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Abstract:



We consider a random generalization of the classical Fibonacci substitution. The substitution we consider is defined as the rule mapping, [image: there is no content] and [image: there is no content], with probability p, and [image: there is no content], with probability [image: there is no content] for [image: there is no content], and where the random rule is applied each time it acts on a [image: there is no content]. We show that the topological entropy of this object is given by the growth rate of the set of inflated random Fibonacci words, and we exactly calculate its value.
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1. Introduction


In [1], Godrèche and Luck define the random Fibonacci chain by the generalized substitution:


θ:[image: there is no content]↦[image: there is no content][image: there is no content]↦abwith probability pbawith probability 1−p








for [image: there is no content] and where the random rule is applied each time θ acts on a [image: there is no content]. They introduce the random Fibonacci chain when studying quasi-crystalline structures and tilings in the plane. In their paper, it is claimed (without proof) that the topological entropy of the random Fibonacci chain is given by the growth rate of the set of inflated random Fibonacci words. This was later, with a combinatorial argument, proven in a more general context in [2].



The renewed interest in this system, and in possible generalizations, stems from the observation that the natural geometric generalization of the symbolic sequences by tilings of the line had to be Meyer sets with entropy and interesting spectra [3]. There is now a fair understanding of systems that emerge from the local mixture of inflation rules that each define the same hull. However, little is known so far about more general mixtures. Here, we place our attention to one such generalization. It is still derived from the Fibonacci rule, but mixes inflations that define distinct hulls.



In this paper, we consider the randomized substitution, ϕ, defined by:


ϕ=[image: there is no content][image: there is no content]↦abwith probability pbawith probability 1−p








for [image: there is no content] and where the random rule is applied each time ϕ acts on a [image: there is no content]. The substitution, ϕ, is a mixture of two substitutions, whose hulls are different. This is true, since the hull of the substitution, ([image: there is no content],[image: there is no content])↦(baa,ab), contains words with the sub-words, [image: there is no content] and [image: there is no content], but neither of these sub-words are to be found in any word of the hull of ([image: there is no content],[image: there is no content])↦(baa,ba). For a more detailed survey of the differences and similarities of the generated hulls of these two substitutions, see [4].



Before we can state our main theorem in detail, we need to introduce some notation. A word, w, over an alphabet, Σ, is a finite sequence, [image: there is no content], of symbols from Σ. We let, here, Σ={[image: there is no content],[image: there is no content]}. We denote a sub-word of w by [image: there is no content], and similarly, we let [image: there is no content]. By [image: there is no content], we mean the length of a word and the cardinality of a set. Note that [image: there is no content]. When indexing the brackets with a letter, α, from the alphabet, [image: there is no content]α, we shall mean the numbers of occurrences of α in the enclosed word.



For two words, [image: there is no content] and [image: there is no content], we denote by [image: there is no content] the concatenation of the two words, that is, [image: there is no content]. Similarly, we let, for two sets of words, U and V, their product be the set, [image: there is no content], containing all possible concatenations.



Letting ϕ act on the word, [image: there is no content], repeatedly yields an infinite sequence of words, [image: there is no content]=ϕn−1([image: there is no content]). We know that r1=[image: there is no content] and [image: there is no content]. However, [image: there is no content] is one of the words, [image: there is no content] or [image: there is no content], with probability p or [image: there is no content]. The sequence, [image: there is no content], converges in distribution to an infinite random word, r. We say that [image: there is no content] is an inflated word (under ϕ) in generation n, and we introduce, here, sets that correspond to all inflated words in generation n;



Definition 1.

Let A1={[image: there is no content]}, B1={[image: there is no content]}, and for [image: there is no content], we define recursively:


[image: there is no content]








and we let [image: there is no content] and [image: there is no content].





