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Abstract:

 Both the Kullback–Leibler and the Tsallis divergence have a strong limitation: if the value zero appears in probability distributions (p1, · · ·, pn) and (q1, · · ·, qn), it must appear in the same positions for the sake of significance. In order to avoid that limitation in the framework of Shannon statistics, Ferreri introduced in 1980 hypoentropy: “such conditions rarely occur in practice”. The aim of the present paper is to extend Ferreri’s hypoentropy to the Tsallis statistics. We introduce the Tsallis hypoentropy and the Tsallis hypodivergence and describe their mathematical behavior. Fundamental properties, like nonnegativity, monotonicity, the chain rule and subadditivity, are established.MSC classifications: 26D15; 94A17
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1. Preliminaries

Throughout this paper, X, Y and Z denote discrete random variables taking on the values {x1, · · ·, x|X|}, {y1, · · ·, y|Y |} and {z1, · · ·, z|Z|}, respectively, where |A| denotes the number of the values of the discrete random variable A. We denote the discrete random variable following a uniform distribution by U. We set the probabilities as p(xi) ≡ Pr(X = xi), p(yj) ≡ Pr(Y = yj) and p(zk) ≡ Pr(Z = zk). If |U| = n, then [image: there is no content] for all k = 1, · · ·, n. In addition, we denote by p(xi, yj) = Pr(X = xi, Y = yj), p(xi, yj, zk) = Pr(X = xi, Y = yj, Z = zk) the joint probabilities, by p(xi|yj) = Pr(X = xi|Y = yj), p(xi|yj, zk) = Pr(X = xi|Y = yj, Z = zk) the conditional probabilities, and so on.

The notion of entropy was used in statistical thermodynamics by Boltzmann [1] in 1871 and Gibbs [2] in 1902, in order to quantify the diversity, uncertainty and randomness of isolated systems. Later, it was seen as a measure of “information, choice and uncertainty” in the theory of communication, when Shannon [3] defined it by:



[image: there is no content]



(1)




In what follows, we consider |X| = |Y| = |U| = n, unless otherwise specified.

Making use of the concavity of the logarithmic function, one can easily check that the equiprobable states are maximizing the entropy, that is:



[image: there is no content]



(2)




The right-hand side term of this inequality has been known since 1928 as Hartley entropy [4].

For two random variables X and Y following distributions {p(xi)} and {p(yi)}, the Kullback–Leibler [5] discrimination function (divergence or relative entropy) is defined by:



[image: there is no content]



(3)




(We note that the relative entropy is usually defined for two probability distributions P = {pi} and Q = {qi} as [image: there is no content] in the standard notation of information theory. D(P||Q) is often rewritten by D(X||Y ) for random variables X and Y following the distributions P and Q. Throughout this paper, we use the style of Equation (3) for relative entropies to unify the notation with simple descriptions.) Here, the conventions [image: there is no content] and [image: there is no content] are used. (We also note that the convention is often given in the following way with the definition of D(X||Y ). If there exists i, such that p(xi) ≠ 0 = p(yi), then we define D(X||Y ) ≡ +∞ (in this case, D(X||Y ) is no longer significant as an information measure). Otherwise, D(X||Y ) is defined by Equation (3) with the convention [image: there is no content]. This fact has been mentioned in the abstract of the paper.) In what follows, we use such conventions in the definitions of the entropies and divergences. However, we do not state them repeatedly.

It holds that:



[image: there is no content]



(4)




Moreover, the cross-entropy (or inaccuracy):



[image: there is no content]



(5)




satisfies the identity:



[image: there is no content]



(6)




Many extensions of Shannon entropy have been studied. The Rényi entropy [6] and α-entropy [7] are famous. The mathematical results until the 1970s are well written in the book [8]. In the present paper, we focus on the hypoentropy introduced by Carlo Ferreri and the Tsallis entropy introduced by Constantino Tsallis.

