Optimal Thermal Design of a Stacked Mini-Channel Heat Sink Cooled by a Low Flow Rate Coolant
Abstract
:1. Introduction
2. Thermal Design Object
2.1. Structure and Constrained Conditions
- (1)
- Water coolant requirement:Flow rate is 0.08318 kg·s−1, inlet temperature is 313 K and outlet temperature is less than 333 K.
- (2)
- Heat source surface temperature uniformity requirement:Temperature difference between the max and min temperatures of the cooled heat source surface is less than 3 K.
- (3)
- Mini-channel geometry requirement:The width and height of mini-channel should satisfy w ≥ 0.5 mm and 2 mm ≤ h ≤ 10 mm, respectively. The number of mini-channels in every layer satisfies 20 ≤ n ≤ 80. The geometry of mini-channel is relatively large comparing to micro-channel.
2.2. Flow and Heat Transfer Model
2.3. Boundary Conditions
- (1)
- Solid wall:
- (2)
- Lower channel:
- (3)
- Upper channel:
- (4)
- Solid and fluid interface:
3. Thermal Optimization Design of Stacked Mini-Channel Heat Sink
3.1. Objective Functions and Constraints
- (1)
- Temperature uniformity:
- (2)
- Entropy production sg: min(sg)
- (3)
- Max temperature of heat source:
- (4)
- Pumping power wpump: min(wpump)
- is coolant outlet temperature: Tf,out ≤ 333 K;
- is coolant mass flux: mc = 0.08318 kg·s−1;
- is coolant inlet temperature: = 313 K.
3.1.1. Entropy Generation of Stacked Mini-Channel Heat Sink
3.1.2. Pumping Power
3.2. Optimal Procedure
3.3. Numerical Solution and Calculation Grid
No. | ∆ls [×10−3 m] | ∆lf [×10−3 m] | N | [−] | [−] | [−] |
---|---|---|---|---|---|---|
1 | 0.3 | 0.2 | 133560 | 0.5191 | 1.0001 | 0.9938 |
2 | 0.1 | 179928 | 0.8161 | 0.9970 | 0.9978 | |
3 | 0.05 | 271320 | 1.0000 | 1.0000 | 1.0000 | |
4 | 0.03 | 451584 | 1.0070 | 1.0002 | 1.0007 | |
5 | 0.6 | 0.05 | 78540 | 0.9794 | 1.0002 | 1.0001 |
6 | 0.5 | 104535 | 0.9784 | 0.9999 | 1.0000 | |
7 | 0.4 | 149184 | 0.9788 | 0.9968 | 0.9989 | |
8 | 0.3 | 271320 | 1.0000 | 1.0000 | 1.0000 | |
9 | 0.2 | 620472 | 1.0015 | 0.9999 | 1.0000 |
- CPU: Intel core 2Quad CPU, Q8400, 2.66 GHz;
- Memory is 3.2 G.
4. Optimization Results
4.1. Optimization Conditions
Number of Generations | 20 |
Probability of Directional Cross-over | 0.5 |
Probability of Selection | 0.01 |
Probability of Mutation | 0.1 |
DNA String mutation ratio | 0.05 |
Random generator seed | 1 |
Population of Individuals | 50 |
4.2. Pareto Optimal Solutions
- (1)
- The design state points, 6, 56, 196, 137, 265, 268, 271, are on the Pareto front of ∆Ts and sg in Figure 8, and 168, 154, 210, 137 are very close to the Pareto front.
- (2)
- The design state points, 6, 168, 154, 99, 199 are on the Pareto front of wpump and sg in Figure 9, and 265, 271 are close to the Pareto front.
Number | h [×10−3 m] | w [×10−3 m] | n | ∆Ts [K] | sg [J·kg−1·K−1] | wpump [×10−2 W] | a2 [×10−3 m] | Ly [×10−3 m] |
---|---|---|---|---|---|---|---|---|
271 | 4.8 | 0.6 | 50 | 1.935 | 2.446 | 9.05 | 1.20 | 12.6 |
154 | 4.8 | 0.6 | 70 | 2.211 | 2.446 | 6.402 | 0.77 | 12.6 |
168 | 4.7 | 0.6 | 70 | 2.283 | 2.445 | 6.559 | 0.77 | 12.5 |
- (1)
- In Figure 10, ∆Ts = 1.935 K, so the temperature uniformity requirement on the heat source surface can be satisfied very well.
