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Abstract: In recent years, changes in land use resulting from rapid urbanization or urban 

sprawl have brought about many negative effects to land ecosystems, and have led to 

entropy increases. This study introduces the novel ideas of a planning regulation coefficient for 

sustainable land-use planning in order to decrease entropy, combined with the CLUE-S 

model to predict land-use change. Three scenarios were designed as the basis for land-use 

projections for Guangzhou, China, in 2015, and the changes in the land ecological service 

function for each scenario were predicted. The results show that, although the current land-use 

plan is quite reasonable, it will be necessary to further strengthen the protection of 

farmland and important ecological service function areas. 
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1. Introduction  

In urban areas all over the World, the expansion of built environments to accommodate escalating 

urban populations has resulted in the loss of agricultural land and an increased potential for soil 

erosion, leading to inefficient use of land resources and consequent entropy increases. The land 

ecosystem provides many of the basic materials and services for urban development. Ways in which 
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urban development might reasonably be planned to maintain a low level of entropy within the city 

boundaries, and at the same time guarantee that the land ecological function will be sustained, have 

become important focal points in land-use planning research. The purpose of a sustainable land-use 

plan is to ensure that the land ecosystem maintains a healthy, balanced structure and function within 

certain spatial and temporal ranges, and with sufficient natural resources to support the development of 

sustainable, complex nature-economy-society systems. In pursuit of this goal, a large number of 

fundamental and innovative ecological studies of land planning methods in the literature have been 

based on entropy and relevant aspects of ecological theory—land health, landscape ecological security 

and land ecological risk [1–3]—all founded on land ecological balance. 

A review of the literature on land-use planning reveals that the index system (IS) method and Land 

Use/Cover Change (LUCC) model are widely used. The IS method operates broadly as follows: 

choose suitable indicators to set up a plan index system, and confirm the target for each indicator; then 

choose a suitable model to synthesize these indicators and evaluate whether the overall target fulfills 

the requirement of land ecological balance. Some researchers choose indicators on the basis of the 

composition of available land resources, such as water, soil and biology [4]; others set up an index 

system that relies on an assessment of the integrated natural/social/economic complexity of the 

ecosystem [5]. For example, urban sprawl analysis using the index methods of Shannon entropy (SE) 

in information theory were carried out in Asmara, Eritrea [6]: variables such as SE, the urban sprawl 

index (USI), the land consumption rate (LCR), and the land absorption coefficient (LAC) related to 

urbanization revealed interesting facts about that city [7]. 

However, subjectivity influences the assessment process to a great extent, so it is important to 

determine which are suitable indicators and how best to determine the weight of each indicator. Recent 

studies have generally adopted the pressure-state-response (PSR) model developed by the OECD to 

establish an index system [8]. Some have set up an index system based on the ecological network [9]. 

In general, the methods used to establish an index system differed in the various case studies. Methods 

of determining the weight of indicators developed in recent studies have included entropy, the Delphi 

technique, principal component analysis (PCA), and analytic hierarchy process (AHP) [10–13]. 

The LUCC model, which reflects the ecological balance response to changes in land use, is useful 

for studying the dynamics of land-use planning [14,15]. Al Bassam investigated LUCC along with 

remote sensing (RS) interpretation methods to analyze LUCC dynamics in the city of Puding in China 

from 1995 to 2002 [16]. Most studies have focused on LUCC analysis of environmental response and 

driving forces, but few have looked at land-use planning. Considering the spatial characteristics of land 

use, most investigators have used geospatial information system (GIS) RS as a research tool for 

preparing land-use maps, which is an intuitive approach to displaying planning programs [17]. Some 

have also set up scenarios and constructed models that integrate socioeconomic and ecological aspects 

to support land-use planning decisions [18]. 

