2=−4αH˙,V=−αT+2αH˙



(101)




and


[image: there is no content]



(102)




Let us consider some examples.



6.1. Example 1: [image: there is no content]


In our first example we consider the following form for the scale factor


[image: there is no content]



(103)




As a consequence


H=μmcoth[μt],H˙=−μ2msinh2[μt],ϕ˙2=4αμ2mϵsinh2[μt]



(104)




So we obtain


ϕ=ϕ0±2αμ2mϵlog[tanh[μt2]],V=6αm2μ2coth2[μt]−2αμ2msinh2[μt]



(105)




and the potential takes the form ([image: there is no content])


[image: there is no content]



(106)








6.2. Example 2: [image: there is no content]


Let us consider the case [image: there is no content]. Thus, [image: there is no content] and we have


t=[(ϕ−ϕ0)(m+1)±4−αmδϵ−1]2m+1,ϵϕ˙2=−4αmδtm−1



(107)




such that


ϕ=ϕ0±4−αmδϵ−1m+1tm+12,V=6αδ2t2m+2αmδtm−1



(108)




We finally get


[image: there is no content]



(109)








6.3. Example 3: [image: there is no content]


The next example is given by


a=a0tn



(110)




for which


H=nt,H˙=−nt2,ϵϕ˙2=4αnt2,ϕ−ϕ0=±2αnϵ−1ln[t],t=e±ϕ−ϕ02αnϵ−1



(111)




and


[image: there is no content]



(112)




The potential assumes the final form


[image: there is no content]



(113)









7. The k-Essence


The action of k-essence reads [42,43,44,45]


[image: there is no content]



(114)




The corresponding (closed) set of equations for FRW metric (17) is


[image: there is no content]



(115)






[image: there is no content]



(116)






[image: there is no content]



(117)






[image: there is no content]



(118)




where [image: there is no content]. The equation for the scalar field ϕ is given by


[image: there is no content]



(119)




which corresponds to the Equation (117). In the pure kinetic k-essence case we have [image: there is no content] and from the last equation one has (see, e.g., [46])


[image: there is no content]



(120)








8. Models of k-Essence for FRW Universe


In what follows we will present some new models of k-essence. All of them may give rise to cosmic acceleration.



8.1. Example 1: The M12-Model


Let us consider the M12-model with the following Lagrangian


[image: there is no content]



(121)




where in general [image: there is no content] and [image: there is no content]. We study the case [image: there is no content]. The M12-model becomes


[image: there is no content]



(122)




To find [image: there is no content] and X we look for H in the form


[image: there is no content]



(123)




where [image: there is no content] [in general [image: there is no content]]. This solution corresponds to the scale factor


[image: there is no content]



(124)




Finally, we obtain the following parametric form of the M12-model (parametric pure kinetic k-essence)


[image: there is no content]



(125)






[image: there is no content]



(126)








8.2. Example 2: The M1-Model


Our next example is the M1-model, whose Lagrangian assumes the form


[image: there is no content]



(127)




where in general [image: there is no content]=[image: there is no content](ϕ)=[image: there is no content](t). Let us explore this model for the case: [image: there is no content] and [image: there is no content]=consts. In this case the M1-model takes the form


[image: there is no content]



(128)




To find [image: there is no content] and X we look for the following form of H,


[image: there is no content]



(129)




so that


[image: there is no content]



(130)




where [image: there is no content] [in general [image: there is no content]]. As a consequence, we obtain the following explicit form of the k-essence Lagrangian


[image: there is no content]



(131)




We also have


[image: there is no content]



(132)




For X we get the following expression


X=γ2−1e6μ0t+3μ1t2,γ2−1=κ−1a06μ12



(133)




from which


[image: there is no content]



(134)




Finally, we reconstruct the M23-model


[image: there is no content]



(135)




We recall that in general the M23-model is read as


[image: there is no content]



(136)




where [image: there is no content].]




8.3. Example 3: The M24-Model


Here we present the M24-model


[image: there is no content]



(137)






[image: there is no content]



(138)




where [image: there is no content], [image: there is no content] and [image: there is no content] are some constants. Solving the Equation (116) we obtain


[image: there is no content]



(139)




from which we derive the scale factor as


[image: there is no content]



(140)




Note that


[image: there is no content]



(141)









9. The Relation between [image: there is no content]-Gravity and k-Essence in the FRW Universe


In this section, we want to analyze the relation between modified teleparallel gravity and pure kinetic k-essence. Note that we can also consider this relation in the context of general modified gravity theories.



