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Abstract:

 The ideal-gas barometric and pressure laws are derived from the Democritian concept of independent corpuscles moving in vacuum, plus a principle of simplicity, namely that these laws are independent of the kinetic part of the Hamiltonian. A single corpuscle in contact with a heat bath in a cylinder and submitted to a constant force (weight) is considered. The paper importantly supplements a previously published paper: First, the stability of ideal gases is established. Second, we show that when walls separate the cylinder into parts and are later removed, the entropy is unaffected. We obtain full agreement with Landsberg’s and others’ (1994) classical thermodynamic result for the entropy of a column of gas submitted to gravity.
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1. Introduction


The paper gives an alternative derivation of the classical barometric and ideal gas laws. Our results coincide with those obtained from the Bohr-Sommerfeld (BS) quasi-classical approximation of Quantum Mechanics and the Boltzmann factor, but our method is more straightforward. Initially, we obtained the average force, [image: there is no content], exerted by a corpuscle on a piston from the BS theory. The corpuscle action (area in the position-momentum, z-p, phase-space, where z denotes the corpuscle altitude and the momentum, p=-wt, where [image: there is no content] is the force applied to the corpuscle, e.g., its weight, and t is time) is discrete and evenly spaced in units of the Planck constant, [image: there is no content]. Because our model is not a harmonic oscillator, the discrete corpuscle energies are unevenly spaced. Thus, going to the continuous limit converting sums into integrals, we must introduce an energy distribution, [image: there is no content], where E denotes the energy, in the form given later. After going through these semi-classical considerations, we discovered that it was sufficient to postulate the simplicity principle, according to which the barometric law must not depend on the equations of motion. This concept, unlike quantum theory, could have been understood at the time of ancient Greece. Furthermore, we show that if the entropy is taken as the negative average value of the logarithms of the microstate probabilities, accounting for a possible uncertainty concerning the presence or not of a corpuscle, introduction and removal of separations in the cylinder containing the corpuscle does not affect the entropy.



By ideal gas, we mean a collection of non-interacting corpuscles. We may, therefore, restrict ourselves to a single corpuscle. If there is more than one corpuscle, the corpuscles are classical and, thus, distinguishable. We first suppose that we know with certainty whether a corpuscle is present or not in the cylinder, then relax this assumption. Only motion along the vertical z-axis is considered, but generalization of the barometric and ideal-gas law to three dimensions is straightforward. As said above, the corpuscle considered is submitted to an external force, [image: there is no content], perhaps of electrical origin, w being called the corpuscle “weight”, or equivalently to a potential, P(z)=wz. Because the presence of a corpuscle affects the potential negligibly, the latter is viewed as an external potential. We call a perfect gas an ideal gas with no external force acting on the corpuscle, except at the boundaries and with the non-relativistic approximation being made.



According to our definition, ideal gas constant-volume heat capacities depend on temperature, θ, and volume, h. The free expansion of an ideal gas may, therefore, entail temperature changes, while this is not the case for a perfect gas. There is full agreement between our general results and the first and second laws of thermodynamics as they are spelled out in textbooks and the usual perfect-gas laws derived by Bernoulli in the limit considered. The role of a constant force acting on the corpuscle and special-relativity have been discussed, for example, by Landsberg [1] and Louis-Martinez [2].



The present paper is a generalization of our previous papers [3,4], where our motivation is explained in more detail than here. Presently, we calculate the average forces exerted on both ends of a vertical cylinder; they are different when the corpuscle has weight. We prove the gas stability from the fact that the corpuscle round-trip time is a non-decreasing function of the energy. We show that the entropy does not vary when separating walls are introduced and removed. The entropy is not postulated to be additive or extensive: it is defined as the negative average value of the logarithms of the microstate probabilities, thereby accounting for a possible uncertainty concerning the presence or not of a corpuscle, through the concept of conditional probabilities. Our conclusion agrees with an expression for the entropy given by Landsberg and others [1], involving an integration over the cylinder height of [image: there is no content], where [image: there is no content] is the probability density that the corpuscle be at z (or the corpuscle density for a large number of corpuscles). The difference between Landsberg’s approach and our approach is that we conceptually divide the total system into subsystems and Landsberg does not. Both approaches yield the same result. Related concepts were introduced by Peters [5,6].



We first consider the round-trip time, [image: there is no content], needed for a corpuscle thrown upward from the ground level, [image: there is no content], with energy, E=w[image: there is no content], to reach a maximum altitude, [image: there is no content], and come back to the ground level. If the corpuscle bounces elastically on the ground, [image: there is no content] represents the oscillation period. Since we consider only round-trip times, that is, time delays measured at some altitude, no problem of clock synchronization arises. The time during which the corpuscle is located above some altitude, z≤[image: there is no content], during a period is τ([image: there is no content]-z), since, under our assumption of a constant weight, the τ-function does not depend on the initial altitude or initial time. For brevity, we set [image: there is no content] in most of the present paper. The weight is easily restored from dimensional considerations. For example, the result, exp(-βz), should read, exp(-βwz), in view of the fact that β has the dimension of an energy reciprocal.



