Equiangular Vectors Approach to Mutually Unbiased Bases
Abstract
:1. Introduction
2. The Passage from to
- (i)
- Case a = b = d: We have
- (ii)
- Case : We have
- (iii)
- Case ( and ): We have
- (iv)
- Case (): We have
3. The Reverse Problem
4. Conclusions
Acknowledgements
References
- Schwinger, J. Unitary operator bases. Proc. Nat. Acad. Sci. USA 1960, 46, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Ivanović, I.D. Geometrical description of quantum state determination. J. Phys. A-Math. Gen. 1981, 14, 3241–3245. [Google Scholar] [CrossRef]
- Wootters, W.K. A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys. (N.Y.) 1987, 176, 1–21. [Google Scholar] [CrossRef]
- Wootters, W.K.; Fields, B.D. Optimal state-determination by mutually unbiased measurements. Ann. Phys. (N.Y.) 1989, 191, 363–381. [Google Scholar] [CrossRef]
- Klappenecker, A.; Rötteler, M. Mutually Unbiased Bases are Complex Projective 2-Designs. In Proceedings of the 2005 IEEE International Symposium on Information Theory (ISIT’05), Adelaide, Australia, 4–9 September 2005; pp. 1740–1744.
- Klimov, A.B.; Sánchez-Soto, L.L.; de Guise, H. Multicomplementary operators via finite Fourier transform. J. Phys. A-Math. Gen. 2005, 38, 2747–2760. [Google Scholar] [CrossRef]
- Gibbons, K.S.; Hoffman, M.J.; Wootters, W.K. Discrete phase space based on finite fields. Phys. Rev. A 2004, 70, 062101:1–062101:23. [Google Scholar] [CrossRef]
- Pittenger, A.O.; Rubin, M.H. Wigner functions and separability for finite systems. J. Phys. A-Math. Gen. 2005, 38, 6005–6036. [Google Scholar] [CrossRef]
- Englert, B.-G.; Aharonov, Y. The mean king’s problem: Prime degrees of freedom. Phys. Lett. A 2001, 284, 1–5. [Google Scholar] [CrossRef]
- Tolar, J.; Chadzitaskos, G. Feynman’s path integral and mutually unbiased bases. J. Phys. A-Math. Theor. 2009, 42, 245306:1–245306:11. [Google Scholar] [CrossRef]
- Calderbank, A.R.; Cameron, P.J.; Kantor, W.M.; Seidel, J.J. Z4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets. Proc. Lond. Math. Soc. 1997, 75, 436–480. [Google Scholar] [CrossRef]
- Cerf, N.J.; Bourennane, M.; Karlsson, A.; Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 2002, 88, 127902:1–127902:4. [Google Scholar] [CrossRef] [PubMed]
- Grassl, M. Tomography of quantum states in small dimensions. Elec. Notes Discrete Math. 2005, 20, 151–164. [Google Scholar] [CrossRef]
- Lawrence, J. Entanglement patterns in mutually unbiased basis sets for N prime-state particles. 2011; arXiv:1103.3818 [quant-ph]. [Google Scholar]
- Wocjan, P.; Beth, T. New construction of mutually unbiased bases in square dimensions. Quantum Inf. Comput. 2005, 5, 93–101. [Google Scholar]
- Grassl, M. On SIC-POVMs and MUBs in dimension 6. In Proceedings of the ERATO Conference on Quantum Information Science (EQIS’04), Tokyo, Japan, 1–5 September 2004. arXiv:quant-ph/0406175.
- Bengtsson, I.; Bruzda, W.; Ericsson, Å.; Larsson, J.Å.; Tadej, W.; Życzkowski, K. Mutually unbiased bases and Hadamard matrices of order six. J. Math. Phys. 2007, 48, 052106:1–052106:21. [Google Scholar] [CrossRef]
- Brierley, S.; Weigert, S. Maximal sets of mutually unbiased quantum states in dimension 6. Phys. Rev. A 2008, 78, 042312:1–042312:8. [Google Scholar] [CrossRef]
- Brierley, S.; Weigert, S. Constructing mutually unbiased bases in dimension six. Phys. Rev. A 2009, 79, 052316:1–052316:13. [Google Scholar] [CrossRef]
- McNulty, D.; Weigert, S. The limited role of mutually unbiased product bases in dimension 6. J. Phys. A-Math. Theor. 2012, 45, 102001:1–102001:5. [Google Scholar] [CrossRef]
- McNulty, D.; Weigert, S. On the impossibility to extend triples of mutually unbiased product bases in dimension six. Int. J. Quantum Inf. 2012, 10, 1250056:1–1250056:11. [Google Scholar] [CrossRef]
- Zauner, G. Quantendesigns: Grundzuege einer nichtcommutativen Designtheorie. Dissertation, Universitaet Wien, Austria, 1999. [Google Scholar]
- Chaturvedi, S. Aspects of mutually unbiased bases in odd-prime-power dimensions. Phys. Rev. A 2002, 65, 044301:1–044301:3. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Boykin, P.O.; Roychowdhury, V.; Vatan, F. A new proof for the existence of mutually unbiased bases. Algorithmica 2002, 34, 512–528. [Google Scholar]
- Lawrence, J.; Brukner, Č.; Zeilinger, A. Mutually unbiased binary observable sets on N qubits. Phys. Rev. A 2002, 65, 032320:1–032320:5. [Google Scholar] [CrossRef]
- Lawrence, J. Mutually unbiased bases and trinary operator sets for N qutrits. Phys. Rev. A 2004, 70, 012302:1–012302:10. [Google Scholar] [CrossRef]
- Pittenger, A.O.; Rubin, M.H. Mutually unbiased bases, generalized spin matrices and separability. Linear Alg. Appl. 2004, 390, 255–278. [Google Scholar] [CrossRef]
- Albouy, O.; Kibler, M.R. SU2 nonstandard bases: Case of mutually unbiased bases. SIGMA 2007, 3, 076:1–076:22. [Google Scholar] [CrossRef]
- Bengtsson, I. ; Ericsson, Å. Mutually unbiased bases and the complementary polytope. Open Syst. Inf. Dyn. 2005, 12, 107–120. [Google Scholar] [CrossRef]
- Bengtsson, I. MUBs, Polytopes, and Finite Geometries. In Proceedings of the AIP Conference 750, Vaxjo, Sweden, 7–12 June 2004; pp. 63–69.