Entropy, the concept originally derived from thermodynamics and adapted to information theory, 

describes the amount of uncertainty and disorder within a system [19]. The concept of entropy is 

expressed in terms of the probability of various states, which is considered to be relevant to land-use 

planning [20]. On this basis, in the present study an index system for urban land-use planning from the 

perspective of the human demand for ecological security was established, using GIS/RS to analyze the 

land use/cover change that is predicted to result from different scenarios. 
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2. Methods 

2.1. The Model for Land Ecological Service Supply Index 

Land ecosystems provide living space and resources for human habitation, but the service function 

depends on the type of land use; for example, the main function of an agricultural ecosystem is to 

provide food (the raising function); the main function of land for buildings is to provide space for 

living and productivity (the bearing function); forest ecosystem in the long run are considered to 

provide a part of the mineral resources, such as copper, coal, and natural gas etc., which are otherwise 

mainly obtained from the Earth’s crust (the warehousing function); and the main function of landscape 

is the comfort and aesthetic values it provides (the landscape function). However, the degree of 

importance of each eco-function changes when residents’ living conditions themselves change: when 

their living standard is relatively low, food supply is the most important function, and the degree of 

importance of an urban greenbelt is seen as relatively low. Thus, in this study a supply distribution 

index (LESS) was introduced to take the spatial variability of the service supply into account; it is 

defined in Equation (1): 

ܵܵܧܮ ൌ ∑ ௦௫ߜ
௦௬
௦௫ୀଵ ܵܵ௦௫ sx = 1, 2 … sy (1)

where SSsx is the element value of sx, the service supplied by the land ecosystem (i.e., bearing service, 

raising service, warehousing service, landscape service); and δsx is the weighting of each element of sx. 

Land-use change leads to a quantitative change in the land ecosystem; technological developments 

help to improve its quality. For example, crop rotation reduces the pressure on the land ecosystem and 

improves the way existing resources are used; adding fertilizer increases the soil nutrient and more 

food is produced; and so on. Therefore a “technology contribution” index Tagri was introduced to allow 

for the effects of technological development; see Equation (2): 

Tୟ୰୧ ൌ exp ൬
ܦܩ ܲ

ܲܦܩ
൰ (2)

where GDPagri is the agricultural output from the introduction of a new technology to the enterprise. 

Dividing the land area into a grid comprising a large number of cells using GIS/RS tools allows the 

spatial heterogeneity of each equal-area land unit to be characterized. The supply index of each unit 

may then be calculated from: 

ܵܧܮܷ ܵ ൌ ݇ · ܴ · ܶ · (3) ܵܵܧܮ

where ULESSi is the land ecological supply index of unit i; LESS is the supply index obtained from 

Equation (1); k is a constant for numerical standardization; Tagri is the “technology contribution” index 

from Equation (2); and Ri is the supply distribution coefficient of the ith unit, and is similar in meaning 

to the output factor in ecological footprint theory [21], and its value depends on the land-use category 

of unit i. Ecological footprint theory provides an estimate of human impact on natural ecosystems, and 

considers human demand for ecological services in six land-use categories: farmland, forest, meadow, 

wetland, building land, garden. 
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2.2. The CLUE-S Model for Land-Use Transfer Probability 

A transfer, or conversion, matrix analysis model of land-use categories simulates land-use change 

before implementing a land-use plan. This model calculates the conversion relationship between 

different categories of land use in the same region at different times, thus comprehensively depicting 

the structure, attributes and direction of the land-use change [22]; however, it only predicts the 

probability of conversion of land-use categories overall, not in each grid cell. By contrast, the 

conversion of land use and its effects over small regions (CLUE-S) model quantitatively analyzes the 

relationship between the effects of land-use change on society, the economy, technology and the 

natural environment, which coincides with the target of the present study. The CLUE-S model (Figure 1) 

was derived from the CLUE model [23,24], modified to simulate land-use change based on an 

empirical analysis of location suitability, combined with the dynamic simulation of competition 

between, and interaction of, the spatial and temporal dynamics of land-use systems. 

Figure 1. Structure of the CLUE-S model framework.  

 

The CLUE-S model has two parts: analysis of land-use driving forces based on logistic methods, to 

calculate the relationship between the driving factors and each land-use category, followed by 

simulation of land-use change by setting rules of land transfer, policy and restrictions, demand and 

other parameters, using Dyna-CLUE software. The main module of Dyna-CLUE is summarized by: 

ቐ

ܴܱܶܲ ܲ, ൌ ܲ,  ܵܣܮܧ  ܴܧܶܫ

ܲ, ൌ
exp ሺߚ  ,ଵݔଵߚ  ,ଶݔଶߚ  ڮ  ,ሻݔߚ

1  exp ሺߚ  ,ଵݔଵߚ  ,ଶݔଶߚ  ڮ  ,ሻݔߚ
 (4)