We consider only thermal-equilibrium situations: If we wait a sufficiently long period of time, an isolated system ceases to evolve. We take it as an empirical result that, leaving aside general-relativity effects (According to general relativity, thermal energy has weight, but this (so-called Tolman) effect that entails a temperature variation at equilibrium, θ(z)=θ(0)/(1+2zg/c2), where g denotes the gravity acceleration and c, the speed of light, is entirely negligible; see, for example, Equation (1) of [7]. This paper gives the following interpretation of equilibrium: an (adapted) quote is: “The temperature θ is essentially equal to ℏ divided by the time required by the system to move from one state to the next”. This interpretation leads to the condition of temperature uniformity for weak gravity, since, in that case, time intervals do not depend significantly on altitude.), two bodies left in contact for a sufficient period of time with energy being allowed to flow from one to the other reach an equilibrium state corresponding to equal temperatures, as one can judge by our senses. Energy may flow spontaneously (i.e., without work expenditure) from a hot body to a colder one, but the converse never occurs: the process is non-reversible (zeroth law of thermodynamics). Our θ notation for the temperature is the one employed by Gibbs. We quote [8]:“Gibbs, writing before the introduction of Boltzmann’s constant, [image: there is no content], uses θ with the dimensions of energy for what we should today call [image: there is no content]T; consequently, his thermodynamic analog of entropy is what we should today call [image: there is no content] and is dimensionless. In this respect Gibbs’ notation is really neater formally and more cogent physically than ours”. In our discussion, the temperature, θ, enters solely on the basis of dimensional considerations. However, we later show that our expressions for the gas internal energy and force (or pressure) derive from the partial derivatives of the Helmholtz potential (or free energy), [image: there is no content]. The heat delivered by the gas in reversible processes is δQ=θdS, an expression for the entropy, [image: there is no content], being given. This result enables us to prove that the formally-introduced temperature, θ, is a thermodynamic temperature.



To conclude, the purpose of the present paper is to show that the thermodynamics of ideal gases and, particularly, the barometric and ideal-gas laws, may be obtained solely on the basis of the Democritus model, according to which nature consists of corpuscles moving in a vacuum, plus a principle of simplicity: namely that these fundamental laws are independent of the law of corpuscle motion. To wit, writing the corpuscle Hamiltonian (see Appendix A) as [image: there is no content], the barometric and ideal-gas laws do not depend on the [image: there is no content] function, but the internal kinetic energy, K, does. Thus, the Hamiltonian equations recalled in the Appendix are unnecessary, as far as the barometric and ideal-gas laws are concerned, but they are needed (in the form of a round-trip function) for the internal energy and other quantities relevant to classical thermodynamics.



As said earlier, we consider a single corpuscle. Because of the slight thermal motion of the container wall, there is an exchange of energy between the corpuscle and the heat bath, so that the corpuscle energy slowly varies in the course of time. We are looking for averages over arbitrary, long time intervals.




2. The Barometric Law


We consider a single corpuscle moving only along the vertical z coordinate and submitted to a constant force, [image: there is no content]. If the corpuscle energy is E, the maximum altitude reached is [image: there is no content]=E. The round-trip time, [image: there is no content], is the motion period, and the time per period during which the corpuscle is above z is (see Figure 1a) τ([image: there is no content]-z). It follows that the fraction of time during which the corpuscle is above z is τ([image: there is no content]-z)/τ([image: there is no content]). Because of thermal fluctuations, the corpuscle energy is not fixed, but must be described by a probability distribution. By invoking the simplicity principle, i.e., by demanding independency of the τ-function, one obtains an energy distribution proportional to ω([image: there is no content])=exp(-β[image: there is no content])τ([image: there is no content]), yielding the average fraction of time during which the corpuscle is above z as:


abovez=∫z∞d[image: there is no content]ω([image: there is no content])τ([image: there is no content]-z)/τ([image: there is no content])∫0∞d[image: there is no content]ω([image: there is no content])



(1)




The result obtained for the distribution, ω([image: there is no content])=exp(-β[image: there is no content])τ([image: there is no content]), is indeed:


abovez=∫z∞d[image: there is no content]exp(-β[image: there is no content])τ([image: there is no content]-z)∫0∞d[image: there is no content]exp(-β[image: there is no content])τ([image: there is no content])=exp(-βz)



(2)






Figure 1. Space-time ([image: there is no content]) trajectory of a unit-weight corpuscle bouncing off the ground at z=0. In (a), the maximum altitude reached by the corpuscle is [image: there is no content]=E, where E denotes the energy. The motion is periodic, with period [image: there is no content], where [image: there is no content] denotes the corpuscle round-trip time at a distance, ζ, from the top of the trajectory. The time during which the corpuscle is located above z, divided by the period, is evidently τ([image: there is no content]-z)/τ([image: there is no content]). This expression holds, even if the motion is not symmetric in time. In (b), the maximum altitude is restricted to h by a piston. The motion period becomes τ([image: there is no content])-τ([image: there is no content]-h).



[image: Entropy 15 03379 g001 1024]








In the integrals going from z to ∞, we have replaced exp(-β[image: there is no content]) by exp(-βz)exp(-β([image: there is no content]-z). Here, [image: there is no content]; the energy, θ, will later on prove to be a thermodynamic temperature. In terms of the variable, [image: there is no content]-z, all the integrals go from zero to infinity and cancel out. Even though there are integral signs, no integration has been performed. We simply consider an integral as a sum of terms and employ the rule of addition associativity. We have also employed the fact that [image: there is no content] is the only function, such that [image: there is no content]. Note that our “desired result” does not refer to a specific barometric law that would be known before hand, but to the fact (simplicity principle) that this law, whatever it is, does not depend on the equations of motion. It is postulated on the basis of common experiences that in a state of equilibrium, there exists a unique temperature. Thus, a general form of the barometric law has been obtained without invoking the Boltzmann distribution, which is presently viewed as a consequence of the simplicity principle. For a three-dimensional configuration corresponding to real atmospheres, the same result holds: the [image: there is no content]-function is modified; however, the barometric law does not depend on that function, and therefore, the result in Equation (2) is unaffected. The more complicated case, where the weight, w, depends on z, is treated in [4]. The result amounts to replacing z in the above expression by a potential, [image: there is no content]. This known result is obtained here most simply.