The hypoentropy at the level λ (λ-entropy) was introduced in 1980 by Ferreri [9] as an alternative measure of information in the following form:



[image: there is no content]



(7)




for λ > 0. According to Ferreri [9], the parameter λ can be interpreted as a measure of the information inaccuracy of economic forecast. As we will show that Fλ(X) ≤ H(X) in the second section, the name hypoentropy comes from this property.

On the other hand, Tsallis introduced a one-parameter extension of the entropy in 1988 in [10], for handling systems that appear to deviate from standard statistical distributions. It plays an important role in the nonextensive statistical mechanics of complex systems, being defined as:



[image: there is no content]



(8)




Here, the q–logarithmic function for x > 0 is defined by [image: there is no content], which converges to the usual logarithmic function log(x) in the limit q → 1. The Tsallis divergence (relative entropy) [11] is given by:



[image: there is no content]



(9)




Note that some important properties of the Tsallis relative entropy were given in the papers [12–14].


2. Hypoentropy and Hypodivergence

For nonnegative real numbers, ai and bi (i = 1, · · ·, n), we define the generalized relative entropy (for incomplete probability distributions):



[image: there is no content]



(10)




Then, we have the so-called “log-sum” inequality:



[image: there is no content]



(11)




with equality if and only if [image: there is no content]. for all i = 1, · · ·, n.

If we impose the condition:



[image: there is no content]








then D(gen)(a1, · · ·, an||b1, · · ·, bn) is just the relative entropy,



[image: there is no content]



(12)




We put [image: there is no content] and [image: there is no content] with λ > 0 and [image: there is no content], p(xi) ≥ 0, p(yi) ≥ 0. Then, we find that it is equal to the hypodivergence (λ-divergence) introduced by Ferreri in [9],



[image: there is no content]



(13)




Clearly, we have:



[image: there is no content]



(14)




Using the “log-sum” inequality, we have the nonnegativity:



[image: there is no content]



(15)




with equality if and only if p(xi) = p(yi) for all i = 1, · · ·, n.

For the hypoentropy Fλ(X) defined in Equation (7), we firstly show the fundamental relations. To do so, we prepare with the following lemma.



Lemma 1

For any a > 0 and 0 ≤ x ≤ 1, we have



[image: there is no content]



(16)






Proof

We set f(x) ≡ x(1 + a) log(1 + a) – (1 + ax) log(1 + ax). For any a > 0, we then have [image: there is no content] and f(0) = f(1) = 0. Thus, we have the inequality.



Proposition 1

For λ > 0, we have the following inequalities:



[image: there is no content]



(17)




The equality in the first inequality holds if and only if p(xj) = 1 for some j (then p(xi) = 0 for all i ≠ j). The equality in the second inequality holds if and only if p(xi) = 1/n for all i = 1, · · ·, n.



Proof

From the nonnegativity of the hypodivergence Equation (15), we get:



[image: there is no content]



(18)






[image: there is no content]



(19)




Thus, we have:



[image: there is no content]



(20)




Adding [image: there is no content] to both sides, we have:



[image: there is no content]



(21)




with equality if and only if p(xi) = 1/n for all i = 1, · · ·, n.

For the first inequality, it is sufficient to prove:



[image: there is no content]



(22)




Since [image: there is no content], the above inequality is written as:



[image: there is no content]



(23)




so that we have only to prove:



[image: there is no content]



(24)




for any λ > 0 and 0 ≤ p(xi) ≤ 1. Lemma 1 shows this inequality and the equality condition.

It is a known fact [9] that Fλ(X) is monotonically increasing as a function of λ and:



[image: there is no content]



(25)




whence its name, as we noted in the Introduction. Thus, the hypoentropy appears as a generalization of Shannon’s entropy. One can see that the hypoentropy also equals zero as the entropy does, in the case of certainty (i.e., for a so-called pure state when all probabilities vanish, but one).

