

 A Discrete Meta-Control Procedure for Approximating Solutions to Binary Programs

A Discrete Meta-Control Procedure for Approximating Solutions to Binary Programs

Entropy 2013, 15(9), 3592-3601; doi:10.3390/e15093592

Article

A Discrete Meta-Control Procedure for Approximating Solutions to Binary Programs

Pengbo Zhang, Wolf Kohn * and Zelda B. Zabinsky

Department of Industrial and Systems Engineering, University of Washington, Seattle, WA 98195, USA

*

Author to whom correspondence should be addressed; Tel.: +1-206-790-0624; Fax: +1-206-685-3702.

Received: 15 June 2013; in revised form: 30 August 2013 / Accepted: 30 August 2013 / Published: 4 September 2013

Abstract:

 Large-scale binary integer programs occur frequently in many real-world applications. For some binary integer problems, finding an optimal solution or even a feasible solution is computationally expensive. In this paper, we develop a discrete meta-control procedure to approximately solve large-scale binary integer programs efficiently. The key idea is to map the vector of n binary decision variables into a scalar function defined over a time interval [image: there is no content] and construct a linear quadratic tracking (LQT) problem that can be solved efficiently. We prove that an LQT formulation has an optimal binary solution, analogous to a classical bang-bang control in continuous time. Our LQT approach can provide advantages in reducing computation while generating a good approximate solution. Numerical examples are presented to demonstrate the usefulness of the proposed method.

Keywords:

large-scale binary integer programs; linear quadratic tracking; optimal control

1. Introduction

Many decision problems in economics and engineering can be formulated as binary integer programming (BIP) problems. These BIP problems are often easy to state but difficult to solve due to the fact that many of them are NP-hard [1], and even finding a feasible solution is considered NP-complete [2,3]. Because of their importance in formulating many practical problems, BIP algorithms have been widely studied. These algorithms can be classified into exact and approximate algorithms as follows [4]:

(1) Exact algorithms: The exact algorithms are guaranteed either to find an optimal solution or prove that the problem is infeasible, but they are usually computationally expensive. Major methods for BIP problems include branch and bound [5], branch-and-cut [6], branch-and-price [7], dynamic programming methods [8], and semidefinite relaxations [9].

(2) Approximate algorithms: The approximate algorithms are used to achieve efficient running time with a sacrifice in the quality of the solution found. Examples of well-known metaheuristics, as an approximate approach, are simulated annealing [10], annealing adaptive search [11], cross entropy [12], genetic algorithms [13] and nested partitions [14]. Moreover, many hybrid approaches that combine both the exact and approximate algorithms have been studied to exploit the benefits of each [15]. For additional references regarding large-scale BIP algorithms, see [1,16,17,18].

Another effective heuristic technique that transforms discrete optimization problems into problems falling in the control theory and information theory or signal processing domains has also been studied recently. In [19,20], circuit related techniques are used to transform unconstrained discrete quadratic programming problems and provide high quality suboptimal solutions. Our focus is on problems with linear objective functions, instead of quadratic, and linear equality constraints, instead of unconstrained.

In our previous work [21], we introduced an approach to approximating a BIP solution using continuous optimal control theory, which showed promise for large-scale problems. The key innovation to our optimal control approach is to map the vector of n binary decision variables into a scalar function defined over a time interval [image: there is no content] and define a linear quadratic tracking (LQT) problem that can be solved efficiently. In this paper, we use the same mapping, but instead of solving the LQT problem in continuous time, we explore solving the LQT problem in discrete time, because the time index in our reformulation of the BIP represents the dimension of the problem, [image: there is no content], and a discrete time approach more accurately represents the partial summing reformulation than the continuous approach. In addition, in our previous work, the transformation into a continuous LQT problem was based on a reduced set of constraints, and a least squares approach was used to estimate the error due to the constraint reduction. The algorithm iteratively solved the LQT problem and the least squares problem until convergence conditions were satisfied. In this paper, instead of iteratively solving the LQT problem based on a reduced set of constraints, we solve the LQT problem only once for the full state space. This approach improves the flow of information for convergence.

We have chosen a quadratic criterion for our approach because its formalism includes a measure of the residual entropy of the dynamics of the algorithm as it computes successive approximation to a solution. Because of the mapping used in our algorithm, the information measure is given by the inverse of the Riccati equation that we solve. That inverse of the solution of the Riccati equation is a Fisher information matrix of the algorithm as a dynamical system [22,23]. The information from the algorithm in the criterion determines the quality of the solution.