2.1. Reflecting Plane at [image: there is no content]


We now suppose that there is a reflecting plane located at h, and the corpuscle is located between zero and h. When [image: there is no content]≤h, the plane at [image: there is no content] is immaterial, and the fraction of time spent by the corpuscle above z is as before: τ([image: there is no content]-z)[image: there is no content]. When [image: there is no content]≥h, the fraction of time spent by the corpuscle above z is τ([image: there is no content]-z)-τ([image: there is no content]-h)τ([image: there is no content])-τ([image: there is no content]-h); see Figure 1b. It follows that if ω([image: there is no content]) denotes the energy distribution, the average fraction of time spent by the corpuscle above z ([image: there is no content] is:


abovez=∫zhd[image: there is no content]ω([image: there is no content])τ([image: there is no content]-z)[image: there is no content]+∫h∞d[image: there is no content]ω([image: there is no content])τ([image: there is no content]-z)-τ([image: there is no content]-h)τ([image: there is no content])-τ([image: there is no content]-h)∫0hd[image: there is no content]ω([image: there is no content])+∫h∞d[image: there is no content]ω([image: there is no content])



(3)




This expression is independent of the [image: there is no content] function, according to our simplicity principle, if and only if ω([image: there is no content]) is selected as follows:


ω([image: there is no content])=exp(-β[image: there is no content])τ([image: there is no content])[image: there is no content]≤hω([image: there is no content])=exp(-β[image: there is no content])τ([image: there is no content])-τ([image: there is no content]-h)[image: there is no content]>h



(4)







Using the elementary transformations given in [4], we obtain, employing only the associativity of addition and the fact that [image: there is no content] is the only function, such that [image: there is no content]:


abovez=exp(-βz)-exp(-βh)1-exp(-βh)



(5)




The same result is obtained if we suppose that the barometric law applies also in the presence of a reflecting plate at h and evaluate the ratio of the integral of exp(-βz) from z to h and the integral of exp(-βz) from zero to h.



Similarly, supposing that the corpuscle is located between zero and [image: there is no content], we obtain the probability, [image: there is no content], that the corpuscle be in the lower half and the probability, [image: there is no content], that the corpuscle be in the upper half in the form:


[image: there is no content]=11+exp(-α),[image: there is no content]=11+exp(α),α≡βh,[image: there is no content]+[image: there is no content]=1



(6)




These expressions will be needed later on.



When the corpuscle is submitted to an arbitrary potential, [image: there is no content], the barometric law reads:


[image: there is no content]



(7)




where [image: there is no content] denotes the corpuscle density at z. The details can be found in [4]. The result is the well-known generalized Boltzmann factor that reduces to the previous one when [image: there is no content]. However, it is obtained here from the simplicity principle alone.





3. Average Force Exerted by a Corpuscle on Pistons


We consider a unit-area cylinder with a vertical z-axis at some temperature. There is a lower piston at altitude [image: there is no content] and an upper piston at altitude [image: there is no content]=[image: there is no content]+h. The cylinder contains a single corpuscle located between [image: there is no content] and [image: there is no content], submitted to a force, [image: there is no content]. We evaluate the average force, [image: there is no content], exerted by the corpuscle on the lower piston and the average force, [image: there is no content], exerted by the corpuscle on the upper piston. The following relation necessarily holds: [image: there is no content]+[image: there is no content]+1=0.



3.1. Mechanical Average


The word “average” enters in this paper as a mechanical average and as a thermal average. Physically, it is supposed that the pistons have so much inertia that they do not respond to individual collisions. Let the corpuscle energy be denoted E. The maximum altitude, [image: there is no content], that the corpuscle would reach in the absence of the piston is E=[image: there is no content]. The mechanical average force exerted by the corpuscle on the lower piston is twice the corpuscle momentum, p, when it collides with the plane, times the number of collisions per unit time, [image: there is no content], where τ denotes the motion period, as was well understood by Bernoulli centuries ago. When the corpuscle does not reach the piston, [image: there is no content]≤h, we have τ=τ([image: there is no content]). That is, [image: there is no content]. If we set [image: there is no content] when [image: there is no content], that is, at the top of the corpuscle trajectory, the corpuscle momentum is at time t: [image: there is no content], and the collision time is t=τ([image: there is no content])/2 (see Figure 1). Thus, [image: there is no content]=-2τ([image: there is no content])/2(1/τ([image: there is no content]))=-1. When the corpuscle possesses enough energy to reach the upper piston, the motion period becomes τ([image: there is no content])-τ([image: there is no content]-h). Then, the force, [image: there is no content], experienced by the lower piston is:


[image: there is no content]([image: there is no content])=-1[image: there is no content]≤h[image: there is no content]([image: there is no content])=-[image: there is no content]τ([image: there is no content])-τ([image: there is no content]-h)[image: there is no content]>h



(8)







The force, F, experienced by the upper piston when the corpuscle energy is [image: there is no content] is likewise:


F([image: there is no content])=0[image: there is no content]≤hF([image: there is no content])=τ([image: there is no content]-h)τ([image: there is no content])-τ([image: there is no content]-h)[image: there is no content]>h



(9)




so that, irrespectively of [image: there is no content], we have: [image: there is no content]+F=-1. This means that the cylinder, considered as a rigid object of negligible weight, has an effective weight precisely equal to one, a most intuitive result. By linearity, the same conclusion must hold for average forces: [image: there is no content]+F=-1.




