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Abstract: The game of football demands new computational approaches to measure 

individual and collective performance. Understanding the phenomena involved in the game 

may foster the identification of strengths and weaknesses, not only of each player, but also 

of the whole team. The development of assertive quantitative methodologies constitutes a 

key element in sports training. In football, the predictability and stability inherent in the 

motion of a given player may be seen as one of the most important concepts to fully 

characterise the variability of the whole team. This paper characterises the predictability 

and stability levels of players during an official football match. A Fractional Calculus (FC) 

approach to define a player’s trajectory. By applying FC, one can benefit from newly 
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considered modeling perspectives, such as the fractional coefficient, to estimate a player’s 

predictability and stability. This paper also formulates the concept of attraction domain, 

related to the tactical region of each player, inspired by stability theory principles.  

To compare the variability inherent in the player’s process variables (e.g., distance covered) 

and to assess his predictability and stability, entropy measures are considered. Experimental 

results suggest that the most predictable player is the goalkeeper while, conversely, the 

most unpredictable players are the midfielders. We also conclude that, despite his 

predictability, the goalkeeper is the most unstable player, while lateral defenders are the 

most stable during the match. 

Keywords: fractional calculus; entropy; stability; predictability; dynamic systems; 

football; performance analysis; variability 

PACS Codes: 37Fxx; 37Mxx; 01.80.+b; 05.45.Tp. 
 

1. Introduction 

The study of sports performance has developed over the years trying to improve the feedback 

provided to coaches and their staff [1]. From rudimentary systems, using only observation, to new 

technological-based approaches, many procedures can be developed to increase the understanding of a 

given sport [2]. Therefore, present day research proposes methods and techniques that can help analyse 

sports performance [3]. 

Football is one of the most popular sports in the World [4]. Scientific areas, such as engineering and 

mathematics, have been interested in providing their insights to further understand this sport in the last 

few years. The major contribution of mathematical tools resides in the field of human movement 

analysis with fast and efficient systems, providing quantitative measures to sports coaches [5]. 

Nevertheless, the technological devices and related methods should always be applied considering the 

aim of the analysis. 

Tactical analyses of performance, whether at the individual or collective levels, are of interest to 

coaches and sport researchers [5]. However, the lack of knowledge about advanced methods to analyse 

the dynamics of football players (space-time series) is responsible for the lack of studies focusing on 

the tactical performance of football matches [3]. In this sense, mathematics and engineering can 

provide valuable contributions to sports science in the performance analysis area.  

By benefiting from these scientific fields, it is possible to analyze football players’ variability in 

terms of dynamic trajectory [6]. Such variability was studied from a spatio-temporal point-of-view, by 

understanding the main factors and constraints that affect players’ actions [7]. In spite of the regular 

dynamics of a football game [8], and considering the tactical behavior of players, the variability of 

players’ trajectories can be seen as an interesting indicator in characterising football players within 

their specific tactical zones.  
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1.1. Variability Analysis in Sport 

The discussion about variability arises in the scope of systems theory, where the notion of 

nonlinearity was initially introduced [9]. By studying the variability of football players, the 

foundations were laid for a whole series of possible new methods to identify and classify their 

performance. Nevertheless, the assertive implementation of these notions requires quantitative 

methods. Therefore, some nonlinear methods, such as the approximate entropy [10], or the Lyapunov 

exponents [11], were adopted to study human performance features. It should be highlighted that, 

contrarily to traditional methods (e.g., standard variation, coefficient of variation), nonlinear methods 

can provide additional information about the structure of the variability that evolves over time [9].  

In invasive team sports (e.g., football, basketball and others), players are generally confined to a 

specific area (tactical region) depending on their role [7]. Nevertheless, the variability of a given 

player not only depends on his specific actions (i.e., at the microscopic level) but also on the team as a 

whole (i.e., the specific role in the team’s strategy at the mesoscopic level) [12]. In some cases, the 

emergent behaviours can be different in their regularity, depending upon the team’s strategy [10]. 

In the current state-of-the-art, only a few papers have analysed the variability of displacement of football 

players [13–15]. All these studies focused on the variability within each sub-phase (e.g., 1 vs. 1 player,  

2 vs. 2 players) without considering the full match dynamics (e.g., 11-a-side game). Generally, studies 

around sub-phases have presented the variability in the emergent behaviours by means of different 

player strategies, so as to achieve the final result [15]. Despite their importance towards an 

understanding of the player’s decision-making processes, the variability can be associated with other 

important indicators. For instance, performance indices such as distance covered, speed, or intensity, 

should be considered so as to understand the player’s variability in the 11-a-side match. This analysis can 

be a step forward to distinguish players that show similar results to the previously described indicators. 

All the same, the variability of trajectories can also be classified as stable or non-stable. Actually, 

the notion of “stability” is quite different from the one of “variability”. Stability is not only the 

resistance to a perturbation, but also the ability to return to the equilibrium point (e.g., initial position, 

tactical position, among others). The existence of a stable equilibrium point implies the existence of a 

“restoring force” which is directed towards the equilibrium point. Thus, we assume that there is a 

steady-state point to which players converge. The truth is that they are “only” attracted to that point, 

that is, they convergence to an equilibrium point that is defined by their tactical position. The 

“stability” can be understood, in the context of football, as the capability that a player reveals in 

keeping his trajectories within a specific region (such as their tactical position on the field). A similar 

assumption can be made about the “predictability” of players. By definition, predictability is the 

degree to which a correct prediction of a system’s state can be made. In the context of a player’s 

trajectory, the predictability is related to whether one can predict where the player will be, by knowing 

his trajectory so far. This is in line with the concept of predictability in mathematics, wherein a process 

is classified as predictable if it is possible to know the “next” state at the present time. 

Despite the complexity of a player’s trajectory outside their specific tactical region during a football 

match, it is mostly certain that, eventually, the player will return to his own tactical region. Even when 

players change their strategic position, they return to their specific strategic position most of the time [16]. 
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Hence, we can formulate that in, a rather simplistic way, a player can be considered more or less stably 

based, even when he remains outside his tactical region.  