In Equation (4), i = 1, 2, …, 6; m is a land-use category as listed above (i.e., cropland, grazing land, 

fishing ground, forest, built-up area, or land for carbon absorption) and thus m = 1, 2, …, 6; TPROPi,m 

is the probability that land-use category m fits the plan target for unit i, and an iterative procedure 

determines the highest probability that unit i will be converted to land-use category m in the following 

year (or following time period), then the spatial simulations are completed; Pi,m is the suitability of unit 

i to be used for land-use category m, obtained from the logistic regression model (β refers to the 

correlation between the various driving factors and the categories of land use); ELASm is the 
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conversion elasticity for land-use category m (i.e., the ease, or otherwise, of converting land-use 

category m to another category), and is added only if unit i is already categorized as land-use m during 

the time period considered; and ITERm is a land-use category-specific iteration variable that indicates 

the relative competitiveness of land-use category m. 

2.3. Dynamic Model of Land-Use Planning 

The dynamic change of land ecological service function is closely related to changes in land use. In 

this study, a planning regulation coefficient was introduced as a measure of changes in land use that 

are mainly driven by the implementation of land use planning. 

Human demands are always infinite and the influence of human activities on the ecosystem is 

serious and, in many cases, devastating. Because cities are highly intelligent and artificial systems, 

disturbance to the ecosystem by the urban population in order to satisfy their demands upon it is more 

evident; natural evolution has significantly less influence on the processes of spatial change than 

artificial modification by humans. In recognition of this, the present study considered mainly the 

impact of artificial factors on spatial change in urban land use. 

Here it was assumed that the spatial expansion processes in urban areas are the result of demands 

placed on land ecological services by anthropogenic activity which changes the spatial structure of the 

land ecosystem, thus influencing both the service supply of urban land and balance or sustainability. 

Modification of urban space may be done in one of two ways: either by the irrational use of more land 

for city expansion, leading to uneven land development and a reduction in the ecological supply level 

of the land ecosystem or, alternatively, by a rational spatial reconfiguration of urban land incorporating 

reasoned planning and construction that takes into account the stress that development places on 

ecological services. 

Urban space may be relatively stable for a certain period of time but, because the demands on it are 

limitless, decision-makers need to meet the best interests of society, the economy and the environment; 

the decision-making process often needs to strike a balance between the positive and negative 

consequences of the decision. With this in mind, in the present study the positive effects  

(positive planning drive factors) and the negative effects (negative planning drive factors) of rational 

planning were both considered. 

A planning regulation coefficient was introduced to enable calculation of the environmental impact 

of implementing land-use plans. This was determined on the hypothesis that urban land-use planning is 

the driving force behind urban land-use change during a period of urban development. This study 

seems to indicate that planning does not significantly influence land ecosystem security supply, 

however, so long as land use is changed as planned, in which case the impact is to some extent 

determinate. This study explored the interaction between the driving force and land-use change, and 

calculated the impact of land-use planning on the land ecological supply capacity: 

ଵሻݐሺܨ  ൌ ߙ · ሻ (5)ݐሺܨ

ܵܧܮܷ ܵ · ܴܱܶܲ ܲ, ൌ ߙ · ܵܧܮܷ ܵ (6)

ߙ ൌ ܵܧܮܷ ܵ/ܷܵܧܮ ܵ · ܴܱܶܲ ܲ, (7)
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where F(t) is the supply function of land ecosystem; ߙ is the planning regulation coefficient based on 

the land ecological supply, and is equal to the ratio of land ecological service supply in different years, 

such that αi > 1 indicates that the supply ability of the target unit would be strengthened by 

implementing the land use plan (which means that the land ecosystem is stable and in good condition), 

αi = 1 indicates that planning implementation would not impact significantly on the ecological 

sustainability of the target unit, and αi < 1 indicates the opposite effect; ULESSin is the unit supply 

index of unit i in the current year t0; ULESSim is the unit supply index of unit i in plan year t1; 

TPROPi,m is the probability of unit i fitting land-use category m. The target unit i = 1, 2, … ; n is the 

land-use category in the current year; m is the land-use category in the plan year; n, m = 1, …, 6. The 

six land-use category codes are: farmland = 1, forest = 2, meadow = 3, wetland = 4, building land = 5, 

garden = 6. 

