The Entropy of Co-Compact Open Covers
Abstract
:1. Introduction
1.1. Measure-Theoretic Entropy
1.2. Topological Entropy and Its Relation to Measure-Theoretic Entropy
1.3. The Importance of Entropy
1.4. The Purpose, the Approach and the Outlines
2. Basic Concepts and Definitions
3. The Entropy of Co-Compact Open Covers
4. Relations between Co-Compact Entropy and Bowen’s Entropy
4.1. Co-Compact Entropy Less Than or Equal to Bowen’s Entropy,
4.2. An Example
5. Concluding Remarks
Acknowledgments
Conflict of Interest
References
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Kolmogorov, A.N.; Tihomiorov, Y.M. ϵ-Entropy and ϵ-capacity of sets in function spaces. Am. Math. Soc. Transl. 1961, 17, 277–364. [Google Scholar]
- Cornfeld, I.P.; Fomin, S.V.; Sinai, Y.G. Ergodic Theory; Springer: Berlin, Germany, 1982. [Google Scholar]
- Ornstein, D.S. Bernoulli shifts with the same entropy are isomorphic. Adv. Math. 1970, 4, 337–352. [Google Scholar] [CrossRef]
- Eckmann, J.P.; Ruelle, D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 1985, 57, 617–656. [Google Scholar] [CrossRef]
- Kantz, H.; Grassberger, P. Repellers, semi-attractors, and long-lived chaotic transients. Phys. D 1985, 17, 75–86. [Google Scholar] [CrossRef]
- Van Beijeren, H.; Dorfman, J.R.; Posch, H.A.; Dellago, C.H. Kolmogorov-Sinai entropy for dilute gases in equilibrium. Phys. Rev. E 1997, 56, 5272–5277. [Google Scholar] [CrossRef]
- Sinai, Ya.G.; Chernov, N.I. Dynamical Systems: Collection of Papers; Sinai, Y.G., Ed.; World Scientific: Singapore, Singapore, 1991; pp. 373–389. [Google Scholar]
- Adler, R.L.; Konheim, A.G.; McAndrew, M.H. Topological entropy. Trans. Am. Math. Soc. 1965, 114, 309–319. [Google Scholar] [CrossRef]
- Goodwyn, L.W. Topological entropy bounds measure-theoretic entropy. Proc. Am. Math. Soc. 1969, 23, 679–688. [Google Scholar] [CrossRef]
- Goodwyn, L.W. Comparing topological entropy with measure-theoretic entropy. Am. J. Math. 1972, 94, 366–388. [Google Scholar] [CrossRef]
- Bowen, R. Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 1971, 14, 401–414. [Google Scholar] [CrossRef]
- Walters, P. An Introduction to Ergodic Theory; Axler, S., Gehring, F.W., Ribet, K.A., Eds.; Springer: Berlin, Germany, 1982; pp. 169–176. [Google Scholar]
- Canovas, J.S.; Rodriguez, J.M. Topological entropy of maps on the real line. Top. Appl. 2005, 153, 735–746. [Google Scholar] [CrossRef]
- Malziri, M.; Molaci, M.R. An extension of the notion of the topological entropy. Chaos Soliton. Fract. 2008, 36, 370–373. [Google Scholar] [CrossRef]
- Bowen, R.; Walters, P. Expansive one-parameter flows. J. Differ. Equat. 1972, 12, 180–193. [Google Scholar] [CrossRef]
- Keynes, H.B.; Sears, M. Real-expansive flows and topological dimensions. Ergod. Theor. Dyn. Syst. 1981, 1, 179–195. [Google Scholar] [CrossRef]
- Thomas, R.F. Some fundamental properties of continuous functions and topological entropy. Pacific J. Math. 1990, 141, 391–400. [Google Scholar] [CrossRef]
- Block, L.S.; Coppel, W.A. Dynamics in One Dimension: Lectuer Notes in Mathematics; Springer: Berlin, Germany, 1992. [Google Scholar]
- Queffélec, M. Substitution Dynamical Systems-Spectral Analysis, 2nd ed.; Springer: Berlin, Germany, 2010. [Google Scholar]
- Zhou, Z.L. Symbolic Dynamical Systems; Shanghai Scientific and Technological Education Publishing House: Shanghai, China, 1997. [Google Scholar]
- Gaspard, P.; Nicolis, G. Transport properties, Lyapunov exponents, and entropy per unit time. Phys. Rev. Lett. 1990, 65, 1693–1696. [Google Scholar] [CrossRef] [PubMed]
- Gaspard, P. Chaos, Scattering, and Statistical Mechanics; Chirikov, B., Cvitanovic, P., Moss, F., Swinney, H., Eds.; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Gaspard, P.; Dorfman, J.R. Chaotic scattering theory, thermodynamic formalism, and transport coefficients. Phys. Rev. E 1995, 52, 3525–3552. [Google Scholar] [CrossRef]