1.2. Statement of Contribution and Paper Organization 

Players’ dynamics have been studied at the individual and collective level. This paper introduces a 

new approach for variability analysis, thus providing some new insights around football players’ 

behaviour. Moreover, this paper introduces a new set of parameters to easily distinguish players with 

regards to their activity profiles in official matches. These indices can provide deeper information 

about players’ behaviour while improving the sports training quality. For the study of the player’s 

variability, in terms of dynamic trajectory, the concepts associated with the Fractional Calculus (FC) 

mathematical formalism are adopted [17]. One of the first studies applying FC to trajectory analysis 

was introduced by Couceiro, Clemente and Martins [17] by estimating the next position of a player 

based on his previous trajectory. This was proposed for improving the accuracy of automatic tracking 

methods. As suggested by the authors, using the fractional coefficient of a player over the time, one 

can analyse his level of predictability. Therefore, the purpose of the current study is to determine the 

predictability level and, as a consequence, the stability of football players, comparing these values 

side-by-side with traditional football indicators, such as distance covered, player’s directions and the 

space covered by each player. 

Having these ideas in mind, this paper is organized as follows: Section 2 describes two alternative 

methods typically used in the football context, namely, Shannon’s entropy applied to heat maps and 

the approximate entropy as a variability measure applied to kinematic variables. Section 3 shows how 

FC may be applied to mathematically describe a football player’s trajectory. This is further exploited 

in Section 4 where the fractional coefficient is used to estimate the next position of a football player, 

thus shaping the player’s predictability. Section 5 presents an analytical procedure for designing an 

attraction domain related with the player’s maintenance of his own tactical position. Sections 6 and 7 

consider the case study of one football match that relates the newly introduced indicators with 

traditional indices, discussing the predictability and the stability of each player while considering their 

tactical positions. Section 7 presents the conclusions. 

2. A Brief Overview of Entropy in Sports 

As previously stated, entropy-based measures have been the most typical nonlinear methods applied 

in the sports context. Therefore, this section describes two entropy methods used to study the 

variability of football players’ trajectories. 

2.1. Shannon’s Entropy 

Heat maps are a classical method to analyse a given player’s variability. Generally, heat maps 

represent the spatial distribution of a player over the field by considering the time spent at a certain 

position, that is, the frequency distribution (histogram) of each player’s coordinates [12]. However, the 

analysis of heat maps in the football context have not benefited from any complementary metrics that 

may provide more assertive results. The Shannon’s entropy can be applied to images providing 
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relevant information about the spatial variability of players. The entropy formula applied to images can 

be defined as [18]: = ℎܰ (1a)

ܧ = − ଶ݈݃  (1b)

where  is the probability mass function,	ℎ denotes the histogram entry of intensity value ݅ and ܰ is 

the total number of cells (i.e., the spatial resolution of the football field): = ℎܰ 

Consider the following example: 

Example 1: Let us consider a resolution of 1	݉ଶ for a football field of 104 × 68	݉. This results in a 

total number of cells ܰ = 7072. The heat map representation of two players of an 11-a-side football 

team, considering their position at each discretization interval of 1 s, is depicted in Figure 1. 

Figure 1. Examples of the players’ heat maps with low spatial variability (goalkeeper) and 

high spatial variability (midfielder). 

 

The data comes from an all “useful” time periods in one football match. By other words, only the 

instants where the ball is playable in the field are considered. As one may observe, it is possible to 

identify that the goalkeeper has a reduced area of action, thus spending more time around the same 

places and, consequently, increasing the intensity of colours. On the other hand, the dispersion is high 

on the midfielder player, thus reducing the time spent around the same place and, therefore, 

decreasing the intensity in any given place. The goalkeeper presents lower spatial variability than the 

midfielder, and is characterized by an entropy measure of ܧ	 = 0.804 . On the other hand, the 

midfielder presents an entropy of ܧ = 2.449. 

2.2. Approximate Entropy Calculus 

Pincus, Gladstone and Ehrenkranz [19] described the techniques for estimating the Kolmogorov 

entropy of a process represented by a time series and the related statistics approximate entropy. Let us 
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consider that the whole data of ݐ  samples (i.e., seconds) is represented by a time-series as (1)ݑ, ,(2)ݑ … ,  from measurements equally spaced in time. These samples form a sequence of ,(N)ݑ

vectors (1)ݔ, ,(2)ݔ … , ܰ)ݔ −݉ + 1) ∈ ℝଵ× , each one defined by the array ݔ(݅) = ሾݑ(݅) ݅)ݑ + 1) ⋯ ݅)ݑ + ݉ − 1)ሿ ∈ ℝଵ×. The parameters ௧ܰ, ݉, and ߝ must be fixed for 

each calculation. The parameter ܰ represents the length of the time series (i.e., number of data points 

of the whole series), ݉ denotes the length of sequences to be compared and ߝ is the tolerance for 

accepting matches. Thus, one can define: ܥ(ߝ) = ݂	ݎܾ݁݉ݑ݊ (݆)ݔ ℎܿݑݏ ݐℎܽݐ ݀൫ݔ(݅), ൯(݆)ݔ ≤ ܰߝ − ݉ + 1  (3)

for 1 ≤ ݅ ≤ ܰ − ݉ + 1 . Based on Takens’ work, one can defined the distance ݀൫ݔ(݅), ൯(݆)ݔ  for 

vectors ݔ(݅) and ݔ(݆) as: ݀൫ݔ(݅), ൯(݆)ݔ 	= ݅)ݑ|ୀଵ,ଶ,…,ݔܽ݉ + ݇ − 1) − ݆)ݑ + ݇ − 1)| (4)

From the ܥ(ߝ), it is possible to define: 

(ߝ)ܥ = ( ܰ − ݉ + 1)ିଵ  ேିାଵ(ߝ)ܥ
ୀଵ  (5)

and the correlation dimension as: ߟ = ݈݅݉ఌ→ ே→∞ ln( ln((ߝ)ܥ ߝ  (6)

for a sufficiently large ݉. This limit slope has been shown to exist for many chaotic attractors. This 

procedure is frequently applied to experimental data. In fact, researchers seek a “scaling range” of ߝ 

values for which 
୪୬( (ఌ))୪୬ ఌ  is nearly constant for large ݉, and they infer that this ratio is the correlation 

dimension. In some studies, it was concluded that this procedure establishes deterministic chaos. 