3. A Case Study of Guangzhou, China 

Guangzhou city is the capital of Guangdong Province and is one of the most important industrial 

centers in China (Figure 2). Guangzhou covers an area of 7434 km2 and has a population of over six 

million. Guangzhou stands at the confluence of the East River, West River and North River, with the 

terrain sloping from NE to SW, and includes an alluvial plain in the southern and south-western 

regions. Guangzhou has a southern subtropical marine climate, with an annual average temperature of 

21.8 °C, rainfall 1694 mm, and 345 frost-free days per year. 

Figure 2. Map of China showing location of Guangzhou. 
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3.1. Land-Use Data Collection, Standardization and Logistic Regression Analysis 

3.1.1. Data Collection and Standardization 

The data for the land ecological service supply index was standardized using the improved efficacy 

coefficient method [25] to ensure that comparable requirements are met in different years. This is 

given by: 

ܽ ൌ 0.5 ሺ ܺ െ ܺሻ ሺ ܺ௫ െ ܺሻ⁄  0.5 (8)

where aij is the score for unit i and element j (the efficacy coefficient); Xij is the actual value for unit i 

and element j; Xjmax, Xjmin are the upper and lower limits of element j; i = 1, 2 ...; j = 1, 2 ...  

The CLUE-S computation process is in two parts: first, the logistic method of land-use  

change-driven analysis is used to gauge the selected driving factors and calculate their relationship 

with each land-use category; second, the land transition rules to be used by the Dyna-CLUE program 

are defined; the program calculates the probability of each grid unit, i, being assigned a particular  

land-use category m, as described above. After comparing a number of units, the land category most 

likely to be converted to the target category is selected for the planning year, and the spatial simulation 

process is then completed using a standard iteration routine. 

Land ecological supply is closely related to the service functions that the land provides. The main 

functions of land ecosystems were described above as the raising, bearing, warehousing and 

landscape functions [22]. When the land ecosystem is capable of providing acceptable service 

functions, the entropy and the disorder of the ecosystem decreases. The land-use plan indicators 

defined for Guangzhou are listed in Table 1. 

3.1.2. Analysis of Land-Use Change Drivers Based on Logistic Methods 

The spatial land-use data for Guangzhou in 2000, 2006 and 2009 was taken from land-use maps, 

electronic maps of rivers and lakes, traffic routes, settlements and other information in 2000. The 

source of the digital elevation model (DEM) data was from World Geodetic System (WGS) with  

3 arc-second (approximately 90 m) resolution. 

For the present study it was necessary to consider whether the data could be obtained, whether the 

factors could be quantified, and whether the data would correlate reasonably well with land-use change 

in the case study district, when equal attention was given to both natural and socioeconomic factors. 

On this basis, seven factors driving land-use change were selected: see Table 2. 

The data was extracted from remote-sensing images based on the six land-use categories shown on 

land-use maps of Guangzhou, then analyzed by the logistic method. 

The relative operating characteristics (ROC) validation method [26] was used to test the logistic 

regression results from the CLUE-S model. ROC values lie between 0 and 1: a ROC of 0.5 indicates 

that the predictions are completely random; values > 0.5 indicate that a prediction by the model is 

relatively good. 
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Table 1. Land-use plan indicator set for Guangzhou, based on land ecological services 

supply index. 

Land ecological 
services supply 
index 

Element 
Original data  

(year) 
Standardized data 

(year) 

 2000 2006 2009 2000 2006 2009 

Bearing 

Road area per capita (m2/person) 5.67 13.49 10.63 0.56 1.00 0.84 

Residential area per capita 
(m2/person) 

13.13 18.87 21.01 0.61 0.89 1.00 

Raising 

Grain (kg/year/person) 106.71 77.98 64.61 0.74 0.95 0.64 

Vegetables and their products 
(kg/year/person) 