It also holds that:



[image: there is no content]



(26)




It is of some interest for the reader to look at the hypoentropy that arises for equiprobable states,



[image: there is no content]



(27)




Seen as a function of two variables, n and λ, it increases in each variable [9]. Since:



[image: there is no content]



(28)




We shall call it Hartley hypoentropy. (Throughout the paper, we add the name Hartley to the name of mathematical objects whenever they are considered for the uniform distribution. In the same way, we proceed with the name Tsallis, which we add to the name of some mathematical objects that we define, to emphasize that they are used in the framework of Tsallis statistics. This means that we will have Tsallis hypoentropies, Tsallis hypodivergences, and so on.) We have the cross-hypoentropy:



[image: there is no content]



(29)




It holds:



[image: there is no content]



(30)




therefore, we have [image: there is no content].

We can show an upper bound for Fλ(X) as a direct consequence.



Proposition 2

The following inequality holds.



[image: there is no content]








for all λ > 0, where pmax ≡ max {p(x1), · · ·, p(xn)}.



Proof

In the inequality (30), if for a fixed k, one takes the probability of the k-th component of Y to be p(yk) = 1, then:



[image: there is no content]



(31)




This implies that:



[image: there is no content]



(32)






[image: there is no content]



(33)




Since k is arbitrarily fixed, the conclusion follows.



Remark 1

It is of interest to notice now that, for the particular case X = U, we have:



[image: there is no content]



(34)




We add here one more detail: the inequality (34) can be verified using Bernoulli’s inequality.




3. Tsallis Hypoentropy and Hypodivergence

Now, we turn our attention to the Tsallis statistics. We extend the definition of hypodivergences as follows:


Definition 1

The Tsallis hypodivergence (q-hypodivergence, Tsallis relative hypoentropy) is defined by:



[image: there is no content]



(35)




for λ > 0 and q ≥ 0.

Then, we have the relation:



[image: there is no content]



(36)




which is the Tsallis divergence, and:



[image: there is no content]



(37)




which is the hypodivergence.



Remark 2

This definition can be also obtained from the generalized Tsallis relative entropy (for incomplete probability distributions {a1, · · ·, an} and {b1, · · ·, bn}):



[image: there is no content]



(38)




by putting [image: there is no content] and [image: there is no content] for λ > 0.

The generalized relative entropy (10) and the generalized Tsallis relative entropy (38) can be written as the generalized f-divergence (for incomplete probability distributions):



[image: there is no content]



(39)




for a convex function f on (0, ∞) and ai ≥ 0, bi ≥ 0 (i = 1, · · ·, n). See [15] and [16] for details.

By the concavity of the q-logarithmic function, we have the following “lnq-sum” inequality:



[image: there is no content]



(40)




with equality if and only if [image: there is no content] for all i = 1, · · ·, n. Using the “lnq-sum” inequality, we have the nonnegativity of the Tsallis hypodivergence:



[image: there is no content]



(41)




with equality if and only if p(xi) = p(yi) for all i = 1, · · ·, n (the equality condition comes from the equality condition of the “lnq-sum” inequality and the condition [image: there is no content].



Definition 2

For λ > 0 and q ≥ 0, the Tsallis hypoentropy (q-hypoentropy) is defined by:



[image: there is no content]



(42)




where the function h(λ, q) > 0 satisfies two conditions,



[image: there is no content]



(43)




and:



[image: there is no content]



(44)




These conditions are equivalent to:



[image: there is no content]



(45)




and, respectively,



[image: there is no content]



(46)




Some interesting examples are h(λ, q) = λ1−q and h(λ, q) = (1+λ)1−q.



Remark 3

It may be remarkable to discuss the Tsallis cross-hypoentropy. The first candidate for the definition of the Tsallis cross-hypoentropy is:



[image: there is no content]



(47)




which recovers the cross-hypoentropy defined in Equation (29) in the limit q → 1. Then, we have:



[image: there is no content]








The last inequality is due to the nonnegativity given in Equation (41). Since limq→1h(λ, q) = 1 by the definition of the Tsallis hypoentropy (see Equation (43)), the above relation recovers the inequality (30) in the limit q → 1.