The sets, A and B, are indeed well defined. This is a direct consequence of Corollary 6. It is clear from the definition of [image: there is no content] and [image: there is no content] that all their elements have the same length, that is, for all x,y∈[image: there is no content] (or x,y∈[image: there is no content]), we have [image: there is no content]. By induction, it easily follows that for a∈[image: there is no content], we have [image: there is no content] and for b∈[image: there is no content], we have [image: there is no content], where [image: there is no content] is the mth Fibonacci number, defined by [image: there is no content] with [image: there is no content] and [image: there is no content].



For a word, w, we say that x is a sub-word of w if there are two words, [image: there is no content], such that [image: there is no content]. The sub-word set, [image: there is no content], is the set of all sub-words of length n of words in S. The combinatorial entropy of the random Fibonacci chain is defined as the limit, [image: there is no content]. The combinatorial entropy is known to equal the topological entropy for our type of systems; see [5]. The existence of this limit is direct by Fekete’s lemma [6], since we have sub-additivity, [image: there is no content]. We can now state the main result in this paper.



Theorem 2.

The logarithm of the growth rate of the size of the set of inflated random Fibonacci words equals the topological entropy of the random Fibonacci chain, that is:


limn→∞log|[image: there is no content]|[image: there is no content]=limn→∞log|[image: there is no content]|f2n−1=limn→∞log|F(C,n)|n=1τ3log2



(1)




where τ is the golden mean, [image: there is no content] and [image: there is no content].





The outline of the paper is that we start by studying the sets, [image: there is no content] and [image: there is no content]. Next, we give a finite method for finding the sub-word set, [image: there is no content], (which, we will see, is the same as [image: there is no content]). Thereafter, we derive some Diophantine properties of the Fibonacci number that will play a central part when we look at the distribution of the letters in words from [image: there is no content]. Finally, we present an estimate of [image: there is no content], leading up to the proof of Theorem 2.




2. Inflated Words


In this section, we present the sets of inflated words and give an insight to their structure. The results presented here will also play an important role for the results in the coming sections.



Proposition 3.

Let u,v∈[image: there is no content] (or both in [image: there is no content]). Then, [image: there is no content], if and only if [image: there is no content], where, here, [image: there is no content] denotes the set of all possible words that can be obtained by applying ϕ on z.





Proof. 

Let [image: there is no content], and assume that [image: there is no content]. Denote by [image: there is no content] and [image: there is no content] the special choices of ϕ, such that w=[image: there is no content](u)=[image: there is no content](v). Let k be the first position, such that [image: there is no content], where [image: there is no content] and [image: there is no content]. Then, we may assume uk=[image: there is no content] and vk=[image: there is no content]; otherwise, just swap the names of u and v. Since we have ϕ([image: there is no content])=baa, we see that we must have [image: there is no content](vk)=[image: there is no content]([image: there is no content])=ba. However, then, also, [image: there is no content](vkvk+1)=[image: there is no content]([image: there is no content])=baab. This then implies uk+1=[image: there is no content], since, if we have uk+1=[image: there is no content], then there must be two consecutive [image: there is no content]s in w, and we could not find a continuation in v. Hence, we have [image: there is no content](ukuk+1)=[image: there is no content](ab)=baaba. As previously, v must continue with a [image: there is no content]. We now see that we are in a cycle, where |[image: there is no content](ukuk+1…uk+s)|=3+2s and |[image: there is no content](vkvk+1…vk+s)|=2(s+1). Since there is no [image: there is no content], such that [image: there is no content], we conclude that there can be no such w. ☐





We can now turn to the question of counting the elements in the sets, [image: there is no content] and [image: there is no content].



Proposition 4.

For [image: there is no content], we have:


|[image: there is no content]|=2f2n−3−1and|[image: there is no content]|=2f2n−4+1













Proof. 