112.92 104.56 56.49 0.91 1.00 0.93 

Oil and fat (kg/year/person) 6.87 6.7 4.59 0.68 0.84 0.82 

Meat (kg/year/person) 47.41 46.37 20.30 0.77 0.90 0.88 

Eggs (kg/year/person) 8.62 6.24 4.31 0.86 1.00 0.72 

Warehousing Coal (tonnes/year/10,000 yuan GDP) 0.78 0.65 0.35 1.00 0.97 0.83 

Landscape 

Rate of urban green coverage (%) 31.6 36.38 38.21 0.72 0.86 0.91 

Green space area in parks (m2/person) 7.87 11.32 13.76 0.50 0.78 0.97 

Proportion of woodland area (%) 0.39 0.37 0.34 1.00 0.94 0.84 

Proportion of wetland area (%) 0.12 0.14 0.18 0.63 0.75 1.00 

Data source: Guangzhou Statistic Yearbook 2000, 2006 and 2009; The elements were chosen based on the 

questionnaire survey in Guangzhou. 

Table 2. Factors driving land-use change in Guangzhou. 

Factor 
classification 

Driving factor Factor description Code 

Distance 

Distance to rivers, lakes and seas 
The distance of each evaluation unit center to 
the nearest rivers, lakes and seas 

X0 

Distance to national highway or 
urban road 

The distance of each evaluation unit center to 
the nearest national highway or urban road 

X1 

Distance to urban settlements 
The distance of each evaluation unit center to 
the distance to the nearest town settlements 

X2 

DEM 
Slope  X3 

Elevation  X4 

Population 
density 

Population  X5 

Per-capita GDP  X6 

A logistic regression was run for each current land-use category (Table 3). Appropriate driving 

factors selected from those listed in Table 2 were used to evaluate the suitability of a given unit to be 

developed into a particular land-use category. The spatial distribution of all categories of land use was 

explained well by the selected driving factors, as indicated by the ROC value ≥ 0.7 in all cases. 
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Table 3. Values of β from logistic regression of spatial distribution of land use in Guangzhou. 

Land use 
category 

Population 
density 

Per 
capita 
GDP 

Slope Elevation
Distance 
to water 

Distance 
to road 

Distance 
to rural 

settlement 
Constant ROC 

Farmland – – –0.86 – 0.66 – –1.1 0.398 0.873
Garden – – 0.55 0.51 – –0.89 –0.77 0.820 0.680
Woodland –0.65 – 1.08 – – –0.73 1.29 1.768 0.850
Grassland – – –0.96 –0.60 0.87 –0.92 –1.08 4.538 0.665
Build-up 0.51 – –0.96 –0.52 1.67 –1.33 –1.21 3.772 0.984
Wetland 0.52 – –1.26 – –1.68 1.51 1.24 6.486 0.993

As discussed in the notes to Equation (4), the β values for the regression analysis results of the 

spatial distribution of land are the correlations between the various driving factors and the land-use 

categories. These are substituted into Equation (9), which is Equation (4) rearranged; see Equation (4) 

for definitions of terms and variables: 
p୧

1 െ p୧
ൌ  exp ሺβ  βଵXଵ,୨  βଶXଶ,୨  ڮ  β୬X୬,୨ሻ (9)

Note that exp (β) indicates the change in the probability of one unit change in the independent 

variable x. When exp (β) > 0, the probability increases as the value of x increases; when exp (β) < 0, 

the probability decreases. An increase in the value of exp (β) in any individual unit produces a change 

of land-use category in that unit. The results are finally filtered to exclude the least significant factors. 

3.2. Calculation of Planning Regulation Coefficient 

For the present study, the area covered by Guangzhou was divided into 28,523 units, each with  

an area of 500 m × 500 m. Land use in the area was then grouped into six categories, based on  

available information. 

The supply distribution coefficient of each land use category (Ri in Equation (3); Table 4) was 

calculated on the basis of the main biological production potential and the output factor in the 

ecological footprint model [27]. 

Table 4. Supply distribution coefficient (Ri) for the different land uses. 

Year Farmland Garden Woodland Grassland Built-up Wetland 

2000 2.24 1.20 1.20 3.29 2.24 1.00 
2006 1.48 1.69 1.12 1.62 2.69 1.12 
2009 1.22 1.86 1.11 1.63 2.94 1.53 

A technology contribution coefficient, T (Table 5) is proposed mainly as a measure of the effect of 

utilizing scientific and technological developments to improve land productivity and ecosystem services. 

