A Discrete Meta-Control Procedure for Approximating Solutions to Binary Programs
Abstract
:1. Introduction
2. Development of the Meta-Control Algorithm for BIP Problems
2.1. Partial Summing Formulation
2.2. Construct the LQT Problem
3. Numerical Results
Problem | n | m | Time(sec) with branch-and-cut in CPLEX | Time(sec) with branch-and-bound in MATLAB | Time(sec) with our method in MATLAB | Feasibility measure | Optimality measure (%) |
---|---|---|---|---|---|---|---|
enigma | 21 | 100 | 0.23 | 4.02 | 0.03 | 18 | 0 |
air01 | 771 | 23 | 0.28 | 2.86 | 0.22 | 13 | 2.55% |
air03 | 124 | 10,757 | 1.05 | 17.64 | 34.00 | 138 | -11.68% |
air04 | 8,904 | 823 | 34.35 | too large to run | 3231.5 | 811 | 1.43% |
air05 | 426 | 7,195 | 26.66 | too large to run | 698.6 | 322 | -0.55% |
nw04 | 87,482 | 36 | 9.83 | too large to run | 37.9 | 19 | 1.36% |
4. Summary and Conclusion
Acknowledgements
Conflicts of Interest
Appendix
References
- Wolsey, L.A. Integer Programming; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Danna, E.; Fenelon, M.; Gu, Z.; Wunderling, R. Generating Multiple Solutions for Mixed Integer Programming Problems. In Integer Programming and Combinatorial Optimization; Fischetti, M., Williamson, D.P., Eds.; Springer: Berlin, Germany, 2007; pp. 280–294. [Google Scholar]
- Jarre, F. Relating Max-Cut Problems and Binary Linear Feasibility Problems. Available online: http://www.optimization-online.org (accessed on 15 June 2013).
- Bertsimas, D.; Tsitsiklis, J.N. Introduction to Linear Optimization; Athena Scientific: Nashua, NH, USA, 1997. [Google Scholar]
- Mitten, L.G. Branch-and-bound methods: General formulation and properties. Oper. Res. 1970, 18, 24–34. [Google Scholar] [CrossRef]
- Caprara, A.; Fischetti, M. Branch-and-Cut Algorithms. In Annotated Bibliographies in Combinatorial Optimization; Wiley: Chichester, UK, 1997; pp. 45–64. [Google Scholar]
- Barnhart, C.; Johnson, E.L.; Nemhauser, G.L.; Savelsbergh, M.W.P.; Vance, P.H. Branch-and-price: Column generation for solving huge integer programs. Oper. Res. 1998, 46, 316–329. [Google Scholar] [CrossRef]
- Lew, A.; Holger, M. Dynamic Programming: A Computational Tool; Springer: New York, NY, USA, 2007; Volume 38. [Google Scholar]
- Jünger, M.; Liebling, T.; Naddef, D.; Nemhauser, G.; Pulleyblank, W.; Reinelt, G.; Rinaldi, G.; Wolsey, L. 50 Years of Integer Programming 1958–2008: From the Early Years to the State-of-the-Art; Springer: Berlin, Germany, 2009. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Zabinsky, Z.B. Stochastic Adaptive Search for Global Optimization; Kluwer Academic Publishers: Boston, MA, USA, 2003. [Google Scholar]
- Rubinstein, R.Y.; Kroese, D.P. The Cross Entropy Method: A Unified Combinatorial Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning; Springer: Berlin, Germany, 2004. [Google Scholar]
- Haupt, R.L.; Sue, E.H. Practical Genetic Algorithms; Wiley: New York, NY, USA, 2004. [Google Scholar]
- Shi, L.; Ólafsson, S. Nested partitions method for global optimization. Oper. Res. 2000, 48, 390–407. [Google Scholar] [CrossRef]
- Hoffman, K.L. Combinatorial optimization: Current successes and directions for the future. J. Comput. Appl. Math. 2000, 124, 341–360. [Google Scholar] [CrossRef]
- Grötschel, M.; Krumke, S.O.; Rambau, J. Online Optimization of Large Scale Systems: State of the Art; Springer: Berlin, Germany, 2001. [Google Scholar]
- Martin, R.K. Large Scale Linear and Integer Optimization; Kluwer: Hingham, MA, USA, 1998. [Google Scholar]
- Schrijver, A. Combinatorial Optimization: Polyhedra and Efficiency; Springer: Berlin, Germany, 2003. [Google Scholar]
- Callegari, S.; Bizzarri, F.; Rovatti, R.; Setti, G. On the Approximate solution of a class of large discrete quadratic programming problems by ΔΣ modulation: The case of circulant quadratic forms. IEEE Trans. Signal Process. 2010, 58, 6126–6139. [Google Scholar] [CrossRef]
- Callegari, S.; Bizzarri, F. A Heuristic Solution to the Optimisation of Flutter Control in Compression Systems (and to Some More Binary Quadratic Programming Problems) via ΔΣ Modulation Circuits. In Proceedings of the 2010 IEEE International Symposium Circuits and Systems (ISCAS), Paris, France, 30 May–2 June 2010; pp. 1815–1818.
- Von Haartman, K.; Kohn, W.; Zabinsky, Z.B. A meta-control algorithm for generating approximate solutions to binary programming problems. Nonlinear Anal. Hybrid Syst 2008, 2, 1232–1244. [Google Scholar] [CrossRef]
- Frieden, B.R. Science from Fisher Information: A Unification; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Zhen, S.; Chen, Y.; Sastry, C.; Tas, N.C. Optimal Observation for Cyber-Physical Systems: A Fisher-Information-Matrix-Based Approach; Springer: Berlin, Germany, 2009. [Google Scholar]
- Lewis, F.L.; Syrmos, V.L. Optimal Control; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Bertsekas, D.P. Dynamic Programming and Optimal Control, 3rd ed.; Athena Scientific: Nashua, NH, USA, 2005; Volume I. [Google Scholar]
- Varga, R.S. Matrix Iterative Analysis; Springer: Berlin, Germany, 2000. [Google Scholar]
- MIPLIB—Mixed Integer Problem Library. Available online: http://miplib.zib.de/ (accessed on 15 June 2013).
- Ali, M.M.; Khompatraporn, C.; Zabinsky, Z.B. A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 2005, 31, 635–672. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, P.; Kohn, W.; Zabinsky, Z.B. A Discrete Meta-Control Procedure for Approximating Solutions to Binary Programs. Entropy 2013, 15, 3592-3601. https://doi.org/10.3390/e15093592
Zhang P, Kohn W, Zabinsky ZB. A Discrete Meta-Control Procedure for Approximating Solutions to Binary Programs. Entropy. 2013; 15(9):3592-3601. https://doi.org/10.3390/e15093592
Chicago/Turabian StyleZhang, Pengbo, Wolf Kohn, and Zelda B. Zabinsky. 2013. "A Discrete Meta-Control Procedure for Approximating Solutions to Binary Programs" Entropy 15, no. 9: 3592-3601. https://doi.org/10.3390/e15093592
APA StyleZhang, P., Kohn, W., & Zabinsky, Z. B. (2013). A Discrete Meta-Control Procedure for Approximating Solutions to Binary Programs. Entropy, 15(9), 3592-3601. https://doi.org/10.3390/e15093592