The second candidate for the definition of the Tsallis cross-hypoentropy is:



[image: there is no content]



(48)




which also recovers the cross-hypoentropy defined in Equation (29) in the limit q → 1. Then, we have:



[image: there is no content]








where the alternative Tsallis hypodivergence has to be defined by:



[image: there is no content]








We have D̃λ,q(X||Y ) ≠ Dλ,q(X||Y ) and limq→1D̃λ,q(X||Y) = Kλ(X||Y ). However, the nonnegativity of D̃λ,q(X||Y ) (q ≥ 0) does not hold in general, as the following counter-examples show. Take λ = 1, n = 2, p(x1) = 0.9, p(y1) = 0.8, q = 0.5, then D̃λ,q(X||Y ) ≃ −0.0137586. In addition, take λ = 1, n = 3, p(x1) = 0.3, p(x2) = 0.4, p(y1) = 0.2, p(y2) = 0.7 and q = 1.9, then D̃λ,q(X||Y ) ≃ −0.0195899. Therefore, we may conclude that Equation (47) is to be given the preference over Equation (48).

We turn to show the nonnegativity and maximality for the Tsallis hypoentropy.



Lemma 2

For any a > 0, q ≥ 0 and 0 ≤ x ≤ 1, we have:



[image: there is no content]



(49)






Proof

We set [image: there is no content]. For any a > 0 and q ≥ 0, we then have [image: there is no content] and g(0) = g(1) = 0. Thus, we have the inequality.



Proposition 3

For λ > 0, q ≥ 0 and h(λ, q) > 0 satisfying (43) and (44), we have the following inequalities:



[image: there is no content]



(50)




The equality in the first inequality holds if and only if p(xj) = 1 for some j (then p(xi) = 0 for all i ≠ j). The equality in the second inequality holds if and only if p(xi) = 1/n for all i = 1, · · ·, n.



Proof

In a similar way to the proof of Proposition 1, for the first inequality, it is sufficient to prove:



[image: there is no content]



(51)




so that we have only to prove:



[image: there is no content]



(52)




for any λ > 0, q ≥ 0 and 0 ≤ p(xi) ≤ 1. Lemma 2 shows this inequality with the equality condition.

The second inequality is proven by the use of the nonnegativity of the Tsallis hypodivergence in the following way:



[image: there is no content]



(53)




which implies (by the use of the formula [image: there is no content]:



[image: there is no content]



(54)




The equality condition of the second inequality follows from the equality condition of the nonnegativity of the Tsallis hypodivergence (41).

We may call:



[image: there is no content]








the Hartley–Tsallis hypoentropy. We study the monotonicity for n or λ of the Hartley–Tsallis hypoentropy Hλ,q(U) and the Tsallis hypoentropy Hλ,q(X). (Throughout the present paper, the term “monotonicity” means the monotone increasing/decreasing as a function of the parameter λ. We emphasize that it does not mean the monotonicity for some stochastic maps.)



Lemma 3

The function:



[image: there is no content]








is monotonically increasing in x, for any q ≥ 0.



Proof

By direct calculations, we have:



[image: there is no content]








and:



[image: there is no content]








Since [image: there is no content], we have [image: there is no content].



Proposition 4

The Hartley–Tsallis hypoentropy:



[image: there is no content]








is a monotonically increasing function of n, for any λ > 0 and q ≥ 0.



Proof

Note that:



[image: there is no content]








Putting [image: there is no content] for λ > 0 fixed in Lemma 3, we get the function:



[image: there is no content]








which is a monotonically increasing function of n. Thus, we have the present proposition.



Remark 4

We have the relation:



[image: there is no content]








We notice from the condition (44) that:



[image: there is no content]








and conclude that the result is independent of the choice of h(λ, q).

For the limit λ → 0, we consider two cases.