Table 5. Technology contribution coefficient (T) in Guangzhou.  

Year 2000 2006 2009 

T 1.0037 1.0047 1.0049 
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The unit supply indices [ULESS, Equation (3)] are summarized for Guangzhou in Table 6, which 

shows the number of units affected in the years 2000, 2006 and 2009. The index of all units lay in the 

range 0.6–0.9. For any of the three years, the supply index of most units was 0.6–0.7. The number of 

units within a given range fell as its supply index rose. The number of units in the range 0.6–0.7 

gradually declined from 2000 to 2009. The number of units in the range 0.7–0.8 firstly decreased, and 

then increased. The number of units in the range 0.8–0.9 rose year by year. High unit scores indicate 

that the entropy of the land ecosystem is predicted to be low in those particular units. 

Table 6. ULESS values for 2000, 2006 and 2009. 

Year 0–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0 

2000 – 16,928 10,759 808 – 

2006 – 16,071 7441 5018 – 

2009 – 10,663 8841 9019 – 

The purpose of land-use planning regulation coefficients was to measure the effectiveness of the 

ecological service supply generated by land-use planning and implementation in Guangzhou between 

2000 and 2009. These indicate that land-use planning in Guangzhou increased the ecological service 

supply ability; the impact of regulation was higher in 2006–2009 than in 2000–2006, and the 

implementation of the 2006–2009 planning played a more active role (Table 7). Urban land-use 

planning is thus seen to be increasingly important in maintaining the entropy of the city at a low level. 

Table 7. Land-use planning regulation coefficient in Guangzhou. 

Year 2000–2006 2006–2009 

Coefficient 1.034 1.067 

Figure 3 shows the spatial variation of the planning regulation coefficient. In 2000 and 2006, the 

implementation of the land-use planning reinforced the ecosystem supply capacity in the central, 

southern and western parts of Guangzhou. Between 2006 and 2009, most of the supply capacity for 

central and southern Guangzhou continued to improve despite increasing land-use changes. 

3.3. Land-Use Plan Prediction Scenarios in Guangzhou for 2015 

This study adopted the CLUE-S model to test three scenarios of land-use planning (Plans 1, 2  

and 3) to provide decision-makers in Guangzhou with appropriate plan predictions for 2015. 

 Plan 1: Total amount control target (2009–2015): Mainly refers to extrapolation of current trends. 

 Plan 2: Total amount control target (2009–2015): Mainly refers to targets in the Guangzhou 

Land-use Planning Standard (2006–2020). 

 Plan 3: Total amount control target (2009–2015): Plan 2 plus: (1) Area restriction 1: Conversion 

to other land-use categories restricted to farmland; (2) Area restriction 2: Protect ecological 

security zone in northern area of Guangzhou. 
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Figure 3. Spatial variation of the coefficient of regulation of land-use planning in Guangzhou. 

 

The input parameters for the CLUE-S model were determined by the constraint conditions of the 

three plans in order to predict land-use change in Guangzhou in 2015. The land-use planning index 

ULESS for the current year and the plan year was also calculated to obtain the planning regulation 

coefficient αi for the CLUE-S model. In order to check the accuracy of each index, data from 2000, 

2006 and 2009 were used to simulate the driving factors of land-use change with the logistic model. 

3.4. Simulated Land-Use Changes for 2015 

As shown in Figure 1, input for the CLUE-S model includes land-use requirements, location 

characteristics and suitability, spatial policies and restrictions, and specific conversion settings of  

land-use category. 

Land-use distribution: The six categories of land-use distribution for the three plans are given in 

Tables 8–10. 

Table 8. Plan 1 land-use changes in Guangzhou, 2009–2015 (areas in hectares). 

Year Farmland Garden Woodland Grassland Built-up Wetland 

2009 100,784 129,915 253,426 104 148,602 52,550 

2010 102,810 129,213 253,958 104 150,073 52,487 

2011 104,876 128,516 254,491 104 151,558 52,424 

2012 106,984 127,822 255,026 104 153,059 52,361 

2013 109,135 127,131 255,561 104 154,574 52,298 

2014 111,328 126,445 256,098 104 156,104 52,236 

2015 113,566 125,762 256,636 104 157,650 52,173 

  



Entropy 2013, 15 3501 

 
Table 9. Plan 2 land-use changes in Guangzhou, 2009–2015 (areas in hectares). 