The computational complexity for solving the LQT problem is polynomial in the time horizon, the dimension of the state space and the number of control variables. In our LQT problem, the time horizon is n, the dimension of the state space is the number of constraints m, and the number of control variables is 1. Our meta-control approach solves the LQT problem to obtain an efficient approximate solution to the original BIP problem.

In Section 2, our approach is presented in detail, and numerical results are given in Section 3. In Section 4, we state the conclusions of this work.

2. Development of the Meta-Control Algorithm for BIP Problems

The original BIP problem is:

Problem 1.

min[image: there is no content][image: there is no content]∑j=0n-1c˜j[image: there is no content]

(1)

s.t.∑j=0n-1a˜ij[image: there is no content]=[image: there is no content]i=1,…,m

(2)

[image: there is no content]∈0,1j=0,…,n-1

(3)

where [image: there is no content] for [image: there is no content] are binary decision variables. We assume [image: there is no content], and [image: there is no content] are real known values for [image: there is no content] and [image: there is no content] and there exists at least one feasible point.

2.1. Partial Summing Formulation

We start by defining partial summing variables as in [21] from the original BIP problem as

f0,j+1=f0,j+c˜j[image: there is no content]

(4)

fi,j+1=fi,j+a˜ij[image: there is no content]

(5)

for [image: there is no content] and [image: there is no content], with initial conditions [image: there is no content][image: there is no content]

For ease of notation, we create a new [image: there is no content] vector [image: there is no content] and the [image: there is no content] element of [image: there is no content] is denoted [image: there is no content] for [image: there is no content] and for [image: there is no content] We also define the [image: there is no content] vector [image: there is no content] for [image: there is no content], and the [image: there is no content] vector [image: there is no content], where the [image: there is no content] element of b is denoted [image: there is no content] for [image: there is no content]. We define Problem 2 as follows, with initial conditions [image: there is no content] as a vector of zeros:

Problem 2.

min[image: there is no content][image: there is no content]xn(1)

s.t.xj+1=[image: there is no content]+aj[image: there is no content]j=0,…,n-1

(6)

[image: there is no content]=0

(7)

xn(i)=[image: there is no content]i=2,…,m+1

(8)

[image: there is no content]([image: there is no content]-1)=0j=0,…,n-1

(9)

Proposition 1.

Problem 2 exactly represents Problem 1.

The proof is straight-forward; the constraints ensure feasibility and the objective function is equivalent to Problem 1.

2.2. Construct the LQT Problem

We construct an LQT problem, Problem 3, by first defining an error term, as a measure of unsatisfied constraints, an [image: there is no content] vector [image: there is no content] for [image: there is no content], as

[image: there is no content]=[image: there is no content]-b

(10)

We develop the dynamics in terms of the measure [image: there is no content], by combining Equation (10) with Equation (6), yielding

ej+1=[image: there is no content]+aj[image: there is no content]

(11)

and note that [image: there is no content], given initial conditions [image: there is no content]=0. The criterion is to minimize the measure of unsatisfied constraints using a terminal penalty for infeasibility and objective function value, which is given by

J(u)=12∑j=0n-1[image: there is no content][image: there is no content][image: there is no content]+12enTFen

(12)

We also relax constraint (9) with 0≤[image: there is no content]≤1.

The parameters [image: there is no content] and F are positive semi-definite and user-specified. The [image: there is no content] matrix [image: there is no content] is used to penalize the unsatisfied constraints. The [image: there is no content] matrix F is used to penalize the terminating conditions and aid in minimizing the original objective function.

We now summarize our discrete LQT problem with the criterion in Equation (12) as follows:

Problem 3.

min[image: there is no content][image: there is no content]J(u)=12∑j=0n-1[image: there is no content][image: there is no content][image: there is no content]+12enTFen

(13)

s.t.ej+1=[image: there is no content]+aj[image: there is no content]j=0,…,n-1

(14)

0≤[image: there is no content]≤1j=0,…,n-1

(15)

[image: there is no content]

(16)

It is known that solving Problem 3 directly is numerically unstable [24]. However, Theorem 1 suggests an algorithmic approach to solving Problem 3, by making a discrete analog to a bang-bang control with a switching function.

Theorem 1.

Analogous to a bang-bang control in continuous time, Problem 3 has an optimal binary solution with [image: there is no content]∈{0,1} for discrete times [image: there is no content] with non-singular arcs.

Proof.