Let us start with the proof of the the size of [image: there is no content]. From the Definition 1 of [image: there is no content] and [image: there is no content], it follows by induction that |x|[image: there is no content]=[image: there is no content] for x∈[image: there is no content]. Combining this with Proposition 3, we find the recursion:


|[image: there is no content]|=|An−1|·2|x|[image: there is no content]=|An−1|·2f2n−4



(2)




The size of [image: there is no content] now follows from Equation (2) by induction. For the size of [image: there is no content], we have, by the definition of [image: there is no content] and that we already know the size of [image: there is no content],


|[image: there is no content]|=|[image: there is no content]||[image: there is no content]||[image: there is no content]|=2f2n−1−12f2n−3−1·2f2n−3−1=2f2n−4+1








which completes the proof. ☐





From Proposition 4, the statements of the logarithmic limits of the sets, [image: there is no content] and [image: there is no content], in Theorem 2 follows directly. Our next step is to give some result on sets of prefixes of [image: there is no content] and [image: there is no content]. These results will play a central role when we later look at sets of sub-words.



Proposition 5.

For [image: there is no content], we have:


(3)[image: there is no content][1,[image: there is no content]−1]⊂[image: there is no content][1,[image: there is no content]−1](4)[image: there is no content][1,[image: there is no content]−1]⊂[image: there is no content][image: there is no content][1,[image: there is no content]−1]













Proof. 

Let us first consider Equation (3). We give a proof by induction on n. For the basis case, [image: there is no content], we have:


[image: there is no content]








Now, assume for induction that Equation (3) holds for [image: there is no content]. Then, for [image: there is no content], we have by the induction assumption:


Ap+1[1,f2(p+1)−1]=BpApAp[1,f2(p+1)−1]⊆(ApBp∪BpAp)Ap[1,f2(p+1)−1]=[image: there is no content]Ap[1,f2(p+1)−1]=[image: there is no content]Ap[1,f2p−1]⊂[image: there is no content]Ap+1[1,f2p−1]=[image: there is no content]Ap+1[1,f2(p+1)−1]=[image: there is no content]Ap+1Ap+1[1,f2(p+1)−1]=Ap+2[1,f2(p+1)−1]








which completes the induction and the proof of Equation (3). Let us turn to the proof of Equation (4). By the help of Equation (3), we have:


[image: there is no content][1,[image: there is no content]−1]=Bn−1An−1An−1[1,[image: there is no content]−1]=Bn−1An−1An−1[1,f2(n−1)−1]⊂Bn−1An−1[image: there is no content][1,f2(n−1)−1]=Bn−1An−1[image: there is no content][1,[image: there is no content]−1]⊆[image: there is no content][image: there is no content][1,[image: there is no content]−1]








which concludes the proof. ☐





From Proposition 5, it is straight forward, by recalling the recursive definition of [image: there is no content] and [image: there is no content], to derive the following equalities on prefix-sets.



Corollary 6.

For [image: there is no content], we have:


[image: there is no content][1,f2(n−1)−1]=[image: there is no content][1,f2(n−1)−1][image: there is no content][1,f2(n−1)−1]=[image: there is no content][1,f2(n−1)−1][image: there is no content]=Bn+1[1,f2n−1]













We end the section by proving a result on suffixes of the sets, [image: there is no content] and [image: there is no content], that we shall make use of in the next sections.



Proposition 7.

For [image: there is no content], we have:


(5)[image: there is no content][[image: there is no content]+2,[image: there is no content]]⊆[image: there is no content][2,f2n−1](6)[image: there is no content][2,f2n−1]=Bn+1[[image: there is no content]+2,f2n+1]













Proof. 

We give a proof by induction on n. For the basis case, [image: there is no content], we have:


[image: there is no content][f2+2,f4]=[image: there is no content][2,3]={[image: there is no content]}⊆{[image: there is no content],[image: there is no content]}=[image: there is no content][2,2]








Now, assume for induction that Equation (5) holds for [image: there is no content]. Then, for the induction step, [image: there is no content], we have by the induction assumption:


Ap+1[f2(p+1)−2+2,f2(p+1)]=BpApAp[f2(p+1)−2+2,f2(p+1)]=ApAp[f2p−2+2,2f2p]=Ap[f2p−2+2,f2p]Ap⊆Bp[2,f2p−1]Ap=BpAp[2,f2p+1]⊆[image: there is no content][2,f2(p+1)−1]








which completes the induction and the proof of Equation (5). For the proof of Equation (6), we have:


[image: there is no content][2,f2n−1]=[image: there is no content][image: there is no content][[image: there is no content]+2,[image: there is no content]+f2n−1]⊆Bn+1[[image: there is no content]+2,[image: there is no content]+f2n−1]








and for the converse inclusion, we have by Equation (5):


Bn+1[[image: there is no content]+2,[image: there is no content]+f2n−1]=[image: there is no content][image: there is no content]∪[image: there is no content][image: there is no content][[image: there is no content]2,[image: there is no content]+f2n−1]=[image: there is no content][2,f2n−1]∪[image: there is no content][[image: there is no content]+2,[image: there is no content]]⊆[image: there is no content][2,f2n−1]








which proves the equality (6). ☐






3. Sets of Sub-Words


Here, we investigate properties of the sets of sub-words, [image: there is no content] and [image: there is no content]. We will prove that they coincide, and moreover, we show how to find them by considering finite sets, which will be central when estimating their size, depending on m.



First, we turn our attention to proving that it is indifferent if we consider sub-words of [image: there is no content] or of [image: there is no content].



Proposition 8.

For [image: there is no content], we have:


[image: there is no content]













Proof. 

Let us first turn to the proof of the inclusion:


[image: there is no content]



(7)




Let [image: there is no content] for [image: there is no content]. It is clear that [image: there is no content] for any k. We have to prove that also [image: there is no content].



For [image: there is no content], we have:


[image: there is no content]∈F([image: there is no content][image: there is no content],[image: there is no content]−1)⊆F(Bn+1,[image: there is no content]−1)











For [image: there is no content], we have by Corollary 6, which [image: there is no content] must be a sub-word of:


[image: there is no content][image: there is no content][3,[image: there is no content]+[image: there is no content]−1]=[image: there is no content][image: there is no content][3,[image: there is no content]+[image: there is no content]−1]=Bk+1[3,[image: there is no content]+[image: there is no content]−1]











For [image: there is no content], we have by Proposition 7:


[image: there is no content][image: there is no content][image: there is no content][[image: there is no content]+2,f2n+2]=[image: there is no content][[image: there is no content]+2,[image: there is no content]][image: there is no content]⊆[image: there is no content][2,f2n−1][image: there is no content]⊆Bn+1[2,f2n+1]








which concludes the proof of the inclusion Equation (7). For the converse inclusion, it is enough to consider sub-words of [image: there is no content][image: there is no content], since any sub-word of [image: there is no content][image: there is no content] clearly is a sub-word of [image: there is no content]. Therefore, let y(k)∈([image: there is no content][image: there is no content])[k,k−1+[image: there is no content]−1] for [image: there is no content]. We now proceed as in the case above.



For [image: there is no content], we have:


([image: there is no content][image: there is no content])[1,[image: there is no content]+[image: there is no content]−1]=[image: there is no content][image: there is no content][1,[image: there is no content]−1]=[image: there is no content][image: there is no content][1,[image: there is no content]−1]=[image: there is no content][f2n+1+1,f2n+1+[image: there is no content]−1]











For [image: there is no content], we have:


([image: there is no content][image: there is no content])[[image: there is no content]+2,f2n−1+2]=[image: there is no content][[image: there is no content]+2,[image: there is no content]][image: there is no content]=[image: there is no content][2,f2n−1][image: there is no content]=[image: there is no content][2,f2n+1]








which completes the proof. ☐





The above result shows that the set of sub-words from [image: there is no content] and [image: there is no content] coincide if the sub-words are not chosen too long. If we consider the limit sets, A and B, their sets of sub-words turn out to be the same. We have the following:



Proposition 9.

For [image: there is no content], we have [image: there is no content].





Proof. 