3.2. Thermal Average


Because the cylinder is in contact with a bath, it suffers a slight thermal motion, and the corpuscle energy, [image: there is no content], slowly varies in the course of time. We are considering an arbitrary, large number of samples, each of them containing a single corpuscle.



Accordingly, the average force, [image: there is no content], experienced by the bottom of the cylinder and the average force, [image: there is no content], experienced by the piston are, respectively, from Equation (8) and Equation (9), if ω([image: there is no content]) denotes the energy distribution:


[image: there is no content]=∫0∞d[image: there is no content]ω([image: there is no content])[image: there is no content]([image: there is no content])∫0∞d[image: there is no content]ω([image: there is no content])=-∫0hd[image: there is no content]ω([image: there is no content])+∫h∞d[image: there is no content]ω([image: there is no content])[image: there is no content]τ([image: there is no content])-τ([image: there is no content]-h)∫0hd[image: there is no content]ω([image: there is no content])+∫h∞d[image: there is no content]ω([image: there is no content])



(10)






[image: there is no content]=∫0∞d[image: there is no content]ω([image: there is no content])F([image: there is no content])∫0∞d[image: there is no content]ω([image: there is no content])=∫h∞d[image: there is no content]ω([image: there is no content])τ([image: there is no content]-h)τ([image: there is no content])-τ([image: there is no content]-h)∫0hd[image: there is no content]ω([image: there is no content])+∫h∞d[image: there is no content]ω([image: there is no content])



(11)







According to our simplicity principle, the average forces must be independent of the corpuscle equation of motion and, thus, of the [image: there is no content]-function. This condition is obtained from Equation (10) and Equation (11), if one selects the distribution previously given in Equation (4). The average forces become, using Equation (4), Equation (10) and Equation (11):


[image: there is no content]=-∫0∞d[image: there is no content]exp(-β[image: there is no content])τ([image: there is no content])∫0hd[image: there is no content]exp(-β[image: there is no content])τ([image: there is no content])+∫h∞d[image: there is no content]exp(-β[image: there is no content])τ([image: there is no content])-τ([image: there is no content]-h)










=1exp(-βh)-1→-θhh≪θ-1h≫θ










[image: there is no content]=∫h∞d[image: there is no content]exp(-β[image: there is no content])τ([image: there is no content]-h)∫0hd[image: there is no content]exp(-β[image: there is no content])τ([image: there is no content])+∫h∞d[image: there is no content]exp(-β[image: there is no content])τ([image: there is no content])-τ([image: there is no content]-h)










=1exp(βh)-1→θhh≪θ0h≫1



(12)




with [image: there is no content]+[image: there is no content]=-1, since [image: there is no content], proceeding as in the previous section.



For a collection of N independent (classical, distinguishable) corpuscles having a unit weight, the force is a sum of N terms of the form given above. In the case of zero weights ([image: there is no content]=0 or, more precisely, β[image: there is no content]h≪1), the above expression would give [image: there is no content]h=θ. Thus, we have obtained the perfect-gas law: [image: there is no content]h=Nθ. It does not depend on the nature of the corpuscles.



For an arbitrary potential, [image: there is no content], the force, [image: there is no content], follows from the barometric distribution in Equation (7), according to:


[image: there is no content]=∫h∞dzexp(-βP(z))∫0hdzexp(-βP(z))



(13)




where the limits on the denominator are consequences of the fact that the corpuscle is located between zero and h. This result coincides with the previous one in Equation (12) when [image: there is no content].




3.3. Average Force for a Three-Dimensional Space


We suppose that the cylinder radius is very large compared with h, and we do not consider the force exerted by the corpuscle on the cylinder wall. The motion of the corpuscle along directions perpendicular to z does affects the round-trip time function, [image: there is no content]. However, since the average force does not depend on this function, the ideal-gas law is unaffected. This is so for any physical system involving a single corpuscle, provided that the physical laws are invariant under a z-translation (besides being static).



The internal energy, to be discussed in the following section, though, is incremented. One can prove that in the non-relativistic approximation and in the absence of gravity, the internal energy is multiplied by three. It would be increased further by corpuscle rotation or vibration, which is not considered here. Using conventional methods, Landsberg [1] and Louis-Martinez [2] obtain exactly the same result as given above (except for the factor, three, in the expression for the internal energy, relating to the number of space dimensions considered).





4. Internal Energy


The gas internal energy, U, is the average value of E≡[image: there is no content], the gravitational energy being accounted for. First, assume that the cylinder rests on the ground level: [image: there is no content]=0. The expression for U is, using the energy distribution given in Equation (4):


U=∫0∞dEEexp(-βE)τ(E)∫0∞dEexp(-βE)τ(E)-hexp(βh)-1



(14)




where the method employed before has been used. The mathematical details can be found in [3]. The first term minus θ corresponds to the kinetic energy, K, while the second term plus θ corresponds to the potential energy, P. In the non-relativistic limit, the first term, minus θ, gives the well-known expression, [image: there is no content]. Without any force acting on the corpuscle, we have, of course, [image: there is no content]. The internal energy, [image: there is no content], thus is the sum of a term, K, the function of θ, but not of h, and a term, P, obtained in analytical form, that tends to zero when [image: there is no content]. To evaluate the first term, we need to know the round-trip time, [image: there is no content], to within an arbitrary proportionality factor, and an integration must be performed in that case.