We first construct the Hamiltonian function [24] as follows

H([image: there is no content],λj+1,[image: there is no content])=12ejT[image: there is no content][image: there is no content]+λj+1T[image: there is no content]+aj[image: there is no content]

(17)

where [image: there is no content] is the [image: there is no content] costate vector, for [image: there is no content], and it satisfies

[image: there is no content]=λj+1+[image: there is no content][image: there is no content]andλn=Fen

(18)

Let [image: there is no content] and [image: there is no content] be the optimal solution, by the necessary conditions for the optimality [24], we have: H(ej*,λj+1*,[image: there is no content])≤H(ej*,λj+1*,[image: there is no content])

⇒12ej*T[image: there is no content]ej*+λj+1*Tej*+aj[image: there is no content]≤12ej*T[image: there is no content]ej*+λj+1*Tej*+aj[image: there is no content]

⇒λj+1*Tajuj*≤λj+1*Taj[image: there is no content],∀[image: there is no content]∈[0,1]

(19)

Thus, we have

[image: there is no content]=1ifλj+1*Taj<0∈[0,1]ifλj+1*Taj=00ifλj+1*Taj>0

(20)

☐

If [image: there is no content], binary values for [image: there is no content] are determined by Equation (20). When [image: there is no content], the arc is singular, and we may reintroduce constraint (9), [image: there is no content](1-[image: there is no content])=0, to force a binary solution.

To get an intuitive understanding of the singularity issue, suppose all [image: there is no content]=0, and the element at row 1, column 1 of matrix F equals zero. Then Problem 3 reduces to minimize the infeasibility penalty term, 12∑i=1m∑k=0n-1a˜ikuk-[image: there is no content]2Fi. If this term equals zero, then [image: there is no content], satisfying all of the original constraints (2), and [image: there is no content] from Equation (18), and because [image: there is no content]=0, all [image: there is no content]=0. Then [image: there is no content] for all j. However, if [image: there is no content] and the first element of F have positive values, then [image: there is no content] may be positive or negative and Equation (20) is useful. An auxiliary problem to determine values for [image: there is no content] and F that resolve the singularity will be explored in future research.

To create an LQT problem that is practical to solve, we introduce a penalty term [image: there is no content]([image: there is no content]-1)[image: there is no content] in the criterion, where [image: there is no content] is a Lagrangian multiplier associated with constraint (9):

Problem 4.

min[image: there is no content][image: there is no content]12∑j=0n-1[image: there is no content][image: there is no content][image: there is no content]+[image: there is no content]([image: there is no content]-1)[image: there is no content]+12enTFen

(21)

s.t.ej+1=[image: there is no content]+aj[image: there is no content]j=0,…,n-1

(22)

[image: there is no content]

(23)

The optimal control for Problem 4 [image: there is no content] can be solved by the standard dynamic programming method [25] (see appendix for details). The computation associated with solving Problem 4 is [image: there is no content]. We then obtain an approximate binary solution to the original BIP problem as follows:

uj*=0for[image: there is no content]<0.51for[image: there is no content]≥0.5

(24)

for [image: there is no content].

Motivated by the successive overrelaxation method [24], we introduce a weighting factor ω to improve the stability of our proposed method. Rather than applying quantization at the final step as shown in Equation (24), we did quantization at each step and propagate the binary value [image: there is no content] during the dynamic programming procedure (see appendix for details). At the final step, we then replace [image: there is no content] in Equation (24) with ω[image: there is no content]+(1-ω)[image: there is no content] to get the approximate binary solution.

3. Numerical Results

We explore the limits of the algorithm with some test problems obtained from MIPLIB [27]. MIPLIB is a standard and widely used benchmark for comparing the performance of various mixed integer programming algorithms, and most of the problems in the MIPLIB arise from real-world applications. We have presented 6 tests in our numerical result section, where [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are airline crew scheduling type problems. The dimensions and the optimal solutions for the test problems and the numerical results are shown in Table 1. The CPU time is given for a single run with branch-and-cut with CPLEX, branch-and-bound in MATLAB, and our method in MATLAB. In Table 1, the feasibility measure is the summation of the absolute differences of feasibility over all constraints, and the optimality measure is defined as [image: there is no content] [28], where [image: there is no content] denotes the true objective function value, [image: there is no content] denotes the function value found by our proposed method and [image: there is no content] denotes the worst (largest) function value. All tests are done on an Intel(R) Core(TM) i3 CPU @2.4 GHz machine under 64bit Windows7 with 4 GB RAM.