Year Farmland Garden Woodland Grassland Built-up Wetland 

2009 100,784 129,915 253,426 104 148,602 52,550 
2010 102,810 129,213 253,958 104 150,073 52,487 
2011 104,876 128,516 254,491 104 151,558 52,424 
2012 106,984 127,822 255,026 104 153,059 52,361 
2013 109,135 127,131 255,561 104 154,574 52,298 
2014 111,328 126,445 256,098 104 156,104 52,236 
2015 113,566 125,762 256,636 104 157,650 52,173 

Table 10. Plan 3 land-use changes in Guangzhou, 2009–2015 (areas in hectares). 

Year Farmland Garden  Woodland  Grassland Built-up Wetland  

2009 100,784 129,915 253,426 104 148,602 52,550 
2010 102,810 129,213 253,958 104 150,073 52,487 
2011 104,876 128,516 254,491 104 151,558 52,424 
2012 106,984 127,822 255,026 104 153,059 52,361 
2013 109,135 127,131 255561 104 154,574 52,298 
2014 111,328 126,445 256,098 104 156,104 52,236 
2015 113,566 125,762 256,636 104 157,650 52,173 

Location characteristics and suitability: The location suitability is a major determinant of the 

competitive capacity of the different land-use categories at specific locations. Logistic regression 

models using input from a GIS dataset were constructed to determine the relationships between  

land-use change and a set of potential driving factors. 

Spatial policies and restrictions: For each land-use category, the model took into account the spatial 

policies and restrictions that influenced land-use category conversion and caused differences in 

spatiotemporal behavior. In this study, Plan 3 restricted changes to other land-use categories in 

northern Guangzhou. 

Land-use category-specific conversion setting: For each plan, land-use category-specific conversion 

settings were defined and implemented by adopting the relative elasticity to change approach [ELAS 

value from the Dyna-CLUE module; see Equation (4)], which takes a value between 0 (easy change) 

to 1 (irreversible change), and transition rules (1 = transition, 0 = no transition): that is, the higher the 

defined elasticity, the more difficult it is to convert the land-use category. The transfer matrix of land 

use in the study area was calculated to ensure that the relative elasticity—and especially the relative 

elasticity of different land-use categories from 2009 to 2015—was extrapolated from current data 

(Table 11). By judging whether or not a specific category could be converted to another category, the 

transition rule was determined, the 2009 transition rules were extrapolated to 2015 for all three plans 

(Tables 12–14) in accordance with the land use transfer matrix. 

Table 11. Land-use relative elasticity, Guangzhou, 2009–2015. 

Relative elasticity Farmland Woodland Grassland Wetland Built-up Garden 

Plan 1 1 0.9 0.6 0.90 0.95 0.88 

Plans 2 and 3 0.92 0.9 0.6 0.90 0.95 0.88 
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Table 12. Land-use transition rule for Guangzhou, 2009–2015 (Plan 1). 

 Farmland Woodland Grassland Wetland Built-up Garden 

Farmland 1 0 0 0 0 0 

Woodland 1 1 1 1 1 1 

Grassland 1 1 1 1 1 1 

Wetland 1 1 1 1 1 1 

Built-up 1 1 1 1 1 1 

Garden 1 1 1 1 1 1 

Table 13. Land-use transition rule, Guangzhou, 2009–2015 (Plan 2). 

 Farmland Woodland Grassland Wetland Built-up Garden 

Farmland 1 1 1 1 1 1 
Woodland 1 1 1 1 1 1 
Grassland 1 1 1 1 1 1 
Wetland 1 1 1 1 1 1 
Built-up 1 1 1 1 1 1 
Garden 1 1 1 1 1 1 

Table 14. Land-use transition rule, Guangzhou, 2009–2015 (Plan 3). 

 Farmland Woodland Grassland Wetland Built-up Garden 

Farmland 1 1 1 1 1 1 
Woodland 1 1 1 1 1 1 
Grassland 1 1 1 1 1 1 
Wetland 1 1 1 1 1 1 
Built-up 1 1 1 1 1 1 
Garden 1 1 1 1 1 1 

CLUE-S software calculated the distribution probability of a particular land-use type occurring in 

each cell in the grid. All the resulting land-use categories were then compared for individual cells; the 

category with the highest value was then assigned to that cell, and the total areas for each land-use 

category were calculated. The 2006 and 2009 results were used to calibrate the model, specifying the 

model parameters and variables. Figure 4 shows the actual and simulated land use in 2006 and 2009. 