	(1)

	In the case of h(λ, q) = λ1−q, we have:





[image: there is no content]








as one obtains using l’Hôpital’s rule.



	(2)

	In the case of h(λ, q) = (1 + λ)1−q, we have for all q ≥ 0:





[image: there is no content]












These results mean that our Hartley–Tsallis hypoentropy with h(λ, q) = λ1−q or (1 + λ)1−q has the same limits as the Hartley hypoentropy, Fλ(U) (see also [9]), in the case 0 < q < 1.

We study here the monotonicity of Hλ,q(X) for h(λ, q) = (1 + λ)1−q. The other case h(λ, q) = λ1−q is studied in the next section; see Lemma 5.



Proposition 5

We assume h(λ, q) = (1 + λ)1−q. Then, Hλ,q(X) is a monotone increasing function of λ > 0 when 0 ≤ q ≤ 2.



Proof

Note that:



[image: there is no content]








where:



[image: there is no content]








is defined on 0 ≤ x ≤ 1, 0 ≤ q ≤ 2 and λ > 0. Then, we have:



[image: there is no content]








where:



[image: there is no content]








is defined on 0 ≤ x ≤ 1, 0 ≤ q ≤ 2 and λ > 0. By some computations, we have:



[image: there is no content]








since (x − 1)(q − 1) + 1 ≥ 0 for 0 ≤ x ≤ 1 and 0 ≤ q ≤ 2. We easily find sλ,q(0) = sλ,q(1) = 0. Thus, we have sλ,q(x) ≥ 0 for 0 ≤ x ≤ 1, 0 ≤ q ≤ 2 and λ > 0. Therefore, we have [image: there is no content] for 0 ≤ q ≤ 2 and λ > 0.

This result agrees with the known fact that the usual (Ferreri) hypoentropy is increasing as a function of λ.

Closing this subsection, we give a q-extended version for Proposition 2.



Proposition 6

Let pmax ≡ max{p(x1), ···, p(xn)}. Then, we have the following inequality.



[image: there is no content]



(55)




for all λ > 0 and q ≥ 0.



Proof

From the “lnq-sum” inequality, we have Dλ,q(X||Y ) ≥ 0. Since λ > 0, we have:



[image: there is no content]



(56)




which is equivalent to:



[image: there is no content]



(57)




Thus, we have:



[image: there is no content]



(58)




which extends the result given from the inequality (30). For arbitrarily fixed k, we set p(yk) = 1 (and p(yi) = 0 for i ≠ k) in the above inequality; then, we have:



[image: there is no content]



(59)




Since [image: there is no content], we have:



[image: there is no content]



(60)




Multiplying both sides by [image: there is no content] and then adding



[image: there is no content]



(61)




to both sides, we have:



[image: there is no content]



(62)




Since k is arbitrary, we have this proposition.

Letting q → 1 in the above proposition, we recover Proposition 2.




4. The Subadditivities of the Tsallis Hypoentropies

Throughout this section, we assume |X| = n, |Y | = m, |Z| = l. We define the joint Tsallis hypoentropy at the level λ by:



[image: there is no content]



(63)




Note that Hλ,q(X, Y ) = Hλ,q(Y, X).

For all i = 1, ···, n for which p(xi) ≠ 0, we define the Tsallis hypoentropy of Y given X = xi, at the level λp(xi), by:



[image: there is no content]



(64)




For n = 1, this coincides with the hypoentropy Hλ,q(Y ). As for the particular case m = 1, we get Hλp(xi),q(Y |xi) = 0.


Definition 3

The Tsallis conditional hypoentropy at the levelλ is defined by:



[image: there is no content]



(65)




(As a usual convention, the corresponding summand is defined as zero, if p(xi) = 0.)

Throughout this section, we consider the particular function h(λ, q) = λ1−q for λ > 0, q ≥ 0.



Lemma 4

We assume h(λ, q) = λ1−q. The chain rule for the Tsallis hypoentropy holds:



[image: there is no content]



(66)






Proof

The proof is done by straightforward computation as follows.