Let us define the following relation: ߔ(ߝ) = ( ܰ − ݉ + 1)ିଵ ∑ ݈݊ ܥ ேିାଵୀଵ(ߝ) . (7)

One can define the approximate entropy as: ݊ܧܣ = (ߝ)ߔ − (8) (ߝ)ାଵߔ

On the basis of calculations that included the theoretical analysis performed by Pincus et al [19], the 

authors derived a preliminary conclusion that choices of ߝ of the standard deviation of the data ranging 

from 0.1 to 0.2 would produce reasonable statistical validity of ݊ܧܣ. 

Table 1. Different signals and the range for approximate entropy range of values [9] ݊ܧܣ. 

Signal 
Approximate Entropy 

Values 
Periodic function ~0 
Chaotic system (e.g., Lorenz attractor) 0.1 
Random time series 1.5 

Consider the following example. 
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Example 2: Let us represent the distance covered by the lateral defender at each second over a 

match as depicted in Figure 2. 

Figure 2. Distance covered by the lateral defender during a football match. 

 

From this example, the distance covered by the lateral defender results in an approximate entropy 

value of ݊ܧܣ = 0.504 for ߝ = 0.2 of the standard deviation and ݉ = 2 [19], thus being classified as 

a chaotic system (cf., Table 1). 

The entropy may not capture the adequate level of variability of a given player over time if applied 

on some type of signals. For example, when applied to the spatial distribution (cf., Example 1), the 

entropy simply returns the spatial variability of a player without considering his trajectory over time. 

On the other hand, when applied to the distance covered (cf., Example 2), it yields the level of 

variability without considering the direction of the player trajectory. Other techniques can be applied 

in the sports context. For instance, by adopting the insights from Couceiro, Clemente and Martins [17], 

one can define a player’s variability, at each instant, using the FC memory properties as a predictability 

level. Therefore, the FC approach for the human variability understanding will be discussed in next section. 

3. Player’s Motion from the View of Fractional Calculus 

Fractional Calculus (FC) may be considered as a generalisation of integer-order calculus, thus 

accomplishing what integer-order calculus cannot [20]. As a natural extension of the integer (i.e., classical) 

derivatives, fractional derivatives provide an excellent tool for the description of memory and 

hereditary properties of processes [21]. An important property revealed by the FC formulation is that 

while an integer-order derivative just implies a finite series, the fractional-order derivative requires an 

infinite number of terms. 

Despite FC’s potentialities only a limited number of applications based on FC have been reported 

so far within the sport sciences literature [17,22]. One of them was the development of a correction 

metric for golf putting to prevent the inaccurate performance of golfers when facing the golf lipout 

phenomenon [21]. The authors extended a performance metric using the Grünwald–Letnikov 

approximate discrete equation to integrate a memory of the ball’s trajectory. A more recent study by 
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the same authors benefited from FC to overcome automatic tracking problems of football players [17]. 

As a prediction method based on the memory of past events, FC features offer a new perspective on 

understanding players’ motion. 

3.1. Fractional Calculus: Preliminaries 

The concept of Grünwald–Letnikov fractional differential is presented by the following definition: 

Definition 1 [23]: Let	Γ be the gamma function defined as: 

Γ(݇) = (݇ − 1)! (9)

The signal ܦఈሾ(ݐ)ݔሿ given by ܦఈሾ(ݐ)ݔሿ = lim→ ቂ ଵഀ ∑ (ିଵ)ೖΓ(ఈାଵ)
Γ(ାଵ)Γ(ఈିାଵ) ݐ)ݔ − ݇ℎ)ା∞ୀ ቃ, (10)

is said to be the Grünwald–Letnikov fractional derivative of order ߙ ,ߙ ∈ ℂ, of the signal (ݐ)ݔ. 
An important property revealed by Equation (10) is that while an integer-order derivative just 

implies a finite series, the fractional-order derivative requires an infinite number of terms. Therefore, 

integer derivatives are “local” operators while fractional derivatives have, implicitly, a “memory” of all 

past events. However, the influence of past events decreases over time. The formulation in Equation (10) 

inspires a discrete time calculation presented by the following definition: 

Definition 2 [23]: The signal ܦఈൣݔሾݐሿ൧ given by: 

ሿ൧ݐሾݔఈൣܦ = 1ܶఈ (−1)Γሾߙ + 1ሿ
Γሾ݇ + 1ሿΓሾߙ − ݇ + 1ሿ ݐሾݔ − ݇ܶሿ

ୀ  (11)

where ܶ  is the sampling period and ݎ  is the truncation order, is the approximate discrete time 

Grünwald–Letnikov fractional difference of order ߙ ,ߙ ∈ ℂ, of the discrete signal ݔሾݐሿ. 
The series presented in Equation (11) can be implemented by a rational fraction expansion which 

leads to a superior compromise in what concerns the number of terms versus the quality of the 

approximation. That being said, it is possible to extend an integer discrete difference, i.e., classical 

discrete difference, to a fractional-order one, using the following definition: 

Definition 3 [24]: The classical integer “direct” discrete difference of signal ݔሾݐሿ is defined as follows: 

∆ధݔሾݐሿ = ቐ ሿݐሾݔ , ߸ = ሿݐሾݔ0 − ݐሾݔ − 1ሿ ,߸ = 1∆ధିଵݔሾݐሿ − ∆ధିଵݔሾݐ − 1ሿ,߸ > 1 (12)

where ߸ ∈ ℕ0 is the order of the integer discrete difference. Hence, one can extend the integer-order ∆߸ݔሾݐሿ assuming that the fractional discrete difference satisfies the following inequalities: ߸−1 < ߙ < ߸ (13)
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The features inherent to FC make this mathematical tool well suited to describe many phenomena, 

such as irreversibility and chaos, because of its inherent memory property. In this line of thought, the 

dynamic phenomena of a player’s trajectory configure a case where FC tools may fit adequately. 