- Dorfman, J.R.; Gaspard, P. Chaotic sacttering theory of transport and reaction-rate coefficients. Phys. Rev. E 1995, 51, 28–35. [Google Scholar] [CrossRef]
- Gaspard, P. Nonlinear dynamics and chaos in many-particle Hamiltonian systems. Progr. Theor. Phys. 2003, 150, 64–80. [Google Scholar] [CrossRef]
- Gaspard, P.; Baras, F. Chaotic scattering and diffusion in the Lorentz gas. Phys. Rev. E 1995, 51, 5332–5352. [Google Scholar] [CrossRef]
- Claus, I.; Gaspard, P. Fractals and dynamical chaos in a two-dimensional Lorentz gas with sinks. Phys. Rev. E 2001, 63, 036227. [Google Scholar] [CrossRef] [PubMed]
- Viscardy, S.; Gaspard, P. Viscosity in the escape-rate formalism. Phys. Rev. E 2003, 68, 041205. [Google Scholar] [CrossRef] [PubMed]
- Ohya, M. Some aspects of quantum information theory and their applications to irreversible processes. Rep. Math. Phys. 1989, 27, 19–47. [Google Scholar] [CrossRef]
- Robinson, C. Dynamical System: Stability, Symbolic Dynamics, and Chaos, 2nd ed.; Krantz, S.G., Ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Sinai, Y.G. On the concept of entropy of a dynamical system. Dokl. Akad. Nauk. SSSR. 1959, 124, 768–771. [Google Scholar]
- Akashi, S. Embedding of expansive dynamical systems into symbolic dynamical systems. Rep. Math. Phys. 2000, 46, 11–14. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, G. Embedding of topological ynamical systems into symbolic dynamical systems: A necessary and sufficient condition. Rep. Math. Phys. 2006, 57, 457–461. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, G. Conditions ensuring that hyperspace dynamical systems contain subsystems topologically (semi-) conjugate to symbolic dynamical systems. Chaos Soliton. Fract. 2008, 36, 283–289. [Google Scholar] [CrossRef]
- Engelking, R. General Topology; PWN-Polish Scientific Publishers: Warszawa, Poland, 1989; pp. 182–191. [Google Scholar]
- Cánovas, J.S.; Kupka, J. Topological entropy of fuzzified dynamical systems. Fuzzy Set. Syst. 2011, 165, 67–79. [Google Scholar] [CrossRef]
- Bowen, R. Topological entropy and Axiom A. In Proceedings of Symposia in Pure Mathematics: Global Analysis; Chern, S.S., Smale, S., Eds.; American Mathematical Society: Berkeley, CA, USA, 1970; pp. 23–42. [Google Scholar]
- Liu, L.; Wang, Y.; Wei, G. Topological entropy of continuous functions on topological spaces. Chaos Soliton. Fract. 2009, 39, 417–427. [Google Scholar] [CrossRef]
- Ye, X.; Huang, W.; Shao, S. On Topological Dynamical Systems; Science Publishing: Beijing, China, 2008. [Google Scholar]
- Devaney, R. An Introduction to Chaotic Dynamical Systems, 2nd ed.; Addison-Wesley: RedwoodCity, CA, USA, 1986. [Google Scholar]
- Dinaburg, E.I. A connection between various entropy characterizations of dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat. 1971, 35, 324–366. [Google Scholar]
- Goodman, T.N.T. Relating topological entropy to measure entropy. Bull. Lond. Math. Soc. 1971, 3, 176–180. [Google Scholar] [CrossRef]
- Patrao, M. Entropy and its variational principle for non-compact metric spaces. Ergod. Theory Dyn. Syst. 2010, 30, 1529–1542. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wei, Z.; Wang, Y.; Wei, G.; Wang, T.; Bourquin, S. The Entropy of Co-Compact Open Covers. Entropy 2013, 15, 2464-2479. https://doi.org/10.3390/e15072464
Wei Z, Wang Y, Wei G, Wang T, Bourquin S. The Entropy of Co-Compact Open Covers. Entropy. 2013; 15(7):2464-2479. https://doi.org/10.3390/e15072464
Chicago/Turabian StyleWei, Zheng, Yangeng Wang, Guo Wei, Tonghui Wang, and Steven Bourquin. 2013. "The Entropy of Co-Compact Open Covers" Entropy 15, no. 7: 2464-2479. https://doi.org/10.3390/e15072464
APA StyleWei, Z., Wang, Y., Wei, G., Wang, T., & Bourquin, S. (2013). The Entropy of Co-Compact Open Covers. Entropy, 15(7), 2464-2479. https://doi.org/10.3390/e15072464