9.1. General Case


9.1.1. Version-I


Let us consider the following transformation


[image: there is no content]



(142)






[image: there is no content]



(143)




where [image: there is no content]. Thus Equations (21)–(23) take the form


[image: there is no content]



(144)






[image: there is no content]



(145)






[image: there is no content]



(146)






[image: there is no content]



(147)




These are the equations of motion of pure kinetic k-essence. This result shows that the field equations of modified teleparallel gravity and pure kinetic k-essence are equivalent to each other. This equivalence permits to construct a new class of pure kinetic k-essence models starting from some models of modified teleparallel gravity. Let us see it for the following modified teleparallel gravity model: [image: there is no content] [17,18]. In this case, we have


fT=αnTn−1,fTT=αn(n−1)Tn−2



(148)




Substituting these expressions into the Equations (142) and (143) we get


[image: there is no content]



(149)






[image: there is no content]



(150)




Let us consider some specific cases.



(i) If the scale factor behaves as [image: there is no content] so that [image: there is no content], K and X take the form


[image: there is no content]



(151)






[image: there is no content]



(152)




If we now consider the simplest case [image: there is no content] (it means, [image: there is no content]), we get


[image: there is no content]



(153)






[image: there is no content]



(154)




(ii) A non-trivial model may be obtained from [image: there is no content]. In this case [image: there is no content] and K and X take the form


[image: there is no content]



(155)






[image: there is no content]



(156)




or


[image: there is no content]



(157)






[image: there is no content]



(158)




Since [image: there is no content] we finally get the following pure kinetic k-essence model


[image: there is no content]



(159)








9.1.2. Version-II


Let us rewrite Equations (21)–(23) as


[image: there is no content]



(160)






[image: there is no content]



(161)






[image: there is no content]



(162)




where


ρeff=2TfT−f,peff=8H˙TfTT−2(T−2H˙)fT+f



(163)




We introduce the following two functions K and X,


K=8H˙TfTT−2(T−2H˙)fT+f,X=4H˙2(2TfTT+fT)2κa−6



(164)




These functions belong to the system of the Equations (144)–(147).





9.2. Specific Case: [image: there is no content]


One specific interesting case is given by


[image: there is no content]



(165)




It deserves separate investigation. In fact for this case [image: there is no content] so that [image: there is no content]. The corresponding continuity equation is


[image: there is no content]



(166)




or, in terms of T,


[image: there is no content]



(167)




where ρ′=2TfT−f,p′=f and [image: there is no content]. Let us split the Equation (22) into two separate equations,


[image: there is no content]



(168)




and


[image: there is no content]



(169)




Equation (168) is automatically satisfied since it is just an another form for the continuity Equation (166). So we finally obtain the equation system for [image: there is no content]-gravity, which takes the form


[image: there is no content]



(170)






[image: there is no content]



(171)






[image: there is no content]



(172)






[image: there is no content]



(173)




After the identification [image: there is no content] and [image: there is no content], we recover Equations (144)–(147). So we can conclude that for the special case (165) both [image: there is no content]-gravity and pure kinetic k-essence are equivalent to each other at least at the level of the dynamical equations. Some remarks can be observed from the continuity Equation (166)[=(167)=(168)]. Two integrals of motion ([image: there is no content]) appear:


I1=a0−3a3T0.5fT,I2=f−a3T0.5fT∂T−1(a−3T−0.5)



(174)




Their general solution is given by


f=C2+iC1a02∂T−1(a−3T−0.5),Cj=const



(175)




Finally we would like to present an exact solution for both [image: there is no content]-gravity and pure kinetic k-essence. Let us consider the ΛCDM model for which [image: there is no content] so that


[image: there is no content]



(176)




which is the M32-model. This is the exact solution of the equations of motion of pure kinetic k-essence and [image: there is no content]-gravity simultaneously.





10. [image: there is no content] Gravity


We have just considered one generalization of [image: there is no content] in the presence of scalar field. In this section we would like to present another possible generalization of [image: there is no content] gravity, namely the so-called [image: there is no content] gravity.