3.2. Fractional Calculus Approach for the Study of Football Players Trajectories 

Both in manual and automatic multi-player tracking systems, a matrix containing the planar 

position of each player ݊ of team ߜ over time is generated:  

Definition 4 [17]: Consider the matrix:  

ܺఋሾݐሿ =  ሿݐሾݔ , ሿݐேഃሾݔ⋮ሿݐଵሾݔ ∈ ℝଶ (14)

where ఋܰ represents the current number of players in team ߜ at sample/time ݐ. Matrix ܺఋሾݐሿ is called 

the positioning matrix, wherein row ݊ represents the planar position of player ݊ of team ߜ at time ݐ.  
It is also noteworthy that each element from ݔሾݐሿ is independent from each other as they correspond 

to the (ݔ,  .coordinates of the nth player planar position (ݕ

In our case, the 11-a-side football game will be analysed. Therefore, by Definition 4, we have ఋܰ = 11. Using Definitions 1, 2 and 3, considering players’ dynamics and following the insights  

from [17], one can define an approximation of player ݊ next position, i.e., ݔ௦ሾݐ + 1ሿ, as: ݔ௦ሾݐ + 1ሿ = ݔ + ሿݐሾݔ − ݐሾݔ − 1ሿ − 1ܶఈ (−1)Γሾߙ + 1ሿΓሾ݇ + 1ሿΓሾߙ − ݇ + 1ሿ ݐሾݔ + 1 − ݇ܶሿ
ୀ  (15)

where ݔሾݐሿ = ݐ	∀	,0 < 0 in such a way that ݔሾ0ሿ =   corresponds to the initial tactical position ofݔ

player ݊ in the field, ݔ ∈ 	ℝଶ. Usually, within football context, each player has a specific tactical 

mission and an intervention region that provides some organization to the team’s collective dynamics. 

Despite the different movements to support the defensive and offensive phases, the player eventually 

returns to his main tactical region (TR) due to his positional role. The size of the TR depends on the 

player’s specific in-game mission. Regardless on its size, one can define the geometric centre of the TR 

of player ݊, herein denoted as tactical position ݔ, as a specific planar position a player converges to 

during the game. Consider the following example: 

Example 3: Let us adopt the example of players’ spatial distribution alongside the football field 

introduced in Example 1. Figure 3 represents the tactical region of each player by means of the 

standard deviation of their own heat map (histogram) [25]. It is possible to identify that the TR have 

different sizes depending on the in-game mission of each player. For instance, although the midfielder 

presents a larger dispersion along the field when compared to the goalkeeper, his standard deviation 

is smaller. The standard deviation of the goalkeeper’s trajectory is 4.69 m while the one of the 

midfielder’s trajectory is 2.46 m. Put differently, one can state that, although the midfielder’s spatial 

distribution is generally larger than the goalkeeper’s, the midfielder wanders approximately 68% of 

the time around the same tactical position (position with higher intensity on the heat map). 
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Figure 3. Tactical regions (circumferences) of the goalkeeper and the midfielder by means 

of the standard deviation [25]. 

 

Note that the FC approach on Expression (15) should be accomplished for small sampling periods 

(e.g., ܶ ≤ 1 s), as players may not be able to drastically change their velocity between two consecutive 

samples. Moreover, such strategy increases the memory requirements as it memorizes the last ݎ 

positions of each player, i.e., ࣩሾݎ ఋܰሿ. Nonetheless, the truncation order ݎ does not need to be too large 

and will always be inferior to the current iteration/time ݐ, i.e., ݎ ≤  For example, let us consider a .ݐ

truncation order ݎ = 10, sampling period ܶ = 1 s and fractional coefficient ߙ = ଶଷ. Considering the last 

10 previous samples, results in an attenuation of players’ position at time ݐ − 9 (i.e., the ݔሾݐ + 1 − 10ሿ), 
of approximately 99.5 (i.e., 

(ିଵ)భబቂమయାଵቃሾଵାଵሿቂమయିଵାଵቃ). 
Note that the influence of past events (i.e., previous positions) of a given player depend on the 

fractional coefficient ߙ (cf., [22]). Hence, analysing the fractional coefficient ߙ may be a source of 

useful information to understand the level of predictability of each player. 

4. Predictability 

As one may observe in Equation (15), a problem arises regarding the calculation of the fractional 

coefficient ߙ. A player’s trajectory can only be correctly defined by adjusting the fractional coefficient ߙ along time. In other words, ߙ will vary from player to player and from iteration to iteration. Hence, 

one should find out the best fitting ߙ  for player ݊  at time ݐ , i.e., ߙሾݐሿ, based on its last known 

positions so far. The value of ߙሾݐሿ  will be the one that yields a smaller error between the 

approximated position ݔ௦ሾݐ + 1ሿ and the real one from the corresponding element of matrix ܺఋሾݐሿ, 
denoted as ݀ . This value ߙሾݐሿ  will be used to assess the next possible position and, again,  

will be systematically updated at each ݐ . This reasoning may be formulated by the following  

minimization problem: minఈሾ௧ሿ ݀(ߙሾݐ + 1ሿ) =ቚ−ݔሾݐ + 1ሿ + ሿݐሾݔ − ݐሾݔ − 1ሿ − ଵ்ഀ ∑ (ିଵ)ೖሾఈሾ௧ାଵሿାଵሿሾାଵሿሾఈሾ௧ାଵሿିାଵሿ ݐሾݔ + 1 − ݇ܶሿୀ ቚ, ݏ. ݐሾߙ	ݐ + 1ሿ ∈ ሾ0, 1ሿ (16)
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We will not focus upon the best type of optimization method. In this paper, the solution of  

Equation (16) is based on golden section search and parabolic interpolation [26,27]. Successive 

parabolic interpolation allows finding the minimum distance by successively fitting parabolas to the 

optimization function at three unique points and, at each iteration, by replacing the “oldest” point with 

the minimum value of the fitted parabola. This method is alternated with the golden section search, 

hence increasing the probability of convergence without hampering the convergence rate. For a more 

detailed description about this optimization methods please refer to [26,27]. 