- (2)
- The max temperature exists at the middle of the heat source surface due to the double-channel cooling channel arrangement.
- (3)
- The flow temperature at the outlet is 317 K, and it is far less than 333 K.
- (4)
- In the Figure 11, the flow velocity can quickly reach its uniform velocity after a very short distance from the inlet, so the flow can be assumed as a fully developed laminar flow at the most positions.
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Haddad, O.; Abuzaid, M.; Al-Nimr, M. Entropy generation due to laminar incompressible forced convection flow through parallel-plates minichannel. Entropy 2004, 6, 413–426. [Google Scholar]
- Liu, D.; Garimella, S.V. Analysis and optimization of the thermal performance of minichannel heat sinks. Int. J. Numer. Methods Heat Fluid Flow 2005, 15, 7–26. [Google Scholar] [CrossRef]
- Pritish, R.P.; Srinath, V.E.; Khai, N. Multi-layer mini-channel and ribbed mini-channel based high performance cooling configurations for automotive inverters—Part A: Design and evaluation. J. Therm. Sci. Eng. Appl. 2013, 5, 1–13. [Google Scholar]
- Hung, T.C.; Sheu, T.S.; Yan, W.M. Optimal thermal design of microchannel heat sinks with different geometric configurations. Int. Commun. Heat Mass Transf. 2012, 39, 1572–1577. [Google Scholar] [CrossRef]
- Hassel, B.; Ortega, A. Analysis of multi-layer mini- and micro-channel heat sinks in single phase flow using one and two equation porous media models. Heat Transf. Eng. 2011, 32, 1–9. [Google Scholar]
- Bowers, M.B.; Mudawar, I. High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks. Int. J. Heat Mass Transf. 1994, 37, 321–332. [Google Scholar] [CrossRef]
- Wei, X.J.; Joshi, Y. Stacked microchannel heat sinks for liquid cooling of microelectronic components. J. Electron. Package 2004, 126, 60–66. [Google Scholar] [CrossRef]
- Wei, X.J.; Joshi, Y. Optimization study of stacked mini-channel heat sinks for mini-electronic cooling. IEEE Trans. Compon. Package Technol. 2003, 26, 55–61. [Google Scholar]
- Hung, T.C.; Yan, W.M.; Wang, X.D.; Huang, Y.X. Optimal design of geometric parameters of double-layered microchannel heat sinks. Int. J. Heat Mass Transf. 2012, 55, 3262–3272. [Google Scholar] [CrossRef]
- Hung, T.C.; Yan, W.M.; Li, W.P. Analysis of heat transfer characteristics of double-layered microchannel heat sink. Int. J. Heat Mass Transf. 2012, 55, 3090–3099. [Google Scholar]
- Dixit, P.; Lin, N.; Miao, J.; Wong, W.K.; Teo, K.C. Concept and Analytical Analysis of Silicon Mini/Nanopillars Based 3-D Stacked Minichannel Heat Sink for Advanced Heat Dissipation Applications. In Proceedings of the Electronic Components and Technology Conference, Sparks, NV, USA, 29 May–1 June 2007; pp. 1149–1154.