Figure 5 shows the predicted land-use pattern for each plan in 2015. Greater than 80% agreement was 

attained between the simulated and observed values for 2006 and 2009. 

Table 15 shows that the values of the planning regulation coefficients for land ecological service 

supply exceeded 1 in both Plans 2 and 3, indicating that both plans guaranteed the safety of the land 

ecosystem. Plan 3, with stricter constraints imposed, might produce a stable ecosystem structure and 

function in its own right, although it would provide a slightly lowered service supply capability for the 

human population than Plan 2; we cannot exploit natural resources and change land-use categories 

based solely on our demands. In summary, the planning regulation coefficient both in Plans 2 and 3 

was relatively effective in sustaining the entropy of land ecosystem at a low level. 

Generally speaking, Plan 3 had a set overall controlled target based on The General Plans for Land 

Use of Guangzhou (2009–2015), with the addition of the area restrictions factors—that is, the 
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protection of the land ecological security zone and farmland. The simulation results showed that the 

unit land ecological service index and the planning regulation coefficient for Plan 3 were superior to 

those for Plans 1 and 2, but there was no clear difference between Plans 3 and 2. This indicated that the 

total degree of control and regulation under Plan 2 was adequate, but farmland protection and vital 

ecological service protection would need to be strengthened. 

Figure 4. Diagram of comparative land usage in 2006 and 2009. (a) Simulated land-use 

diagram for 2006; (b) Actual land-use diagram for 2006; (c) Simulated land-use diagram 

for 2009; (d) Actual land-use diagram for 2009. 

 

Figure 5. Predicted land use in Guangzhou in 2015 for the three plans.  
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Table 15. Planning regulation coefficient for the three plans. 

Scenarios Plan 1 Plan 2 Plan 3 

αi 0.990 1.044 1.011 

4. Conclusions 

In the present study a dynamic model of urban land ecological planning was established by 

applying the CLUE-S model to predict land-use change in Guangzhou in 2015. Some suggestions are 

put forward here in light of the results: 

(1) A technology contribution coefficient and supply distribution coefficient were added to evaluate 

the land ecological service supply of each land unit. The planning regulation coefficient 

dynamically analyzed how the implementation of land-use planning affects the land ecosystem. 

Various combinations of the coefficients enabled dynamic research of land-use planning, both 

temporally and spatially, to be carried out. 

(2) Spatial variation of the coefficient of regulation of land-use planning indicated that the central 

and southern regions of Guangzhou suffered a shortage of land ecological service supply in 

2000–2006. In 2006–2009, implementation of land-use planning improved the supply capacity in 

the central, southern and western districts. In the present study the target of the overall controls 

and area restrictions was adjusted, and three categories of plan (Plans 1, 2 and 3) were designed 

using the CLUE-S mathematical model to predict land-use change for Guangzhou in 2015. The 

three plans introduced different distributions of land-use categories, and attempted to predict 

their different effects on the area. Larger areas of farmland, woodland and gardens were 

predicted to be better controlled in Plan 3 than in Plans 1 and 2, in which a rapid increase in 

built-up areas would be expected due to looser development constraints. Plan 3 allowed stricter 

protection of farmland and woodland areas, which was then predicted to provide greater land 

ecological service supply. 

(3) The results showed that combining the CLUE-S model with land ecological service research 

predicted land-use change reasonably well. Simulated land usage for 2006 and 2009 using the 

computer model demonstrated more than 80% agreement with actual land usage. From this we 

inferred that continued use of current land policy and overall control planning will be reasonable 

for Guangzhou until 2015, provided that protection of farmland and the important ecological 

service function areas are strengthened. The three planning scenarios produced practical 

alternatives for bringing the Guangzhou urban sprawl to a desirably low entropy level, which is 

imperative for sustainable development of the city in the future. The entropy is low for land-use 

Plan 1, whereas Plans 2 and 3 would result in relatively high entropy. 
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