The solution of Equation (16) consists of the most adequate fractional coefficient for player ݊ at 

time ݐ, i.e., ߙሾݐሿ. To clarify how ߙሾݐሿ varies over time depending on a player’s trajectory let us 

introduce the following example: 

Example 4: Consider five illustrative unidimensional player’s trajectories: 

Figure 4. Five illustrative unidimensional trajectories. 
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The fractional coefficient ߙሾݐሿ was calculated, at each sample ݐ, each pairwise combinations of 

the 5 different unidimensional signals represented in Figure 4 are combined into bidimensional 	(ݔ,  coordinates to exemplify the fractional coefficient variation. To improve the understanding of-(ݕ

the fractional coefficient variability, the approximate entropy of ߙሾݐሿ is also presented in Figure 5. 

Figure 5. Variability of the fractional coefficient ߙሾݐሿ for each pairwise unidimensional 

trajectories from Figure 4. 

 

As previously stated, one may observe that the closer to 1 the values of ߙሾݐሿ are, the higher 

predictable player ݊	݅s. In other words, a value of ߙሾݐሿ = 1 means that equation (13) can accurately 

predict the next position based on the previous ones, i.e., ݔ௦ሾݐ + 1ሿ = ݐሾݔ + 1ሿ) 	∴ 	 ݀(ߙሾݐሿ) = 0. 

Therefore, for constant trajectories (A-A), i.e., without moving at all, the fractional coefficients ߙሾݐሿ 
gets closer to a constant value of 1 and, as a result, a low approximate entropy, thus being highly 

predictable. These results are also the same for the constant-linear (A-B) trajectories, as well as for 

the linear-linear (B-B) trajectories, i.e., with constant speed. Regarding the periodic trajectories, one 
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can observe an increase of the approximate entropy (݊ܧܣ ≈ 0.3) and the fractional coefficient ߙሾݐሿ 
varies periodically. Also, it should be highlighted that the constant signal does not contribute towards 

a better predictability of the player’s trajectory. This occurs not only in the periodic-constant (A-C), 

but also in the chaotic-constant (A-D) and random-chaotic (A-E). The results are worse when the 

trajectory along one of the axis is constant yields worse results than when they are linear. These 

results suggest that a constant trajectory (i.e., when the player’s motion is only variable along one of 

the axis), does not have any effect in the fractional coefficient calculation. For a chaotic trajectory, the 

fractional coefficient variability decreases considerably, presenting values close to ߙሾݐሿ = 0.4 in 

some situations. This variability is only exceeded by the random trajectories, in which the fractional 

coefficient in some situations may even get close to ߙሾݐሿ = 0, thus resulting in approximate entropy 

values in the range ݊ܧܣ = ሾ0.9, 2.0ሿ. To summarize these results, Figure 6 depicts the average value 

of the fractional coefficient, i.e., ߙതሾݐሿ, for each case. 

Figure 6. Average value of the fractional coefficient ߙതሾݐሿ for each case from Figure 4. 

 

The mean values for the fractional coefficient are approximately ߙሾݐሿ ≈ 0.99 for the A-A, A-B and 

B-B pairs. This value indicates that the trajectories are highly predictable. For all combinations, the 

linear trajectories increase the fractional coefficients, thus increasing the predictability of the player. 

On the other hand, the random trajectories decrease the mean values of the fractional coefficient, 

being more unpredictable. The most curious cases may be observed for constant trajectories paired 

with other trajectories that decrease the fractional coefficients, thus suggesting its neutrality regarding 

the players’ unpredictability. 

By defining a single time-variant parameter retrieved from players’ planar trajectories, one can 

classify athletes’ predictability based on their behaviour in the field. In brief, we can discuss that 

player’s predictability can be used to define his decision-making. However, there is the need to define 

a value, or a range of values, of ߙሾݐሿ in which one can classify players as predictable or unpredictable, 

without resorting to the definition of any arbitrary or problem-specific conditions. Therefore, the next 

section presents an attraction domain supported by stability analysis theory. 
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5. Stability 

The main problem when analysing a player’s dynamics comes from its nonlinearity and variability 

over time. However, one can consider that each player converges to an equilibrium point defined by 

the attractor point (initial position ݔ) inherent in their initial TP. Therefore, this section presents the 

stability analysis of football players based on the Equation (15). In order to classify players as stable or 

unstable, one can formulate the following problem.  

5.1. Problem Formulation 

Consider a trajectory from player ݊  described by an Equation (15), in which the fractional 

coefficient ߙሾݐሿ dictates its level of predictability. The goal is to find the attraction domain ࣛ such 

that, if coefficients ߙሾݐሿ ∈ ࣛ, then the global asymptotic stability of the system in Equation (15) is 

guaranteed. In other words, the attraction domain	ࣛ represents the region wherein the football player 

may be considered both predictable and stable. 

5.2. General Approach 

As previously stated, the position returned by Equation (15) may not match the real position from 

the corresponding element of matrix ܺఋሾݐሿ, i.e., ݔ௦ሾݐ + 1ሿ ≈ ݐሾݔ + 1ሿ. For having Equation (15) as a 

function of the signal ݔሾݐሿ, one can start by calculating the velocity vector of player ݊ as [17]: ݒሾݐሿ = ሿݐሾݔ − ݐሾݔ − 1ሿ, (17)

which can be related to the velocity vector in the next sampling instant as: ݒሾݐ + 1ሿ = ݐሾߚ + 1ሿ ∘ ሿ, (18)ݐሾݒ

where the symbol ∘ represents the Hadamard product (aka, entrywise product) between the previous 

velocity at time ݐ (ݒሾݐሿ) and ߚሾݐ + 1ሿ ∈ ℝଶ that we herein denote as stability vector of player ݊ at 

time ݐ + 1 . For instance, if ߚሾݐ + 1ሿ =  , then the velocity remains the same between two 

consecutive iterations, i.e., ݒሾݐ + 1ሿ = ሿݐሾݒ . Note that although stable, the player may still be 

considered unpredictable under those same conditions at time ݐ + 1 based on the value of ߙሾݐ + 1ሿ. 
Moreover, contrarily to the information provided by the fractional coefficient ߙሾݐሿ  that is 

unidimensional (i.e., ߙሾݐሿ ∈ ℝ), the player may still be stable in one of the coordinate axis while 

unstable in the other. Figure 7 depicts an illustrative example in which a given player is stable in the  ݔ-direction and unstable in the ݕ-direction. 