Let [image: there is no content]. Then, there is an n, such that:


x∈F([image: there is no content],m)⊆F([image: there is no content][image: there is no content]∪[image: there is no content][image: there is no content],m)=F(Bn+1,m)⊆F(B,m)








Similarly, if [image: there is no content]. Then, there is an n, such that:


x∈F([image: there is no content],m)⊆F([image: there is no content][image: there is no content][image: there is no content],m)=F([image: there is no content],m)⊆F(A,m)








which completes the proof. ☐





The direct consequence of Proposition 9 is that we find the topological entropy in Equation (1) independent if we look at sub-words from A or B.



Now, let us turn to the question of finding [image: there is no content] from a finite set, [image: there is no content], and not having to consider the infinite set, A.



Proposition 10.

For [image: there is no content], we have:


F([image: there is no content],[image: there is no content]−f2n−3)=F([image: there is no content],[image: there is no content]−f2n−3)













Proof. 

It is clear that F([image: there is no content],[image: there is no content]−f2n−3)⊆F([image: there is no content],[image: there is no content]−f2n−3) holds for all [image: there is no content]. For the reverse inclusion, assume that [image: there is no content]. Note that we can write [image: there is no content] and [image: there is no content] on the form:


[image: there is no content]=[image: there is no content][image: there is no content][image: there is no content],(8)[image: there is no content]=[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]∪[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]








From Equation (8), we see that any x is a sub-word of any element in some of the seven sets:


[image: there is no content][image: there is no content],[image: there is no content][image: there is no content][image: there is no content],[image: there is no content][image: there is no content],[image: there is no content][image: there is no content][image: there is no content],[image: there is no content][image: there is no content],[image: there is no content][image: there is no content][image: there is no content],[image: there is no content][image: there is no content][image: there is no content]



(9)




in such a way that the first letter in x is in the first factor (that is, [image: there is no content] or [image: there is no content]) of the sets. If x is a sub-word of [image: there is no content][image: there is no content] or [image: there is no content][image: there is no content] or completely contained in [image: there is no content], it is clear that we have x∈F([image: there is no content],[image: there is no content]−f2n−3). For the case when x is a sub-word of [image: there is no content][image: there is no content], it follows from Proposition 8 that we have x∈F([image: there is no content],[image: there is no content]−f2n−3).



If x is a sub-word of a word in [image: there is no content][image: there is no content][image: there is no content], such that x begins in the first [image: there is no content] factor and ends in the second, then we have that x is a sub-word of a word in the set:


([image: there is no content][f2n−3+f2n−1+2,[image: there is no content]])Bn−1An−1[image: there is no content][1,f2n−4−1]=[image: there is no content][f2n−3+f2n−1+2,[image: there is no content]]Bn−1An−1An−1[1,f2n−4−1]=[image: there is no content][f2n−3+f2n−1+2,[image: there is no content]][image: there is no content][1,f2n−1+f2n−4−1]=([image: there is no content][image: there is no content])[f2n−3+f2n−1+2,[image: there is no content]+f2n−1+f2n−4−1]








and we see that we have x∈F([image: there is no content],[image: there is no content]−f2n−3).



If x is a sub-word of a word in [image: there is no content][image: there is no content], let us first consider the case when it is a sub-word of [image: there is no content]Bn−1An−1. Then, it follows that:


[image: there is no content]Bn−1An−1⊆[image: there is no content][image: there is no content][1,f2n−1]=[image: there is no content][image: there is no content][1,2f2n−1]








so x is a sub-word of a word in [image: there is no content]. For the the second case, [image: there is no content]An−1Bn−1, we have:


[image: there is no content]An−1Bn−1=An−1Bn−1An−1Bn−1∪Bn−1An−1An−1Bn−1⊆[image: there is no content][image: there is no content][image: there is no content][f2n−1+1,3f2n−1]∪([image: there is no content][image: there is no content])[1,2f2n−1]








and again, x is a sub-word of a word in [image: there is no content], by what we just proved above.



If x is a sub-word of a word in [image: there is no content][image: there is no content][image: there is no content], we have by Corollary 6:


[image: there is no content][image: there is no content][image: there is no content][f2n−1+f2n−3+1,2[image: there is no content]−f2n−3−1]=[image: there is no content][f2n−1+f2n−3+1,[image: there is no content]][image: there is no content][image: there is no content][1,f2n−4−1]=[image: there is no content][f2n−1+f2n−3+1,[image: there is no content]][image: there is no content][image: there is no content][1,f2n−4−1]








which shows that x is a sub-word of a word in [image: there is no content] by what we previously have shown.