Table 1. Test Problems from MIPLIB.

	Problem
	n
	m
	Time(sec) with branch-and-cut in CPLEX
	Time(sec) with branch-and-bound in MATLAB
	Time(sec) with our method in MATLAB
	Feasibility measure
	Optimality measure (%)

	enigma
	21
	100
	0.23
	4.02
	0.03
	18
	0

	air01
	771
	23
	0.28
	2.86
	0.22
	13
	2.55%

	air03
	124
	10,757
	1.05
	17.64
	34.00
	138
	-11.68%

	air04
	8,904
	823
	34.35
	too large to run
	3231.5
	811
	1.43%

	air05
	426
	7,195
	26.66
	too large to run
	698.6
	322
	-0.55%

	nw04
	87,482
	36
	9.83
	too large to run
	37.9
	19
	1.36%

In the numerical tests, we experimented with different values for parameters [image: there is no content], [image: there is no content] and F on the small problems [image: there is no content] and [image: there is no content]. The diagonal elements of [image: there is no content] were set to 0, 1 and 10, and we found that smaller values were better, so we report results with [image: there is no content]=0 in Table 1. We also tested values for parameter [image: there is no content] set to 1, 10, 100 and 1000, and there was not much difference in performance, so we set [image: there is no content]=10. As for parameter F, we found that bigger values were better, so we set the diagonal elements of F to [image: there is no content]. The parameters [image: there is no content] penalize the intermediate error values whereas the parameter F penalizes the terminal error at n. Since the terminal error better reflects the original BIP optimality and infeasibility measures, intuitively, it makes sense to set [image: there is no content]=0 and F large.

Values for the weighting factor ω ranged between [image: there is no content] to [image: there is no content] in our exploratory tests, and the best results were typically for ω between [image: there is no content] and [image: there is no content].

CPLEX ran very quickly and always found an optimal solution; branch-and-bound in MATLAB was slower and only found a feasible solution for [image: there is no content], [image: there is no content] and [image: there is no content]; our method in MATLAB ran slower than CPLEX, but generally faster than branch-and-bound in MATLAB. Even though our numerical results are “worse" than CPLEX, our methodology has a potential for extension with polynomial computational complexity.

4. Summary and Conclusion

The meta-control algorithm for approximately solving large-scale BIPs shows much promise because the computational complexity is linear in n (the number of variables) and polynomial in m (the number of constraints), specifically on the order of [image: there is no content]. An LQT approach is suggested by the result in Theorem 1, which proves the existence of an optimal binary solution to the LQT problem. We provide numerical results with experimentally chosen parameter values that demonstrate the effectiveness of our approach.

In our future research, we will develop an auxiliary iterative method that can provide an explicit algorithm for detecting valid parameter values automatically and investigate other ways to integrate the quantization into the meta-control algorithm to improve the performance of this algorithm. We will also develop a stochastic decomposition method to reduce the computation time.

Acknowledgements

This research is sponsored, in part, by the National Science Foundation through Grant CMMI-0908317.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix

We solve for [image: there is no content] in Problem 4 using a dynamic programming approach. We write the cost-to-go equation as:

V[image: there is no content],j=min[image: there is no content]12[image: there is no content][image: there is no content][image: there is no content]+12[image: there is no content]([image: there is no content]-1)[image: there is no content]+V(ej+1,j+1)

(25)

with [image: there is no content], and equate it to the Riccati form

V[image: there is no content],j=12[image: there is no content][image: there is no content][image: there is no content]+[image: there is no content][image: there is no content]+[image: there is no content]

(26)

where [image: there is no content] represents a symmetric positive-definite [image: there is no content] matrix, [image: there is no content] is a positive [image: there is no content] vector, and [image: there is no content] is a positive scalar.

Combining the Equations (25), (26) and the dynamics in Equation (22), we have

V[image: there is no content],j=min[image: there is no content]{12[image: there is no content][image: there is no content][image: there is no content]+12[image: there is no content]([image: there is no content]-1)[image: there is no content]+12[image: there is no content]+aj[image: there is no content]TΣj+1[image: there is no content]+aj[image: there is no content]

+[image: there is no content]+aj[image: there is no content]TΨj+1+Ωj+1}

(27)

In order to minimize this expression we isolate the terms with [image: there is no content] in them

12[image: there is no content]([image: there is no content]-1)[image: there is no content]+12uj2ajTΣj+1aj+[image: there is no content]ajTΣj+1[image: there is no content]+[image: there is no content]ajTΨj+1

and take the derivative with respect to [image: there is no content] and set the value to 0,