As before, let us analyse the stability vector ߚሾݐሿ considering the examples of Figure 4: 

Example 5: Contrarily to the fractional coefficient, that varies according to the combination of two 

trajectories (one for each planar coordinate), the stability vector returns a different value for each 

coordinate. Moreover, as previously stated in Definition 4, since the (ݔ,  ݊ coordinates of a player (ݕ

planar position are independent, one can simply analyse one of the components. Let us consider the 

identification of each coordinate as ߬ = ሼ1, 2ሽ  in such a way that ݔሾݐሿ = ሿ൧்ݐሾݕ	ሿݐሾݔൣ  .ሿ൧்ݐଶሾݔ	ሿݐଵሾݔൣ=
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Figure 7. Diagram of a player’s trajectory stability and instability by means of ߚሾݐሿ. 

 

Combining Equations (17) and (18), we can calculate the element ߬ from the stability vector ߚሾݐሿ 
at time ߚ :ݐఛሾݐሿ = ௩ഓሾ௧ሿ௩ഓሾ௧ିଵሿ = ௫ഓሾ௧ሿି௫ഓ ሾ௧ିଵሿ௫ഓ ሾ௧ିଵሿି௫ഓ ሾ௧ିଶሿ, (19)

As a result, the trajectories of Figure 4, namely, constant (A), linear (B), periodic (C), chaotic (D) 

and random (E), produce the following values of ߚఛሾݐሿ in Figure 8. 

Figure 8. Variability of the element ߬  from the stability vector ߚሾݐሿ  for each 

unidimensional trajectories represented in Figure 4. 

 

It is possible to verify that the random trajectory is the one that results in higher values of entropy 

for the stability vector ߚሾݐሿ, similarly to what was observed on the results for alpha results. In fact, 

the entropy values for the stability vector ߚሾݐሿ are consistent with those retrieved for the fractional 

coefficient (Example 4). 

Having defined all the coefficients that may explain a football player’s trajectory, let us now solve 

the problem formulated in Section 5.1. 

  

 ݕ

ݐ = 1

ݐ = 0 

ݐ = 2 

 ݕ

 ݔ

ݔ

ሾ2ሿߚ = ሾ−1, 1ሿܶ  
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5.3. Attraction Domain 

To better understand where the predictability and the stability of a player can be interpreted, let us 

consider Equations (17) and (18) and rewrite Equation (15) as: ݔሾݐ + 1ሿ = ݔ + ݐሾߚ + 1ሿ ∘ ሿݐሾݔ) − ݐሾݔ − 1ሿ) − − ଵ்ഀ ∑ (ିଵ)ೖሾఈሾ௧ାଵሿାଵሿሾାଵሿሾఈሾ௧ାଵሿିାଵሿ ݐሾݔ + 1 − ݇ܶሿୀ . 
(20)

At this point, let us assume both coefficients as time-invariant, i.e., ߚሾݐሿ = ሿݐሾߙ  andߚ =  This is an assumption that is only taken for the purposes of finding the attraction domain wherein .ݐ	∀  forߙ

both coefficients may be defined to ensure player’s convergence to the initial TP at coordinate ݔ. 

The equilibrium point ݔ∗  can be defined as a constant position solution of Equation (20), such that, 

when each player ݊  reaches ݔ∗  at time ݐ , the velocity ݒሾݐሿ  is zero (i.e., players will stop at the 

equilibrium point ݔ∗ ). Supposing that the initial TP at coordinate ݔ is constants (i.e., the player 

converges to his own initially defined TP), the particular solution ݔ∗  of each player can be obtained 

replacing ݔሾݐ + 1 − ݇ሿ, ݇, ݐ ∈ ℕ, by ݔ∗  in Equation (20), yielding: ݔ∗ = ௫బଵା భഀ ∑ (షభ)ೖሾഀሾశభሿశభሿሾೖశభሿሾഀሾశభሿషೖశభሿೝೖసబ , (21)

in such a way that ݔ∗ =  when lim௧→ஶݔ ଵ்ഀ ∑ (ିଵ)ೖሾఈሾ௧ାଵሿାଵሿሾାଵሿሾఈሾ௧ାଵሿିାଵሿୀ = 0	 ∴ 	 lim௧→ஶ ሿݐሾߙ = 1. In 

other words, the more predictable the player is, the more certain it will end up around his TP at 

coordinate ݔ. During the game, the player’s trajectory varies in order to adjust his position relatively 

to the ball, his teammates and his opponents. Nevertheless, at some point, the player returns to his 

specific tactical region, or equilibrium point. Let us provide an example: 

Example 6: The following charts represent the trajectory of the lateral defender during a football 

match (Figure 9). 

Figure 9. Player’s trajectory during a match: (a) ݔ-axis (longitudinal) over time; (b) ݕ-axis 

(lateral) over time; and (c) (ݔ,  .planar coordinates-(ݕ
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Figure 9. Cont. 

 

 

It is possible to observe that from time to time the player returns to his own tactical region (defined 

by the red horizontal lines in Figures 9a,b or the red point in Figure 9c. This is a typical behaviour of 

football players. When the opponent team approaches the team’s goal in the defensive phase, the 

lateral defender should cover the interior space, thus approaching the y-axis centre of the field. In the 

offensive phase, particularly in counterattack situations, the lateral defender should support his 

midfielder, thus running along the x-axis. Nevertheless, in both cases, the lateral defender will return, 

at some point, to his own equilibrium point. 

In synthesis, each player should converge to the particular solution ݔ∗  from Equation (19), based on 

the following theorems [28]: 

Theorem 1 [28]: All solutions of Equation (20) converge to ݔ∗  as ݐ → ∞ , if and only if the 

homogeneous difference equation of (20) is asymptotically stable. 