Finally, if x is a sub-word of a word in [image: there is no content][image: there is no content][image: there is no content], we first consider the case when x is a sub-word of a word in [image: there is no content]Bn−1An−1[image: there is no content]. By Corollary 6, we have:


[image: there is no content][image: there is no content][image: there is no content][2f2n−3+1,f2n+1−f2n−3−1]=[image: there is no content][2f2n−3+1,f2n−1]Bn−1An−1[image: there is no content][1,f2n−4−1]=[image: there is no content][2f2n−3+1,f2n−1]Bn−1An−1An−1[1,f2n−4−1]=[image: there is no content][2f2n−3+1,f2n−1][image: there is no content][1,f2n−1+f2n−4−1]








which, by the help of the previous case, shows that x is a sub-word of a word in [image: there is no content]. For the last case, [image: there is no content]An−1Bn−1[image: there is no content], we have by Corollary 6 and Proposition 7:


([image: there is no content][image: there is no content][image: there is no content])[2f2n−3+1,f2n+1−f2n−3−1]=[image: there is no content][2f2n−3+1,f2n−1]An−1Bn−1[image: there is no content][1,f2n−4−1]=Bn−1[2f2n−3−[image: there is no content]+1,f2n−3]An−1Bn−1An−1[1,f2n−4−1]=[image: there is no content][2f2n−3−[image: there is no content]+1,f2n−1][image: there is no content][1,[image: there is no content]−1]








and again, we see that x is a sub-word of a word in [image: there is no content] by what we have proven above. ☐





The result of Proposition 10 can be extended to hold for sub-words from elements [image: there is no content] and [image: there is no content], where [image: there is no content]. A straight forward argument via induction gives:


F([image: there is no content],[image: there is no content]−f2n−3)=F([image: there is no content],[image: there is no content]−f2n−3)



(10)




for [image: there is no content]. By combining Proposition 10 and Equation (10), we can now prove that to find the factors set, it is sufficient to only consider a finite set.



Proposition 11.

For [image: there is no content], we have:


F([image: there is no content],[image: there is no content]−f2n−3)=F(A,[image: there is no content]−f2n−3)



(11)









Proof. 

It is clear that we have F([image: there is no content],[image: there is no content]−f2n−3)⊆F(A,[image: there is no content]−f2n−3). For the reversed inclusion, let [image: there is no content]. Then, there is a smallest [image: there is no content], such that x is a sub-word of an element of [image: there is no content]. Then, Equation (10) gives:


x∈F([image: there is no content],[image: there is no content]−f2n−3)=F([image: there is no content],[image: there is no content]−f2n−3)








which shows the desired inclusion. ☐






4. Fibonacci Numbers Revisited


In this section, we shall restate, and adopt for our purposes, some of the Diophantine properties of the Fibonacci numbers and use them to derive results on the distribution of the letters in the words in the sets, [image: there is no content] and [image: there is no content]. Let us introduce the notation:


τ=1+52and[image: there is no content]=1−52








for the roots of [image: there is no content]. It is well known that τ and [image: there is no content] appear in Binet’s formula, the Fibonacci numbers; see [7]:


fn=151+52n−151−52n=15τn−[image: there is no content]n



(12)




From Equation (12), it is with induction straight forward to derive:


fn=τfn−1+[image: there is no content]n−1=τ2fn−2+[image: there is no content]n−2



(13)







Definition 12.

Let [image: there is no content] denote the smallest distance to an integer.





By using the special property, [image: there is no content], we have for an integer, k, the following line of equalities:


1τ2k=τ−1τk=k−1τk=1τk=∥(τ−1)k∥=∥τk∥








From Equation (13), it follows that:


∥τfn∥=∥fn+1−[image: there is no content]n∥=1τn








since [image: there is no content]=−1τ. For an integer, k, which is not a Fibonacci number, we have the following estimate of how far away from an integer [image: there is no content] is.