[image: there is no content]








In the limit λ → ∞, the identity (66) becomes Tq(X, Y ) = Tq(X) + Tq(Y |X), where [image: there is no content] is the Tsallis conditional entropy and [image: there is no content] is the Tsallis joint entropy (see also p. 3 in [17]).

In the limit q → 1 in Lemma 4, we also obtain the identity Fλ(X, Y ) = Fλ(X) + Fλ(Y |X), which naturally leads to the definition of Fλ(Y |X) as conditional hypoentropy.

In order to obtain the subadditivity for the Tsallis hypoentropy, we prove the monotonicity in λ of the Tsallis hypoentropy.



Lemma 5

We assume h(λ, q) = λ1−q. The Tsallis hypoentropy Hλ,q(X) is a monotonically increasing function of λ > 0 when 0 ≤ q ≤ 2 and a monotonically decreasing function of λ > 0 when q ≥ 2 (or q ≤ 0).



Proof

Note that:



[image: there is no content]



(67)




where:



[image: there is no content]



(68)




is defined on 0 ≤ x ≤ 1 and λ > 0. Then, we have:



[image: there is no content]



(69)




where:



[image: there is no content]



(70)




is defined on 0 ≤ x ≤ 1 and > > 0. By elementary computations, we obtain:



[image: there is no content]



(71)




Since we have lλ,q(0) = lλ,q(1) = 0, we find that lλ,q(x) ≥ 0 for 0 ≤ q ≤ 2 and any λ > 0. We also find that lλ,q(x) ≤ 0 for q ≥ 2 (or q ≤ 0) and any λ > 0. Therefore, we have [image: there is no content] when 0 ≤ q ≤ 2, and [image: there is no content] when q ≥ 2 (or q ≤ 0).

This result also agrees with the known fact that the usual (Ferreri) hypoentropy is increasing as a function of λ.



Theorem 1

We assume h(λ, q) = λ1−q. It holds Hλ,q(Y |X) ≤ Hλ,q(Y ) for 1 ≤ q ≤ 2.



Proof

We prove this theorem by the method used in [18] with Jensen’s inequality. We note that Lnλ,q(x) is a nonnegative and concave function in x, when 0 ≤ x ≤ 1, λ > 0 and q ≥ 0. Here, we use the notation for the conditional probability as [image: there is no content] when p(xi) ≠ 0. By the concavity of Lnλ,q(x), we have:



[image: there is no content]



(72)






[image: there is no content]



(73)




Summing both sides of the above inequality over j, we have:



[image: there is no content]



(74)




Since p(xi)q ≤ p(xi) for 1 ≤ q ≤ 2 and Lnλ,q(x) ≥ 0 for 0 ≤ x ≤ 1, λ > 0 and q ≥ 0, we have:



[image: there is no content]



(75)




Summing both sides of the above inequality over i, we have:



[image: there is no content]



(76)




By the two inequalities (74) and (76), we have:



[image: there is no content]



(77)




Here, we can see that [image: there is no content] is the Tsallis hypoentropy for fixed xi and the Tsallis hypoentropy is a monotonically increasing function of λ in the case 1 ≤ q ≤ 2, due to Lemma 5. Thus, we have:



[image: there is no content]



(78)




By the two inequalities (77) and (78), we finally have:



[image: there is no content]



(79)




which implies (since [image: there is no content]:



[image: there is no content]



(80)




since we have for all fixed xi,



[image: there is no content]








Therefore, we have Hλ,q(Y |X) ≤ Hλ,q(Y ).



Corollary 1

We have the following subadditivity for the Tsallis hypoentropies:



[image: there is no content]



(81)




in the case h(λ, q) = λ1−q for 1 ≤ q ≤ 2.



Proof

The proof is easily done by Lemma 4 and Theorem 1.

We are now in a position to prove the strong subadditivity for the Tsallis hypoentropies. The strong subadditivity for entropy is one of interesting subjects in entropy theory [19]. For this purpose, we firstly give a chain rule for three random variables X, Y and Z.