Theorem 2 [28]: The homogeneous difference equation of (20) is asymptotically stable if and only if 

all roots of the corresponding characteristics equation have modulus smaller than one. 
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In order to study the stability of the homogeneous difference Equation (20), let us truncate the series 

at ݎ = 4 and consider a sampling time of ܶ = 1. Once again, let us consider the identification of each 

coordinate (ݔ, ߬ as (ݕ = ሼ1, 2ሽ, in such a way that ݔሾݐሿ = ሿ൧்ݐሾݕ	ሿݐሾݔൣ =  ሿ൧். Under thoseݐଶሾݔ	ሿݐଵሾݔൣ

conditions, one can rewrite Equation (20) in the following form: ݔఛሾݐ + 1ሿ − ߙ) + ሿݐఛሾݔ(ఛߚ + ൬12ߙ(ߙ − 1) + ఛ൰ߚ ݐఛሾݔ − 1ሿ− ߙ)ߙ16 − ߙ)(1 − ݐఛሾݔ(2 − 2ሿ+ ߙ)ߙ124 − ߙ)(1 − ߙ)(2 − ݐఛሾݔ(3 − 3ሿ =  ఛݔ

(22)

Based on Equation (22), it yields the following characteristic equation: 

(ߣ) ≡ ସߣ + ሾ−ߙ − ଷߣఛሿߚ + ቂଵଶ ߙ)ߙ − 1) + ఛቃߚ ଶߣ + ቂ− ଵ ߙ)ߙ − ߙ)(1 − 2)ቃ ߣ +ቂ ଵଶସ ߙ)ߙ − ߙ)(1 − ߙ)(2 − 3)ቃ = 0. 
(23)

Due to the complexity in obtaining the roots of the characteristics equation of homogeneous 

difference Equation (23), a result based on Jury-Marden’s Theorem [29] is established, ensuring that 

all roots of the real polynomial (ߣ) have modulus smaller than one. 

Theorem 3 [29]: Consider the real polynomial (ݕ) = ܽݕ + ܽଵݕିଵ + ⋯+ ܽିଵݕ + ܽ, ܽ > 0. 

Construct an array having two initial rows: ൛ܿଵଵ, ܿଵଶ, … , ܿଵ,ାଵൟ = ሼܽ, ܽଵ, … , ܽሽ ൛݀ଵଵ, ݀ଵଶ, … , ݀ଵ,ାଵൟ = ሼܽ, ܽିଵ, … , ܽሽ 
and subsequent rows defined by: 

ఉܿఊ = ฬܿିଵ,ଵ ܿିଵ,ఊାଵ݀ିଵ,ଵ ݀ିଵ,ఊାଵฬ , ߞ = 1,2, … , ݊ + 1 ݀ఊ = ܿ,ିఊିାଷ 

All roots of the polynomial (ݕ) have modulus smaller than one if and only if ݀ଶଵ > 0, ݀కଵ < ߦ)		0 = 3,4, … , ݊ + 1). 
Considering Theorem 3 and the characteristic Equation (23), let us present the following result: 

Proposition 1: All roots of (ߣ) have modulus smaller than one if and only if the following conditions 

are met. 

ቐ− ଶߙ4091250 − ߙ3492000 − 24335000 < ఛߚ < 9992 − ଶߙ1000ߙ5491 − ߙ4989 + 77700 < ߙ < 1  (24)

Proof: The real polynomial (ߣ) described in Equation (23) can be rewritten as: ܽߣସ + ܽଵߣଷ + ܽଶߣଶ + ܽଷߣ + ܽସ = 0 (25)

Furthermore, one can construct an array having two initial rows defined as: 
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 ൛ܿଵଵ, ܿଵଶ, … , ܿଵ,ହൟ = ሼܽ, ܽଵ, … , ܽସሽ ൛݀ଵଵ, ݀ଵଶ, … , ݀ଵ,ହൟ = ሼܽସ, ܽଷ, … , ܽሽ (26)

and subsequent rows defined by: ܿఊ = ฬܿିଵ,ଵ ܿିଵ,ఊାଵ݀ିଵ,ଵ ݀ିଵ,ఊାଵฬ, (27)݀ఊ = ܿ,ିఊି, (28)

where	ߞ = 2,3,4,5 and ߛ = 0,1,2. 

By Theorem 3, we consider that all roots of polynomial (ߣ) have modulus less than one if and 
only if ݀ଶଵ > 0,݀కଵ < 0, for ߦ = 3,4,5.  

Hence: 

൞݀ଶଵ > 0݀ଷଵ < 0݀ସଵ < 0݀ହଵ < 0 	⇔ ۔ۖەۖ
ۓ 1 − ܽସଶ > 0(ܽଷ − ܽସܽଵ)ଶ − (݀ଶଵ)ଶ < 0൫(ܽଷ − ܽସܽଵ)(ܽଵ − ܽସܽଷ) − ݀ଶଵ(ܽଶ − ܽସܽଶ)൯ଶ − (݀ଷଵ)ଶ < 0(ܿସଵ)ଶ − (݀ସଵ)ଶ < 0  (29)

Solving Equation (29) we obtain Equation (24). 
■ 

Consequently, by Proposition 1, Theorem 1 and Theorem 2, the conditions in Equation (23) are 

obtained, so that all solutions of Equation (20) converge to ݔ∗  resulting in an attraction domain ࣛ = ቄ(ߙ, 0	ఛ):ߚ < ߙ < 1⋀ − ସଽଵଶହ ଶߙ − ଷସଽଶ ߙ − ଶସଷଷହ < ఛߚ < ଽଽଽଶିହସଽଵఈଵఈమିସଽ଼ଽఈା	ቅ  represented 

in Figure 10. 

Figure 10. Attraction domain ࣛ of the asymptotic stability of the football player. 

 

Let us present a new example to clarify the definition of attraction domain. 

0 10.5݊ߙ

1

0.5

- 0.5

-1

߬݊ߚ
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Example 7: The predictability and stability coefficients along the ݔ-axis, ߚଵሾݐሿ and ߙሾݐሿ, both for the 

goalkeeper and the lateral defender, were retrieved and represented on top of the attraction domain 

from Figure 10. 