10.1. The M37-Model


The action of M37-gravity is given by [36]


S37=∫d4x−g[F(R,T)+[image: there is no content]]



(177)




where [image: there is no content] is the matter Lagrangian, [image: there is no content] (signature) and


[image: there is no content]



(178)






T=v+ϵ2SρμνTρμν



(179)




Here [image: there is no content] and [image: there is no content] are some functions to be defined. Now we work in the FRW universe with the metric (18). In this case the curvature and torsion scalars can be written as


[image: there is no content]



(180)






[image: there is no content]



(181)




where, [image: there is no content] and [image: there is no content] are some real functions, [image: there is no content], while [image: there is no content] and [image: there is no content] are some unknown functions related with the geometry of the spacetime. By introducing the Lagrangian multipliers we can now rewrite the action (221) as


S37=∫dta3F(R,T)−λT−v−6ϵ2[image: there is no content]a2−γR−u−6ϵ1a¨a+[image: there is no content]a2+[image: there is no content]



(182)




where λ and γ are Lagrange multipliers. If we take the variations with respect to T and R of this action we get


λ=FT,γ=FR



(183)




Therefore, the action (182) can be rewritten as


S37=∫dta3F(R,T)−FTT−v−6ϵ2[image: there is no content]a2−FRR−u−6ϵ1a¨a+[image: there is no content]a2+[image: there is no content]



(184)




Then the corresponding point-like Lagrangian reads as


L37=a3[F−(T−v)FT−(R−u)FR+[image: there is no content]]−6(ϵ1FR−ϵ2FT)a[image: there is no content]−6ϵ1(FRRR˙+FRTT˙)a2a˙



(185)




We finally obtain the following equations of the M37-model [36]:


[image: there is no content]










[image: there is no content]



(186)






[image: there is no content]








Here


[image: there is no content]



(187)






[image: there is no content]



(188)






[image: there is no content]



(189)






E1=12ϵ2a[image: there is no content]+a3va˙a˙



(190)






[image: there is no content]



(191)




and


[image: there is no content]



(192)






[image: there is no content]



(193)






[image: there is no content]



(194)






A1=12ϵ1[image: there is no content]+6ϵ1aa¨+3a2a˙ua˙+a3u˙a˙−a3ua



(195)






[image: there is no content]



(196)






B1=24ϵ2[image: there is no content]+12ϵ2aa¨+3a2a˙va˙+a3v˙a˙−a3va



(197)






[image: there is no content]



(198)






C1=−6ϵ1a2[image: there is no content]



(199)






[image: there is no content]



(200)






[image: there is no content]



(201)




The M37-model (221) admits some interesting particular and physically important cases. Let us see some example.



(i) [image: there is no content]-gravity. If the model is independent of the torsion, namely [image: there is no content], and we assume that [image: there is no content], the action (221) takes the form


[image: there is no content]



(202)




where


[image: there is no content]



(203)




is the curvature scalar. We work with the FRW metric (222). In this case R assumes the form


[image: there is no content]



(204)




We rewrite the action as


[image: there is no content]



(205)




where the Lagrangian is given by


LR=a3(F−RFR+[image: there is no content])−6ϵ1FRa[image: there is no content]−6ϵ1FRRR˙a2a˙



(206)




The corresponding field equations of [image: there is no content] gravity read


[image: there is no content]



(207)






[image: there is no content]



(208)






[image: there is no content]



(209)




(ii) [image: there is no content]-gravity. Now we assume that the function [image: there is no content] is independent of the curvature scalar R and [image: there is no content]. In this case we get the modified teleparallel gravity—[image: there is no content] gravity. Its gravitational action is


[image: there is no content]



(210)




where e=det([image: there is no content])=−g. The torsion scalar T is defined as


T=ϵ2SρμνTρμν



(211)




where


Tρμν≡−eiρ∂μeνi−∂ν[image: there is no content]



(212)






Kμνρ≡−12Tμνρ−Tνμρ−Tρμν



(213)






Sρμν≡12Kμνρ+δρμTθνθ−δρνTθμθ



(214)




For a spatially flat FRW metric (222), we have that the torsion scalar assumes the form


[image: there is no content]



(215)




The action (210) can be written as


[image: there is no content]



(216)




where the point-like Lagrangian reads


LT=a3F−FTT−6FTa[image: there is no content]−a3[image: there is no content]



(217)




The equations of F(T) gravity look like


[image: there is no content]



(218)






[image: there is no content]



(219)






[image: there is no content]



(220)








10.2. The M43-Model


In this subsection we consider the M43-model which is one of the representatives of [image: there is no content] gravity. The action of M43-model reads as


[image: there is no content]










[image: there is no content]



(221)






T=Ts=ϵ2SρμνTρμν








where [image: there is no content] is the matter Lagrangian, [image: there is no content] (signature), R is the curvature scalar, T is the torsion scalar. Let us consider the spacetime where the curvature and torsion are written by using the connection Gλμν as a sum of the curvature and torsion, namely