The expressions given earlier for the average force, [image: there is no content], in Equation (12) and the internal energy, U, in Equation (14) may be written, with [image: there is no content]:


[image: there is no content]=∂ln(Z)β∂hU=-∂ln(Z)∂β










[image: there is no content]=1-exp(-βh)1[image: there is no content]∫0∞d[image: there is no content]exp(-β[image: there is no content])τ([image: there is no content])



(15)




Z is a form of the (Gibbs) phase integral of [image: there is no content], where [image: there is no content] is the Hamiltonian given in the Appendix [9]. The Planck constant, [image: there is no content], introduced to make Z dimensionless plays no physical role in this paper (remember that z should read wz). All the physical results may be derived from the above expression of [image: there is no content].



As said above, the internal energy, U, may be written as the sum of a potential energy, P, and a kinetic energy, K. The potential energy with [image: there is no content]=0 may be written as the ratio of the integral of zexp(-βz) from zero to h and the integral of exp(-βz) from zero to h. In general, P must be incremented by [image: there is no content].



The temperature, θ, introduced above only on dimensional grounds is defined to within an arbitrary constant. We may convene that [image: there is no content], exactly as the hydrogen triple-point temperature (HTP). The value of θ at the water triple-point (WTP), for example, would then be obtained experimentally by measuring the efficiency of reversible heat engines operating with WTP as a hot bath and HTP as a cold bath. The known value is [image: there is no content].




5. Stability


Solutions obtained for the force, [image: there is no content], and the energy, U, imply stable equilibria, provided that two conditions be satisfied. Firstly, the isothermal compressibility, [image: there is no content]≡-(1/h)∂h/∂[image: there is no content], must be positive. This is readily verified, since the derivative of the force, [image: there is no content], given in Equation (12), with respect to h is negative. Secondly, one must verify that the isochoric heat capacity, [image: there is no content], is positive. This problem is solved below. Given that [image: there is no content] and [image: there is no content] are positive, it follows that the isobaric heat capacity, CP>[image: there is no content], is positive, and the isentropic compressibility, κs=[image: there is no content][image: there is no content]/CP, is positive, also. Thus, let us show that [image: there is no content] is positive. The internal energy is the sum of the potential energy, P, which is easily seen to be an increasing function of θ and the kinetic energy, K.



The former may be written, according to Equation (14):


P=θ-hexp(βh)-1=θ1-αexp(α)-1α≡βh










[image: there is no content]



(16)







The latter may be written as:


K=-θ+∫0∞dEEexp(-βE)τ(E)∫0∞dEexp(-βE)τ(E)=-ϕ′ϕ,ϕ(β)≡∫0∞dEexp(-βE)τ′(E)



(17)




integrating by parts, where primes indicate derivatives with respect to the argument. In order to get [image: there is no content]>0, it thus suffices to show that [image: there is no content], that is, letting [image: there is no content], for short:


∫0∞dEE2f(β,E)∫0∞dEf(β,E)≥∫0∞dEEf(β,E)2



(18)




Since τ is a non-decreasing function of E, f is non-negative and Equation (18) is the classical inequality regarding the moments on order of zero, one and two of the measure μ defined by: [image: there is no content]. Thus, [image: there is no content]=∂U∂θ≥0, and the expressions obtained from our simplicity principle imply the stability of the equilibria.




6. The Helmholtz Fundamental Relation


It is convenient to introduce the Helmholtz fundamental relation: A(θ,h)≡-θln(Z(θ,h)). The letter A originates from the German “Arbeit”, or work, but this letter may also stand for (constant temperature) “Available work”. Indeed, the work performed at a constant temperature is the difference between the final and initial A values.



The force, [image: there is no content], that the corpuscle exerts on the lower piston, the force, [image: there is no content], that the corpuscle exerts on the upper piston and the internal energy result from the Helmholtz fundamental relation depending separately on [image: there is no content] and [image: there is no content]=[image: there is no content]+h. We thus consider a cylinder whose base has been raised from [image: there is no content] to z=[image: there is no content]. The previous relations for [image: there is no content],[image: there is no content] in Equation (12) and for U in Equation (14) may be written as:


[image: there is no content]=1exp(-βh)-1=-∂A∂[image: there is no content],[image: there is no content]=1exp(βh)-1=-∂A∂[image: there is no content]










[image: there is no content]










A(θ,h0,[image: there is no content])=-θln1-exp(-βh)+ln1[image: there is no content]∫0∞d[image: there is no content]exp(-β[image: there is no content])τ([image: there is no content])+[image: there is no content]



(19)




with h≡[image: there is no content]-[image: there is no content]. Thus, if the cylinder bottom is raised to an altitude, [image: there is no content], A and U are both incremented by [image: there is no content]. From now on, we set [image: there is no content]=0 for simplicity, unless specified otherwise.



We have obtained an expression for the Helmholtz fundamental relation, [image: there is no content], for the special case of a single corpuscle submitted to a constant force in the canonical ensemble. This fundamental relation has the same mathematical and physical content as the often-used energy fundamental relation, [image: there is no content], and the entropy fundamental relation, [image: there is no content]; see [10]. The following expressions therefore coincide with the conventional ones applicable to any working substance. Indeed, the fundamental entropy relation is obtained in parametric form from the expressions for [image: there is no content] and [image: there is no content], with θ as a parameter. Even though we cannot explicitly obtain [image: there is no content], it is easy to verify that [image: there is no content].