Proposition 13.

For a positive integer, k, such that [image: there is no content], we have:


[image: there is no content]



(14)









Proof. 

We give a proof by induction on n. For the basis case, [image: there is no content], the statement of the proposition follows by an easy calculation. Now, assume for induction that Equation (14) holds for [image: there is no content]. For the induction step, [image: there is no content], let [image: there is no content]. Then, if [image: there is no content] is not a Fibonacci number, we have:


[image: there is no content]








If k−fp−1=[image: there is no content] for some [image: there is no content], then:


∥τk∥≥∥τ[image: there is no content]∥−∥τfp∥=1τm−1τp≥1τp−2−1τp=1τp−1








☐





Proposition 14.

Let x∈[image: there is no content][1,k] for [image: there is no content] (or x∈[image: there is no content][1,k] for [image: there is no content]) and [image: there is no content]. Then:


|x|[image: there is no content]∈1τ2k,1τ2k



(15)









Proof. 

We give a proof by induction on n. The basis case, [image: there is no content], follows by considering each of the words contained in [image: there is no content] and [image: there is no content]. To be able to use Proposition 13 in the induction step, we have to consider the basis step, [image: there is no content], as well, but only for the set, [image: there is no content] (since the words in [image: there is no content] are of length [image: there is no content]). This is, however, seen to hold by a straight forward enumeration of the elements of [image: there is no content].



Now, assume for induction that Equation (15) holds for [image: there is no content], for words both from [image: there is no content] and [image: there is no content]. For the induction step, [image: there is no content], let us first derive an identity of which we shall later make use. Let q and m be positive integers, such that fm−1<q<[image: there is no content]. Then, by the help of Proposition 13, we have:


1τ2(q−fm−1)=1τ2q−fm−3−[image: there is no content]m−1=1τ2q+(−1)mτm−1−fm−3(16)=1τ2q−fm−3








With the same argumentation, we can derive a similar result for [image: there is no content]. For the induction step, we consider first the number of [image: there is no content]s in prefixes of words in [image: there is no content]. It is clear from the induction assumption that Equation (15) holds for [image: there is no content]. For [image: there is no content] or [image: there is no content], let [image: there is no content], where [image: there is no content]. By the induction assumption, we may assume that |v|[image: there is no content] is given by rounding downwards, (the result is obtained in a similar way for the case with [image: there is no content]). By Equation (16), it now follows that:


|uv|[image: there is no content]=|u|[image: there is no content]+|v|[image: there is no content]=f2p−3+1τ2(k−f2p−1)=1τ2k








For [image: there is no content], we have:


|uv|[image: there is no content]=f2p−3+1τ2(f2p−f2p−1)=1τ2f2p+1τ2p−1=1τ2f2p








For [image: there is no content], let [image: there is no content], where [image: there is no content] and [image: there is no content]. Then, the induction assumption and Equation (16) gives:


|uvw|[image: there is no content]=|u|[image: there is no content]+|v|[image: there is no content]+|w|[image: there is no content]=f2p−3+f2p−2+1τ2(k−f2p−1−f2p)=f2p−1+1τ2(k−f2p+1)=1τ2k








For the last case, [image: there is no content], we have:


|x|[image: there is no content]=1τ2(f2p+2)=f2p+1τ2p=f2p








The case when we consider words from [image: there is no content] is treated in the same way, but where we do not need to do the induction step for the case [image: there is no content]. This completes the induction and the proof. ☐





Proposition 15.

Let x∈F([image: there is no content],[image: there is no content]) for [image: there is no content]. Then:


[image: there is no content]−1≤|x|[image: there is no content]≤[image: there is no content]+1



(17)









Proof. 

Let us first turn our attention to the upper bound in Equation (17). In the same way as in the proof of Proposition 10, we consider sub-words of the seven sets, given in Equation (9).