([image: there is no content]-12)[image: there is no content]+ajTΣj+1aj[image: there is no content]+ajTΣj+1[image: there is no content]+ajTΨj+1=0

This yields the solution [image: there is no content] for the optimal control

[image: there is no content]=12[image: there is no content]-ajTΣj+1[image: there is no content]-ajTΨj+1[image: there is no content]+ajTΣj+1aj

(28)

In order to simplify notation, we let

Sj=-ajTΣj+1[image: there is no content]+ajTΣj+1aj

(29)

δj=12[image: there is no content]-ajTΨj+1[image: there is no content]+ajTΣj+1aj

(30)

and we can now write

[image: there is no content]=Sj[image: there is no content]+δj

(31)

We equate the Riccati form Equation (26) with the value function in Equation (27) evaluated at [image: there is no content] from Equation (31), yielding

12[image: there is no content][image: there is no content][image: there is no content]+[image: there is no content][image: there is no content]+[image: there is no content]=12[image: there is no content][image: there is no content][image: there is no content]+12Sj[image: there is no content]+δjSj[image: there is no content]+δj-1[image: there is no content]+12[image: there is no content]+aj(Sj[image: there is no content]+δj)TΣj+1[image: there is no content]+aj(Sj[image: there is no content]+δj)+[image: there is no content]+aj(Sj[image: there is no content]+δj)TΨj+1+Ωj+1

We now solve for [image: there is no content] and [image: there is no content] by separating the quadratic terms from the linear terms in [image: there is no content]. Isolating the quadratic terms in [image: there is no content], we have

12[image: there is no content][image: there is no content][image: there is no content]=12[image: there is no content][image: there is no content][image: there is no content]+12[image: there is no content]SjT[image: there is no content]Sj[image: there is no content]+12[image: there is no content]I+ajSjTΣj+1I+ajSj[image: there is no content]

which yields the Riccati equation corresponding to [image: there is no content]

[image: there is no content]=[image: there is no content]+SjT[image: there is no content]Sj+I+ajSjTΣj+1I+ajSj

(32)

Isolating the linear terms in [image: there is no content], we have

[image: there is no content][image: there is no content]=[image: there is no content]SjT(δj-12)[image: there is no content]+[image: there is no content]I+ajSjTΣj+1ajδj+1+[image: there is no content]I+ajSjTΨj+1

and factoring out [image: there is no content], the tracking equation for [image: there is no content] is

[image: there is no content]=SjT(δj-12)[image: there is no content]+I+ajSjTΣj+1ajδj+I+ajSjTΨj+1

(33)

Therefore, [image: there is no content] and [image: there is no content] can be found backwards in time by Equations (32) and (33) from initial conditions [image: there is no content]

Given [image: there is no content] and [image: there is no content], we can calculate [image: there is no content] from Equations (28), (22) and (23). To calculate [image: there is no content] for our implementation with quantization, we use the same [image: there is no content] and [image: there is no content], but introduce rounding to the nearest integer in Equations (28), (22) and (23) to obtain:

[image: there is no content]=int12[image: there is no content]-ajTΣj+1e^j-ajTΨj+1[image: there is no content]+ajTΣj+1aj

(34)

and

e¯j+1=int[e¯j+aj[image: there is no content]]

(35)

with [image: there is no content].

References

	1.
Wolsey, L.A. Integer Programming; Wiley: New York, NY, USA, 1998. [Google Scholar]

	2.
Danna, E.; Fenelon, M.; Gu, Z.; Wunderling, R. Generating Multiple Solutions for Mixed Integer Programming Problems. In Integer Programming and Combinatorial Optimization; Fischetti, M., Williamson, D.P., Eds.; Springer: Berlin, Germany, 2007; pp. 280–294. [Google Scholar]

	3.
Jarre, F. Relating Max-Cut Problems and Binary Linear Feasibility Problems. Available online: http://www.optimization-online.org (accessed on 15 June 2013).