We have indeed:


∂S(U,h)∂U=∂S(θ,h)/∂θ∂U(θ,h)/∂θ=β,S(θ,h)=-∂A(θ,h)∂θ,U(θ,h)=A(θ,h)-θ∂A(θ,h)∂θ



(20)




Likewise, we obtain the well-known relation, ∂S(U,h)∂h=β[image: there is no content], if we enforce the condition, [image: there is no content]. The Helmholtz fundamental relation will suffice for our purposes.



At a given temperature, the corpuscles are independent. Accordingly, for N corpuscles, [image: there is no content] and U are simply multiplied by N. A is multiplied by N, plus a function of N that we do not specify further. It follows that if [image: there is no content] denotes the fundamental entropy relation for a single corpuscle, the fundamental entropy relation for N corpuscles reads NS(UN,h), to within an additional arbitrary function of N. For a perfect gas, this function may be selected, such that the entropy is extensive in h. The entropy is, in general, not extensive, but there is no reason why it should be. Let us quote Jaynes [8]: “The question of extensivity cannot have any universally valid answer; for there are systems, for example systems with electric charge or gravitational forces, for which the scaling law does not hold because of long range interactions”.



6.1. The Energy, θ, is a Thermodynamic Temperature


We prove in this section that θ, introduced in previous sections on dimensional grounds only, is a thermodynamic temperature. We do this by showing that the efficiency of a reversible thermal cycle employing ideal gases is, [image: there is no content], where [image: there is no content] is the cold-bath temperature and [image: there is no content], the hot bath temperature: this is the accepted Kelvin definition of absolute temperatures.



From the law of conservation of energy, the heat released by the gas is from Equation (19):


-δQ≡dU+[image: there is no content]dh=dA-∂A∂θdθ-∂A∂hdh-θd∂A∂θ≡θdS,S=-∂A∂θ



(21)




For any function, [image: there is no content], such as U,A,S, [image: there is no content]. We employ only two independent variables, namely, θ and h, so-that partial derivatives are unambiguous. If the gas is in contact with a thermal bath (θ=constant), [image: there is no content] is the heat gained by the bath. The quantity, S, defined above, is called “entropy”. In particular, if heat cannot go through the gas container wall (adiabatic transformation), we have [image: there is no content], that is, according to the above result, [image: there is no content]. Thus, reversible adiabatic transformations are isentropic. Note that S, here defined as the ratio of two energies, is dimensionless. It may therefore be written as the logarithm of a dimensionless quantity. The fact that S, defined above, is a state function suffices to prove that θ is a thermodynamic temperature.





7. Expressions for the Entropy


In Equation (21), we have expressed the state function, S, in terms of the Helmholtz potential, A:


S=-∂A∂θ=∂θln(Z)∂θ=βU+ln(Z(β,h))≡g(β)-αexp(α)-1+ln(1-exp(-α))



(22)




where α=βh, using for U the expression given in Equation (19), where g is some function.



7.1. Perfect Gases


For a perfect gas ([image: there is no content], non-relativistic approximation), the expression for Z in Equation (22) may be written as:


[image: there is no content]∝hθ1/2,lnZ(β,h)=lnhθ1/2=-βA(β,h)










[image: there is no content]=-∂A∂h=-1β∂(βA)∂h=θhU=∂(βA)∂β=θ2



(23)




These are the usual expressions for the equation of state and the internal energy of a perfect gas.



According to Equation (22) and Equation (23), the entropy is, omitting an additional factor of 1/2:


S=-∂A∂θ=∂θln(hθ1/2)∂θ=ln(hθ1/2)



(24)




Since [image: there is no content], the fundamental entropy relation reads:


S(U,h)=lnh2U



(25)




We recover from this expression, again, 1θ=∂S∂U=12U and [image: there is no content]θ=∂S∂h=1h, that is, [image: there is no content]h=θ




7.2. Another Form of the Entropy


Recall from Equation (22) that:


[image: there is no content]



(26)




The successive trajectory actions are discretized with spacings equal to the Planck constant, and thus, the corresponding energies are correspondingly discretized with subscripts, k; we suppose that different k values correspond to different energies. In the present classical paper, the Planck constant is allowed at the end to assume arbitrarily small values.



Let the [image: there is no content] function be written as a sum of terms, [image: there is no content], instead of an integral. Then, the entropy, S, may be written as:


S=-∑k=0∞[image: there is no content](β,h)ln([image: there is no content](β,h)),[image: there is no content](β,h)=[image: there is no content][image: there is no content],Z(β,h)=∑k=0∞exp(-βεk(h))



(27)




as one readily verifies by substituting the expression for [image: there is no content] into the expression of S. The above is a simple mathematical transformation. However, when there is some uncertainty concerning the presence of a corpuscle in the cylinder, it is useful to interpret the [image: there is no content] as independent probabilities. The entropy may not decrease when constraints are removed or restored inside a thermally isolated body [11].