If x is a sub-word, beginning at position [image: there is no content], in an element in [image: there is no content][image: there is no content] or [image: there is no content][image: there is no content], then:


|x|[image: there is no content]≤[image: there is no content]+1τ2(k−[image: there is no content])+[image: there is no content]−1τ2k≤[image: there is no content]+1








since the number of [image: there is no content]s in a word in [image: there is no content] is [image: there is no content], and a word in [image: there is no content] is of length [image: there is no content]. The proof of the upper bound in Equation (17) and for the other sets in Equation (9) is obtained in the same way.



For the lower bound, we have:


|x|[image: there is no content]≥1τ2(k+[image: there is no content])−1τ2k=[image: there is no content]+1τ2k+1τ2n−2−1τ2k≥[image: there is no content]−1








for any x∈F([image: there is no content],[image: there is no content]). ☐






5. Estimating the Size of the Sub-Word Set


We shall in this section give an estimate of the sub-word set, F(A,[image: there is no content]), and give the final part of the proof of Theorem 2. Let us introduce the set:


[image: there is no content]=ϕF(A,[image: there is no content]+1)








By Proposition 15, we can estimate the number of [image: there is no content]s in words in F(A,[image: there is no content]+1). This estimate then gives that we have bounds on the length of words in [image: there is no content]. That is, for x∈[image: there is no content], we have:


|x|=|x|[image: there is no content]+|x|[image: there is no content]≥3(f2n−3−1)+2(f2n−4+2)=[image: there is no content]+1



(18)




and:


|x|=|x|[image: there is no content]+|x|[image: there is no content]≤3(f2n−3+2)+2(f2n−4−1)=[image: there is no content]+4



(19)







Proposition 16.

For [image: there is no content], we have:


F(A,[image: there is no content])=F[image: there is no content],[image: there is no content]













Proof. 

The set, F[image: there is no content],[image: there is no content], is created by inflating words from F(A,[image: there is no content]+1), which are then cut into suitable lengths. This implies that F(A,[image: there is no content])⊇F[image: there is no content],[image: there is no content].



For the converse inclusion, let x∈F(A,[image: there is no content]). Then, there is a word, w∈[image: there is no content], and words, [image: there is no content], such that uxv∈[image: there is no content] and [image: there is no content]. For any word, z∈F{w},[image: there is no content]+1, we have from Equation (18) that any [image: there is no content] fulfills [image: there is no content]+1≤|s|. This gives that there is a word, zx∈F{w},[image: there is no content]+1, such that x is a sub-word of a word in [image: there is no content], which implies x∈F[image: there is no content],[image: there is no content]. ☐





Proposition 17.

For [image: there is no content], we have:


|F(A,[image: there is no content])|≤2f2n−3+2n·5n−1



(20)









Proof. 

We give a proof by induction on n. For the basis case, [image: there is no content], we have:


[image: there is no content]








Assume for induction that Equation (20) holds for [image: there is no content]. For the induction step, [image: there is no content], note that from Equations (18) and (19), it follows that [image: there is no content] for [image: there is no content]. By Proposition 15, we have that the number of [image: there is no content]s in [image: there is no content] is at most [image: there is no content]. This gives, then, with the help of the induction assumption:


|FA,f2p+2|≤|Cp+1|·5≤|FA,f2p|·2[image: there is no content]·5≤2f2p−3+2p·5p−1·2[image: there is no content]·5=2f2(p+1)−3+2(p+1)·5p








which completes the proof. ☐





We can now turn to proving the last equality in Equation (1) and, thereby, completing the proof of Theorem 2. By Proposition 17, we have:


limn→∞log|F(A,[image: there is no content])|[image: there is no content]≤limn→∞log2f2n−3+2n·5n−1[image: there is no content]=limn→∞f2n−3+2n[image: there is no content]log2+n−1[image: there is no content]log5=1τ3log2








which implies the equality in Equation (1).



A further generalization of the random Fibonacci substitutions would be to study the structure occurring when mixing two substitutions with different inflation multipliers. This, however, seems to be a far more complex question.
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