Gλμν=eiλ∂μeiν+ejλeiνωjiμ=Γλμν+Kλμν



(222)




Here [image: there is no content] is the Levi–Civita connection and [image: there is no content] is the contorsion. The quantities [image: there is no content] and [image: there is no content] are defined as


Γljk=12glr{∂kgrj+∂jgrk−∂rgjk}



(223)




and


Kμνλ=−12Tλμν+Tμνλ+Tνμλ



(224)




respectively. Here the components of the torsion tensor are given by


Tλμν=eiλTiμν=Γλμν−Γλνμ



(225)






Tiμν=∂μeiν−∂νeiμ+Γijμejν−Γijνejμ



(226)







The curvature Rρσμν is defined as


Rρσμν=eiρejσRijμν=∂μGρσν−∂νGρσμ+GρλμGλσν−GρλνGλσμ










=R¯ρσμν+∂μKρσν−∂νKρσμ+KρλμKλσν−KρλνKλσμ










+ΓλμρKλσν−ΓλνρKλσμ+ΓσνλKρλμ−ΓσμλKρλν



(227)




where the Riemann curvature is defined in the standard way


R¯ρσμν=∂μΓσνρ−∂νΓσμρ+ΓλμρΓσνλ−ΓλνρΓσμλ



(228)




Now we introduce the curvature and torsion scalars,


[image: there is no content]



(229)






[image: there is no content]



(230)




where


[image: there is no content]



(231)




Now the M43-model is written in the form of (221).



Now we want to present the M43-model for the spatially flat FRW spacetime. In this case the metric assumes the form


[image: there is no content]



(232)




where [image: there is no content] is the scale factor. In this case, the non-vanishing components of the Levi–Civita connection are


[image: there is no content]










[image: there is no content]



(233)






[image: there is no content]








where [image: there is no content] and [image: there is no content] Let us calculate the components of torsion tensor. The non-vanishing components are given by:


[image: there is no content]










[image: there is no content]



(234)




where h and f are some real functions. Note that the indices of the torsion tensor are raised and lowered with the metric, namely


Tijk=gklTijl.



(235)







Now we can find the contortion components. We get


K110=K220=K330=0










K101=K202=K303=h










K011=K022=K022=a2h



(236)






K123=K231=K312=−af










K132=K213=K321=af.











The non-vanishing components of the curvature Rρσμν are given by


R0101=R0202=R0303=a2(H˙+H2+Hh+h˙)










R0123=−R0213=R0312=2a3f(H+h)










R1203=−R1302=R2301=−a(Hf+f˙)










R1212=R1313=R2323=a2[(H+h)2−f2].



(237)




Similarly, we write the non-vanishing components of the Ricci curvature tensor Rμν as


R00=−3H˙−3h˙−3H2−3Hh










R11=R22=R33=a2(H˙+h˙+3H2+5Hh+2h2−f2)



(238)




The non-vanishing components of the tensor [image: there is no content] are


[image: there is no content]



(239)






S110=S220=S330=2h



(240)






[image: there is no content]



(241)






[image: there is no content]



(242)




and


[image: there is no content]



(243)




Now we can write the explicit forms of the curvature and torsion scalars. One has


[image: there is no content]



(244)






[image: there is no content]



(245)




For FRW metric, the M43-model takes the form


[image: there is no content]










[image: there is no content]



(246)






[image: there is no content]








In this way, we have derived the M43-model as one of geometrical realizations of [image: there is no content] gravity by starting from the pure geometrical point of view.





11. Conclusions


In this work we have presented a brief review on [image: there is no content] gravity. We have investigated generalized [image: there is no content] modified torsion models, that is, models in which the torsion gravity equations are extended to scalar fields. This study is a continuation of our investigation program of [image: there is no content] gravity [31]. We note that the GR case corresponds not only to the model [image: there is no content], but also to our specific model [image: there is no content], for which we obtain the same results.



We also considered the recently developed [image: there is no content] gravity, which is a new modified gravity capable of accounting for the present cosmic accelerating expansion. In particular, we presented some new models of [image: there is no content] gravity and k-essence. We analyzed the relation between [image: there is no content] gravity and k-essence. We also studied some new parametric models of pure kinetic k-essence, presented a short review on Noether symmetry of [image: there is no content] gravity, and considered some generalizations of [image: there is no content] gravity. Finally we note that it is interesting to extend these results for the knot universe case [47,48].
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