Let us consider now two boxes labeled “A” and “B” and a single corpuscle. If the corpuscle is in box “A”, the probability that the level, [image: there is no content], be occupied is denoted p[image: there is no content] with ∑k=0∞p[image: there is no content]=1. If the corpuscle is in box “B”, the probability that the level, [image: there is no content], be occupied is denoted p[image: there is no content] with ∑k=0∞p[image: there is no content]=1. When the corpuscle is in box A with independent probability, [image: there is no content], and in box B with probability [image: there is no content]=1-[image: there is no content], the p[image: there is no content] should be multiplied by [image: there is no content], and the p[image: there is no content] should be multiplied by [image: there is no content]. We therefore have for the entropy, in that case:


S=-∑k=0∞p[image: there is no content][image: there is no content]ln(p[image: there is no content][image: there is no content])-∑k=0∞p[image: there is no content][image: there is no content]ln(p[image: there is no content][image: there is no content])=[image: there is no content][image: there is no content]+SB[image: there is no content]+ΔS










[image: there is no content]=-∑k=0∞p[image: there is no content]ln(p[image: there is no content]),SB=-∑k=0∞p[image: there is no content]ln(p[image: there is no content]),ΔS=[image: there is no content]ln(1/[image: there is no content])+[image: there is no content]ln(1/[image: there is no content])



(28)




where [image: there is no content] is the conditional entropy of A and, likewise, for B. The additional term, [image: there is no content], accounts for the fact that it is not known with certainty whether the corpuscle is in box A or in box B. When the two boxes are identical ([image: there is no content]=SB), the entropy is [image: there is no content]+ΔS.





8. Change in Entropy Upon Introduction and Removal of a Separation


The process presently discussed is often considered in relation with the so-called “ Gibbs’s paradox”; see, for example, [8,12]. We consider a thermally-isolated vertical cylinder of height [image: there is no content] (from [image: there is no content] to [image: there is no content]), which may be separated by an impermeable wall at altitude h. The lower part of the cylinder is labeled “A” and the upper part is labeled “B”. We will show that when a separation is introduced or removed, the entropy remains the same.



8.1. Change in Temperature


The internal energy, U, is constant, since the cylinder is adiabatic and no work is performed. We will show that this entails the temperature being constant. This is non-obvious, since, for ideal gases, U depends on both θ and h. The general form of the internal energy, U, of a cylinder of height h whose bottom is located at z=[image: there is no content] reads:


βU(β,h,[image: there is no content])=βK(β)+1-αexp(α)-1+β[image: there is no content],α≡βh



(29)







Before the separation is introduced, the internal energy is given by the above expression with h changed to [image: there is no content] and [image: there is no content]=0, that is:


βUbefore=βK(β)+1-[image: there is no content]exp(2α)-1,α≡βh



(30)







Once the separation is introduced at [image: there is no content], the probability that the corpuscle be in the lower part is [image: there is no content], and the probability that the corpuscle be in the higher part is [image: there is no content] with:


[image: there is no content]=11+exp(-α),[image: there is no content]=11+exp(α)



(31)




as we have seen in Equation (6). Thus, the internal energy becomes:


βUafter=βUA[image: there is no content]+βUB[image: there is no content]










[image: there is no content]










βUB=βK(β)+1-αexp(α)-1+α,α≡βh,



(32)




since in the latter case, [image: there is no content]=h. It follows that [image: there is no content] implies that the α factors are the same before and after, since:


[image: there is no content]



(33)




This is admitted below.




8.2. Change in Entropy


Let us now evaluate the changes of entropy. Without the separation, we have a cylinder height [image: there is no content] and no uncertainty that the corpuscle is there. Then, the entropy is given by Equation (26) with α changed to [image: there is no content]:


Sbefore=g(β)-[image: there is no content]exp(2α)-1+ln1-exp(-2α),α≡βh



(34)




where we have introduced, for brevity, a function of β only, [image: there is no content], which will cancel out later on.



When the separation is put in place, the two boxes being identical, they have the same entropy, but one must take into account the fact that there is a probability, [image: there is no content], that the corpuscle be in box “A” and a probability, [image: there is no content], that the corpuscle be in box “B” and employ Equation (28). Thus:


[image: there is no content]










[image: there is no content]=-[image: there is no content]ln([image: there is no content])-[image: there is no content]ln([image: there is no content])=ln(1+exp(α))-α1+exp(-α)



(35)







We have, therefore:


[image: there is no content]










+[image: there is no content]exp(2α)-1-ln(1-exp(-2α)=0



(36)




Thus, the entropy remains unchanged when the separation is restored.



To summarize, if we consider an adiabatic cylinder of height [image: there is no content], the entropy for the corpuscle is given by the standard formulas, with h being replaced by [image: there is no content]. When a separation is introduced half-way, the standard formula applies, but one must add the quantity denoted above, [image: there is no content], that accounts for the fact that we do not know with certainty whether the corpuscle is in the lower or upper box. Then, we find that the entropy is unchanged. If the separation is removed, the entropy again remains the same.



This result obtains for any (infinitely thin) separations. If we thus consider a cylinder of height h in the limit of a large number, [image: there is no content], of separations whose distances are [image: there is no content], the term, [image: there is no content], in Equation (28) becomes the integral from zero to h of [image: there is no content], where [image: there is no content] is the probability of having a corpuscle between z and [image: there is no content] (or the corpuscle density for a large number of corpuscles). All the slices of height [image: there is no content] being identical, they have the same entropy. Adding [image: there is no content] enables one to recover the expression for the entropy of a cylinder of height h, employing only the barometric law and the expression of the entropy for a vanishingly small value of h, that is, with a negligible weight acting on the corpuscle. This view-point generalizes the one considered in [1], which was restricted to the non-relativistic approximation and did not make reference to the Gibbs paradox. This entropy result is readily generalized to any potential, [image: there is no content], since the barometric law is known. Thus, the term, [image: there is no content], is not an addition to the conventional classical thermodynamic expression of entropy, which would be involved when cylinders are split into parts. Without it, classical thermodynamics would be inconsistent.