- Saniga, M.; Planat, M.; Rosu, H. Mutually unbiased bases and finite projective planes. J. Opt. B Quantum Semiclassical Opt. 2004, 6, L19–L20. [Google Scholar] [CrossRef]
- Godsil, C.D.; Roy, A. Equiangular lines, mutually unbiased bases, and spin models. Eur. J. Combin. 2009, 30, 246–262. [Google Scholar] [CrossRef]
- Kibler, M.R. Angular momentum and mutually unbiased bases. Int. J. Mod. Phys. B 2006, 20, 1792–1801. [Google Scholar] [CrossRef]
- Kibler, M.R.; Planat, M. A SU(2) recipe for mutually unbiased bases. Int. J. Mod. Phys. B 2006, 20, 1802–1807. [Google Scholar] [CrossRef]
- Kibler, M.R. An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, unitary group and Pauli group. J. Phys. A Math. Theor. 2009, 42, 353001:1–353001:28. [Google Scholar] [CrossRef] [Green Version]
- Boykin, P.O.; Sitharam, M.; Tiep, P.H.; Wocjan, P. Mutually unbiased bases and orthogonal decompositions of Lie algebras. J. Quantum Inform. Comput. 2007, 7, 371–382. [Google Scholar]
- Garcia, A.; Romero, J.L.; Klimov, A.B. Group-theoretical approach to the construction of bases in 2n-dimensional Hilbert space. Phys. Atom. Nuclei 2011, 74, 876–883. [Google Scholar] [CrossRef]
- Daoud, M.; Kibler, M.R. Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems. J. Phys. A-Math. Theor. 2010, 43, 115303:1–115303:18. [Google Scholar] [CrossRef] [Green Version]
- Durt, T.; Englert, B.-G.; Bengtsson, I.; Życzkowski, K. On mutually unbiased bases. Int. J. Quantum Inf. 2010, 8, 535–640. [Google Scholar] [CrossRef]
- Kibler, M.R. On mutually unbiased bases: Passing from d to d**2. 2012; arXiv:1210.8173 [quantph]. [Google Scholar]
- Albouy, O.; Kibler, M.R. A unified approach to SIC-POVMs and MUBs. J. Russ. Laser Res. 2007, 28, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Berndt, B.C.; Evans, R.J.; Williams, K.S. Gauss and Jacobi Sums; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Vourdas, A. Quantum systems with finite Hilbert space. Rep. Prog. Phys. 2004, 67, 267–320. [Google Scholar] [CrossRef]
- Kibler, M.R. Quadratic Discrete Fourier Transform and Mutually Unbiased Bases. In Fourier Transforms-Approach to Scientific Principles; Nikolić, G.S., Ed.; InTech: Rijeka, Croatia, 2011; pp. 103–138. [Google Scholar]
- Mohammad-Abadi, S.A.; Najafi, M. Type of equiangular tight frames with n + 1 vectors in Rn. Int. J. Appl. Math. Res. 2012, 1, 391–401. [Google Scholar]
- Shalaby, M.; Vourdas, A. Weak mutually unbiased bases. J. Phys. A: Math. Theor. 2012, 45, 052001:1–052001:15. [Google Scholar] [CrossRef]
© 2013 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kibler, M.R. Equiangular Vectors Approach to Mutually Unbiased Bases. Entropy 2013, 15, 1726-1737. https://doi.org/10.3390/e15051726
Kibler MR. Equiangular Vectors Approach to Mutually Unbiased Bases. Entropy. 2013; 15(5):1726-1737. https://doi.org/10.3390/e15051726
Chicago/Turabian StyleKibler, Maurice R. 2013. "Equiangular Vectors Approach to Mutually Unbiased Bases" Entropy 15, no. 5: 1726-1737. https://doi.org/10.3390/e15051726
APA StyleKibler, M. R. (2013). Equiangular Vectors Approach to Mutually Unbiased Bases. Entropy, 15(5), 1726-1737. https://doi.org/10.3390/e15051726