Lemma 6

We assume h(λ, q) = λ1−q. The following chain rule holds:



[image: there is no content]



(82)






Proof

The proof can be done following the recipe used in Lemma 4.



[image: there is no content]










Theorem 2

We assume h(λ, q) = λ1−q. The strong subadditivity for the Tsallis hypoentropies,



[image: there is no content]



(83)




holds for 1 ≤ q ≤ 2.



Proof

This theorem is proven in a similar way as Theorem 1. By the concavity of the function Lnλp(zk),q(x) in x and by using Jensen’s inequality, we have:



[image: there is no content]








Multiplying both sides by p(zk)q and summing over i and k, we have:



[image: there is no content]



(84)




since [image: there is no content]. By p(yj |zk)q ≤ p(yj |zk) for all j, k and 1 ≤ q ≤ 2, and by the nonnegativity of the function Lnλp(zk),q, we have:



[image: there is no content]








Multiplying both sides by p(zk)q and summing over j and k in the above inequality, we have:
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From the two inequalities (84) and (85), we have:
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which implies:
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since p(yj, zk) ≤ p(zk) (because of [image: there is no content] for all j and k and the function Lnλp(zk),q is monotonically increasing in λp(zk) > 0, when 1 ≤ q ≤ 2. Thus, we have Hλ,q(X|Y, Z) ≤ Hλ,q(X|Z), which is equivalent to the inequality:
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by Lemmas 4 and 6.



Remark 5

Passing to the limit λ → ∞ in Corollary 1 and Theorem 2, we recover the subadditivity and the strong subadditivity [20] for the Tsallis entropy:
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and:
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Thanks to the subadditivities, we may define the Tsallis mutual hypoentropies for 1 ≤ q ≤ 2 and λ > 0.



Definition 4

Let 1 ≤ q ≤ 2 and λ > 0. The Tsallis mutual hypoentropy is defined by:



[image: there is no content]








and the Tsallis conditional mutual hypoentropy is defined by:
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From the chain rule given in Lemma 4, we find that the Tsallis mutual hypoentropy is symmetric, that is,
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In addition, we have:
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from the subadditivity given in Theorem 1 and the nonnegativity of the Tsallis conditional hypoentropy. We also find Iλ,q(X, Y |Z) ≥ 0 from the strong subadditivity given in Theorem 2.

Moreover, we have the chain rule for the Tsallis mutual hypoentropies in the following.
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From the strong subadditivity, we have Hλ,q(X|Y, Z) ≤ Hλ,q(X|Z); thus, we have:
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for 1 ≤ q ≤ 2 and λ > 0.




5. Jeffreys and Jensen–Shannon Hypodivergences

In what follows, we indicate extensions of two known information measures.


Definition 5 ([21,22])

The Jeffreys divergence is defined by:
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and the Jensen–Shannon divergence is defined as:
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(91)




The Jensen–Shannon divergence was introduced in 1991 in [23], but its roots can be older, since one can see some analogous formulae used in thermodynamics under the name entropy of mixing (p. 598 in [24]), for the study of gaseous, liquid or crystalline mixtures.

Jeffreys and Jensen–Shannon divergences have been extended to the context of Tsallis theory in [25]:



Definition 6

The Jeffreys–Tsallis divergence is:
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and the Jensen–Shannon–Tsallis divergence is:
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Note that:
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This expression was used in [26] as Jensen–Tsallis divergence.

In accordance with the above definition, we define the directed Jeffreys and Jensen–Shannon q-hypodivergence measures between two distributions and emphasize the mathematical significance of our definitions.



Definition 7

The Jeffreys–Tsallis hypodivergence is:
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and the Jensen–Shannon–Tsallis hypodivergence is:
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Here, we point out that again, one has:
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where:
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Lemma 7

The following inequality holds:
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for q ≥ 0 and λ > 0.