- Liu, Y.L.; Luo, X.B.; Liu, W. Cooling behavior in a novel heat sink based on multilayer staggered honeycomb structure. J. Energy Power Eng. 2010, 4, 22–28. [Google Scholar]
- Toh, K.C.; Chen, X.Y.; Chai, J.C. Numerical computation of fluid flow and heat transfer in minichannels. Int. J. Heat Mass Transf. 2002, 45, 5133–5141. [Google Scholar] [CrossRef]
- Shao, B.D.; Wang, L.F.; Cheng, H.M.; Li, J. Optimization and numerical simulation of multi-layer minichannel heat sink. Procedia Eng. 2012, 31, 928–933. [Google Scholar] [CrossRef]
- Wang, X.Q.; Mujumdar, A.; Yap, C. Numerical analysis of blockage and optimization of heat transfer performance of fractal-like microchannel nets. J. Electron. Packag. 2006, 128, 38–45. [Google Scholar] [CrossRef]
- Jeevan, K.; Quadir, G.A.; Seetharamu, K.N.; Azid, I.A.; Zainal, Z.A. Optimization of thermal resistance of stacked micro-channel using genetic algorithms. Int. J. Numer. Methods Heat Fluid Flow 2005, 15, 27–42. [Google Scholar] [CrossRef]
- Shao, B.D.; Wang, L.F.; Li, J.Y.; Cheng, H.M. Multi-objective optimization design of a mini-channel heat sink using adaptive genetic algorithm. Int. J. Numer. Methods Heat Fluid Flow 2011, 21, 353–364. [Google Scholar]
- Foli, K.; Okabe, T.; Olhofer, M.; Jin, Y.; Sendhoff, B. Optimization of mini heat exchanger: CFD, analytical approach and multi-objective evolutionary algorithms. Int. J. Heat Mass Transf. 2006, 49, 1090–1099. [Google Scholar] [CrossRef]
- Karathanassis, I.K.; Papanicolaou, E.; Belessiotis, V.; Bergeles, G.C. Multi-objective design optimization of a mini heat sink for Concentrating Photovoltaic/Thermal (CPVT) systems using a genetic algorithm. Appl. Therm. Eng. 2013, 59, 733–744. [Google Scholar] [CrossRef]
- Husain, A.; Kim, K.Y. Enhanced multi-objective optimization of a minichannel heat sink through evolutionary algorithm coupled with multiple surrogate models. Appl. Therm. Eng. 2010, 30, 1683–1691. [Google Scholar] [CrossRef]
- Hassan, M.; Sadri, R.; Ahmadi, G.; Dahari, M.B.; Kazi, S.N.; Safaei, M.R.; Sadeghinezhad, E. Numerical study of entropy generation in a flowing nanofluid used in micro- and mini-channels. Entropy 2013, 15, 144–155. [Google Scholar] [CrossRef]
- Ansari, D.; Husain, A.; Kim, K.Y. Multiobjective optimization of a grooved mini-channel heat sink. IEEE Trans. Compon. Package Technol. 2010, 15, 767–776. [Google Scholar] [CrossRef]
- Khan, W.A.; Culham, J.R. Optimization of minichnnel heat sinks using entropy generation minimization method. IEEE Trans. Compon. Package Technol. 2009, 32, 243–251. [Google Scholar] [CrossRef]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; Wiley: London, UK, 2001. [Google Scholar]
- Jaluria, Y. Simulation-based optimization of thermal systems. Appl. Therm. Eng. 2009, 29, 1346–1355. [Google Scholar] [CrossRef]
- Poles, S.; Geremia, P.; Campos, F.; Weston, S.; Islam, M. MOGA-II for an Automotive Cooling Duct Optimization on Distributed Resources. In Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization (EMO’07), Matsushima, Japan, 5 May–8 March 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 633–644. [Google Scholar]
- FLUENT, v. 6.3. Software for fluid simulation; Fluent, Inc.: New York, NY, USA, 2006.
- Shah, R.K.; London, A.L. Laminar Flow Forced Convection in Ducts; Academic Press: New York, NY, USA, 1978. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pang, L.; Wang, M.; Wang, W.; Liu, M.; Wang, J. Optimal Thermal Design of a Stacked Mini-Channel Heat Sink Cooled by a Low Flow Rate Coolant. Entropy 2013, 15, 4716-4731. https://doi.org/10.3390/e15114716
Pang L, Wang M, Wang W, Liu M, Wang J. Optimal Thermal Design of a Stacked Mini-Channel Heat Sink Cooled by a Low Flow Rate Coolant. Entropy. 2013; 15(11):4716-4731. https://doi.org/10.3390/e15114716
Chicago/Turabian StylePang, Liping, Minxing Wang, Wei Wang, Meng Liu, and Jun Wang. 2013. "Optimal Thermal Design of a Stacked Mini-Channel Heat Sink Cooled by a Low Flow Rate Coolant" Entropy 15, no. 11: 4716-4731. https://doi.org/10.3390/e15114716
APA StylePang, L., Wang, M., Wang, W., Liu, M., & Wang, J. (2013). Optimal Thermal Design of a Stacked Mini-Channel Heat Sink Cooled by a Low Flow Rate Coolant. Entropy, 15(11), 4716-4731. https://doi.org/10.3390/e15114716