	4.
Bertsimas, D.; Tsitsiklis, J.N. Introduction to Linear Optimization; Athena Scientific: Nashua, NH, USA, 1997. [Google Scholar]

	5.
Mitten, L.G. Branch-and-bound methods: General formulation and properties. Oper. Res. 1970, 18, 24–34. [Google Scholar] [CrossRef]

	6.
Caprara, A.; Fischetti, M. Branch-and-Cut Algorithms. In Annotated Bibliographies in Combinatorial Optimization; Wiley: Chichester, UK, 1997; pp. 45–64. [Google Scholar]

	7.
Barnhart, C.; Johnson, E.L.; Nemhauser, G.L.; Savelsbergh, M.W.P.; Vance, P.H. Branch-and-price: Column generation for solving huge integer programs. Oper. Res. 1998, 46, 316–329. [Google Scholar] [CrossRef]

	8.
Lew, A.; Holger, M. Dynamic Programming: A Computational Tool; Springer: New York, NY, USA, 2007; Volume 38. [Google Scholar]

	9.
Jünger, M.; Liebling, T.; Naddef, D.; Nemhauser, G.; Pulleyblank, W.; Reinelt, G.; Rinaldi, G.; Wolsey, L. 50 Years of Integer Programming 1958–2008: From the Early Years to the State-of-the-Art; Springer: Berlin, Germany, 2009. [Google Scholar]

	10.
Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]

	11.
Zabinsky, Z.B. Stochastic Adaptive Search for Global Optimization; Kluwer Academic Publishers: Boston, MA, USA, 2003. [Google Scholar]

	12.
Rubinstein, R.Y.; Kroese, D.P. The Cross Entropy Method: A Unified Combinatorial Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning; Springer: Berlin, Germany, 2004. [Google Scholar]

	13.
Haupt, R.L.; Sue, E.H. Practical Genetic Algorithms; Wiley: New York, NY, USA, 2004. [Google Scholar]

	14.
Shi, L.; Ólafsson, S. Nested partitions method for global optimization. Oper. Res. 2000, 48, 390–407. [Google Scholar] [CrossRef]

	15.
Hoffman, K.L. Combinatorial optimization: Current successes and directions for the future. J. Comput. Appl. Math. 2000, 124, 341–360. [Google Scholar] [CrossRef]

	16.
Grötschel, M.; Krumke, S.O.; Rambau, J. Online Optimization of Large Scale Systems: State of the Art; Springer: Berlin, Germany, 2001. [Google Scholar]

	17.
Martin, R.K. Large Scale Linear and Integer Optimization; Kluwer: Hingham, MA, USA, 1998. [Google Scholar]

	18.
Schrijver, A. Combinatorial Optimization: Polyhedra and Efficiency; Springer: Berlin, Germany, 2003. [Google Scholar]

	19.
Callegari, S.; Bizzarri, F.; Rovatti, R.; Setti, G. On the Approximate solution of a class of large discrete quadratic programming problems by ΔΣ modulation: The case of circulant quadratic forms. IEEE Trans. Signal Process. 2010, 58, 6126–6139. [Google Scholar] [CrossRef]

	20.
Callegari, S.; Bizzarri, F. A Heuristic Solution to the Optimisation of Flutter Control in Compression Systems (and to Some More Binary Quadratic Programming Problems) via ΔΣ Modulation Circuits. In Proceedings of the 2010 IEEE International Symposium Circuits and Systems (ISCAS), Paris, France, 30 May–2 June 2010; pp. 1815–1818.

	21.
Von Haartman, K.; Kohn, W.; Zabinsky, Z.B. A meta-control algorithm for generating approximate solutions to binary programming problems. Nonlinear Anal. Hybrid Syst 2008, 2, 1232–1244. [Google Scholar] [CrossRef]

	22.
Frieden, B.R. Science from Fisher Information: A Unification; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]

	23.
Zhen, S.; Chen, Y.; Sastry, C.; Tas, N.C. Optimal Observation for Cyber-Physical Systems: A Fisher-Information-Matrix-Based Approach; Springer: Berlin, Germany, 2009. [Google Scholar]

	24.
Lewis, F.L.; Syrmos, V.L. Optimal Control; Wiley: New York, NY, USA, 1995. [Google Scholar]

	25.
Bertsekas, D.P. Dynamic Programming and Optimal Control, 3rd ed.; Athena Scientific: Nashua, NH, USA, 2005; Volume I. [Google Scholar]

	26.
Varga, R.S. Matrix Iterative Analysis; Springer: Berlin, Germany, 2000. [Google Scholar]

	27.
MIPLIB—Mixed Integer Problem Library. Available online: http://miplib.zib.de/ (accessed on 15 June 2013).

	28.
Ali, M.M.; Khompatraporn, C.; Zabinsky, Z.B. A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 2005, 31, 635–672. [Google Scholar] [CrossRef]

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

nav.xhtml

 entropy-15-03592

 		
 entropy-15-03592

media/file0.png