Proof

Using the inequality between the arithmetic and geometric mean, one has:
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(100)
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Thus, the proof is completed.

In the limit λ → ∞, Lemma 7 recovers Lemma 3.4 in [25].



Lemma 8 ([25])

The function:
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is concave for 0 ≤ r ≤ q.

The next two results of the present paper are stated in order to establish the counterpart of Theorem 3.5 in [25] for hypodivergences.



Proposition 7

It holds:
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for q ≥ 0 and λ > 0.



Proof

By the use of Lemma 7, one has:
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This completes the proof.



Proposition 8

It holds that:
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for 0 ≤ r ≤ q and λ > 0.



Proof

According to Lemma 8,
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Then:
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Thus, the proof is completed.

We further define the dual symmetric hypodivergences.



Definition 8

The dual symmetric Jeffreys–Tsallis hypodivergence is defined by:
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and the dual symmetric Jensen–Shannon–Tsallis hypodivergence is defined by:
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Using Lemma 7, we have the following inequality.



Proposition 9

It holds:
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for 0 ≤ q ≤ 2 and λ > 0.

In addition, we have the following inequality.



Proposition 10

It holds:
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for 1 < r ≤ 2, r ≤ q and λ > 0.



Proof

The proof can be done by similar calculations with Proposition 8, applying the facts (see Lemmas 3.9 and 3.10 in [25]) that expq(x) is a monotonically increasing function in q for x ≥ 0 and the inequality −ln2−r x ≤ −lnr x holds for 1 < r ≤ 2 and x > 0.




6. Concluding Remarks

In this paper, we introduced the Tsallis hypoentropy Hλ,q(X) and studied some properties of Hλ,q(X). We named Hλ,q(X) Tsallis hypoentropy because of the relation Hλ,q(X) ≤ Tq(X), which follows from the monotonicity in λ given in Proposition 5 and Lemma 5 for the case h(λ, q) = (1 + λ)1−q and the case h(λ, q) = λ1−q, respectively (this relation can be also proven directly). In this naming, we follow Ferreri, as he has termed Fλ(X) hypoentropy due to the relation Fλ(X) ≤ H(X).

The monotonicity of the hypoentropy and the Tsallis hypoentropy for λ > 0, indeed, is an interesting feature. It may be remarkable to examine the monotonicity of the Tsallis entropy for the parameter q ≥ 0. We find that the Tsallis entropy Tq(X) is monotonically decreasing with respect to q ≥ 0. Indeed, we find [image: there is no content], where vq(x) ≡ 1 − x1−q + (1 − q) log x (0 ≤ x ≤ 1). Since xqvq(x) = 0 for x = 0 and q > 0, we prove vq(x) ≤ 0 for 0 < x ≤ 1. We find [image: there is no content] when 0 < x ≤ 1; thus, we have vq(x) ≤ vq(1) = 0, which implies [image: there is no content]. This monotonicity implies the relations H(X) ≤ Tq(X) for 0 ≤ q < 1 and Tq(X) ≤ H(X) for q > 1 (these relations also follow from the inequalities [image: there is no content] for 0 ≤ q < 1, x > 0 and [image: there is no content] for q > 1, x > 0).

As other important results, we also gave the chain rules, subadditivity and the strong subadditivity of the Tsallis hypoentropies in the case of h(λ, q) = λ1−q. For the case of h(λ, q) = (1+λ)1−q, we can prove Hλ,q(Y |X) ≤ Hλ,q(X) and Hλ,q(X|Y, Z) ≤ Hλ,q(X|Z) for 1 ≤ q ≤ 2 in a similar way to the proofs of Theorems 1 and 2, since the function Snλ,q(x) defined in the proof of Proposition 5 is also nonnegative, monotone increasing and concave in x ∈ [0, 1], and we have [image: there is no content] for all fixed xi. However, we cannot obtain the inequalities:
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for h(λ, q) = (1 + λ)1−q, because the similar proof for the chain rules does not work well in this case.
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