Finally, consider a thermally insulated perfect gas (no weight, non-relativistic, single corpuscle) expanding freely. Because the internal energy depends only on temperature and no work is performed in free expansion, the temperature remains a constant, and we may set, for simplicity, [image: there is no content]. When the corpuscle, initially in box A, is allowed to move freely in A + B by removing a separation, the entropy is increased by [image: there is no content], because at constant temperature, the entropy may be taken to be [image: there is no content] when the corpuscle is in box A and [image: there is no content] when the corpuscle is in box A + B. Next, the corpuscle is forced to return to its initial location (box A) by a piston. In the isothermal regime (the cylinder being now in contact with a heat bath at [image: there is no content]), the work performed by the piston is [image: there is no content], as we have seen before in Equation (21). In a Carnot cycle, for example, this work would entail a cycle efficiency lower than the Carnot efficiency: this the cost that has to be paid for having allowed a free expansion. This in effect means that the cycle is no longer reversible.



However, when, on the other hand, the corpuscle is in box A with probability 1/2 and in box B with probability 1/2 and the separation is removed, the initial situation may be recovered simply by restoring the separation. In that case, there is no change in entropy, as expected intuitively. Indeed, in the initial configuration, we must account for the uncertainty entropy, [image: there is no content], defined in Equation (28). Thus, the initial entropy is [image: there is no content]. The final entropy, [image: there is no content], is, therefore, the same as initially, that is, the Carnot efficiency is now unaffected: the cycle just described is reversible.





9. Conclusions


Let us recall the concepts introduced in the present paper. One can imagine that after having introduced the notion of corpuscles moving in vacuum, Democritus observed the elastic bounces of a unit weight on a balance and defined the weight “impulse” from the motion period. Not knowing the nature of the motion, he may have thought of introducing an energy distribution, such that the average force, [image: there is no content], does not depend on the law of motion. This, as we have seen, may be done. This distribution involves, for dimensional reasons, a quantity, θ, having the dimension of energy. Considering a thermal engine operating between two baths at temperatures [image: there is no content],[image: there is no content], one finds, on the basis of the principles just stated, without any further assumptions, that the maximum efficiency is [image: there is no content]. This allows us to call θ the thermodynamic temperature, defined only up to a constant factor. The latter may be fixed by conceding, for example, that [image: there is no content] at the hydrogen triple point.



The present paper provides a first-principle proof of the barometric and ideal-gas laws, including a possible effect of a corpuscle weight, w, with no knowledge of the round-trip time function, [image: there is no content], being required. Explicit expressions of the kinetic part of the internal energy may be obtained, however, only when the round-trip time function is known to within an arbitrary constant factor or, equivalently, when the kinetic part of the corpuscle Hamiltonian is known. The ideal-gas internal kinetic energy depends only on temperature, while the ideal-gas internal potential energy, divided by θ, is a simple analytic function of [image: there is no content]. Since the theory presented is strictly classical, the universal constant, ℏ, is needed only to make the results dimensionless. We have proven the stability of the gas from the equations obtained for the force, [image: there is no content], and the internal energy, U. We have also shown that, at least for ideal gases, the energy and the entropy are unchanged when a separation is introduced and considered the case of free expansion. The case of non-constant weights has been treated, based on the same concepts, in [4], with results that agree with the Gibbs phase integral.
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Appendix


A. The Hamilton Formalism


We consider a Hamiltonian of the form


[image: there is no content](p,z)=K(p)+P(z)



(37)




whose value can be considered as the corpuscle energy: [image: there is no content] for some initial values of p and z. P=wz is the potential energy, with [image: there is no content] the force exerted on the corpuscle.



The equations of motion are:


v≡[image: there is no content]dt=dKdpdpdt=-dP[image: there is no content]=-w



(38)







They are best understood in wave optics terms, see for example [13], with E=ℏω,p=ℏk. The quantity analogous to energy is the wave angular frequency [image: there is no content] divided by the time period, and the quantity analogous to momentum p is the wave number ([image: there is no content] divided by the space period), that is: [image: there is no content]. The first relation in Equation (38) says that the group velocity v is the derivative of [image: there is no content] with respect to k, as one can easily see graphically by tracing two arrays of parallel lines on a plane with slightly different time and space periods.



The solution of the second equation in Equation (38) is: p=po-wt. Provided [image: there is no content] we may select a time origin such that this relation reads: p=-wt. This is assumed henceforth.



Through a second-order expansion we take [image: there is no content] to be of the form: ao+[image: there is no content]p+a2p2 where [image: there is no content] are constants, and obtain:


[image: there is no content]dt=[image: there is no content]+2a2p=[image: there is no content]-2a2wt,z=[image: there is no content]+[image: there is no content]t-a2wt2



(39)




with [image: there is no content] a constant. The energy is equal to w[image: there is no content] where [image: there is no content] is the maximum altitude reached by the corpuscle at time tm=[image: there is no content]2a2w, hence [image: there is no content]=[image: there is no content]+a124a2w. The round-trip time [image: there is no content] is the difference of the successive times at which [image: there is no content], that is [image: there is no content] are the two solutions of: a2wt2-[image: there is no content]t+a122a2w-[image: there is no content]=0. For [image: there is no content] we obtain: τ=2[image: there is no content]a2w=22m[image: there is no content]w if we set: [image: there is no content]. The same result is obtained for any value of [image: there is no content]. The non-relativistic approximation is thus a straightforward application of the second-order expansion of any [image: there is no content] function.
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