Figure 11. Goalkeeper (green points) and lateral defender (red points) coefficients 

variability and the attraction domain ࣛ. 

 

It is possible to observe in Figure 11 that the goalkeeper has a high number of points outside the 

area from the attraction domain ࣛ. Nevertheless, his trajectory coefficients are closer to the threshold ߙ = 1, meaning that the goalkeeper presents a larger predictability. Therefore, although the lateral 

defender can be classified as more stable, his motion it is more difficult to predict. This may be 

explained by the specific tactical missions. The goalkeeper, when his team is in the offensive phase, 

usually moves in order to reduce the open space with his teammates, which increases the size of his 

TR. Nevertheless, the goalkeeper’s movements are usually more linear, since he does not face as many 

constraints as his teammates (e.g., playing dyads, continuous interaction with teammates, among 

others), and, consequently, it is more predictable. The lateral defender should cover his own tactical 

region, producing a large amount of trajectory coefficients within the attraction domain. Nevertheless, 

as an outfield player, he performs more unpredictable trajectories. 

6. Experimental Results: A Case Study of a Football Match 

In this section, three main indicators will be considered: (i) the distance covered; (ii) the distribution 

frequency on the field (using heat maps); and (iii) the fractional coefficient measure of each player. 

During the 90 min of a regular match, the distances covered by top level players are in the order of 

magnitude of 10~12	km for the field players, and about 4	km for the goalkeeper [30–33]. In Reilly’s 

study [34], it was possible to observe that players under different contexts cover average distances 

between 7~11.5	km, indicating that outfield players should be able to cover 8~13	km during the 
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course of the match [35]. Some studies [32,36–38] show that defenders cover distances between 7 and 

12 km, while midfielders cover distances between 9 and 13 km, and attackers between 7 and 11 km. 

Despite this important information, some questions remain open. One of the main questions is: how to 

differentiate two players that cover the same distance during the match? To answer this question, one 

may resort to the heat maps as previously addressed in this work. Although heat maps can be used for 

several different analyses, their main applications has been to provide a deeper understanding of the 

spatial distribution of players [39] and ball [40]. 

Position information about players may be analysed using the heat maps, representing the 

probability distribution of the player’s positions, during a match, on the field [16]. Similarly to this 

work, some studies around heat maps segmented the football field into 1	mଶ  resolution. Also, the 

player’s position has been commonly discretized at each second, in which a given cell gets the value 1 

to signal the player presence [40], or 0 otherwise. However, even the use of heat maps to characterize 

the players spatial distribution does not provides a way to analyse the level of predictability of each 

player. Note that heat maps do not consider players’ dynamics, since the trajectory is ignored. That is, 

they only represent the spatial distribution considering the players’ positions without involving the 

notion of time. 

In spite of these limitations, the variability of the fractional coefficient over time are used here to 

provide some more relevant information on how a player can be predictable (or unpredictable) and 

differentiate him from his teammates. Moreover, the stability levels of each player should be 

considered to understand how they tend to play under their specific tactical regions. All these variables 

will be analysed and discussed in the next section. 

6.1. Data Collection 

To evaluate the accuracy of the proposed method, one official football match from the first 

professional Portuguese League was analysed. All the players’ position in the field was acquired using 

a single camera (GoPro Hero with 1280 × 960 resolution), with capacity to process images at 30 Hz 

(i.e., 30 frames per second). The movements of the 22 players (goalkeepers included) from the two 

competing teams were recorded during the entire game. After capturing the football match, the 

physical space was calibrated using direct linear transformation (DLT) [41], thus producing the 

Cartesian planar positioning of all players and the ball over time. The whole process inherent in this 

approach, such as the detection and identification of players’ trajectories, the space transformation and 

the computation of metrics, was handled, using the high-level calculation package MATLAB. The 

tracking of football players was carried out manually and the positional data of each player was sorted 

based on the fractional methodology described in our previous work [3]. From the outcome of 

Couceiro et al. [3], a downsampling of the acquired data to 4 Hz was adopted (i.e., sampling period of ܶ = 250 ms). For a matter of efficiency, only playing periods were considered, hence excluding all the 

pause moments in which the ball was not in the field (i.e., ball out-of-bounds). This resulted in 3372 s 

(56.2 min) of useful match time (13,488 samples). For this study, each player was analysed 

considering their specificities and they were numbered as depicted in Figure 12.  



Entropy 2014, 16 666 

 

Figure 12. Players’ numbers within the strategic distribution of the team (1-4-3-3). 

 

The analysis of the fractional coefficient inherent to player’s trajectory will be divided into two 

components, that is, over time and the overall final outcome. For both cases, the fractional coefficient 

of each player will be compared with the traditional performance indicators. Throughout the analysis, 

the results will be discussed for all players and compared based on the four main football positions: 

goalkeeper (player 1), defenders (players 2–5), midfielders (players 6–8), and forwards (players 9–11). 

6.2. Results and Discussion 

Table 2 depicts the overall values of the distance covered, average values, standard deviation and 

entropy of the fractional coefficient, and entropy of the heat maps. 

Table 2. Descriptive statistics of the overall results for each player. 

  

Overall 
Distance 

[km] 

 ࢻ
AVG 

 ࢻ
STD 

Heat 
Maps 

Entropy 

Distance 
Entropy 

 ࢻ
Entropy

Goalkeeper Player 1 3.508 0.86 0.14 0.804 0.515 0,386 

Defenders 

Player 2 10.976 0.77 0.24 2.205 0.504 0,455 
Player 3 9.075 0.74 0.25 2.083 0.531 0,381 

Player 4 9.355 0.73 0.26 2.151 0.511 0,353 

Player 5 10.916 0.76 0.24 2.192 0.510 0,479 

Midfielders 
Player 6 11.263 0.68 0.30 2.372 0.543 0,372 
Player 7 12.520 0.69 0.29 2.470 0.547 0,363 
Player 8 12.556 0.68 0.30 2.449 0.562 0,398 

Forwards 
Player 9 11.747 0.74 0.26 2.338 0.512 0,364 

Player 10 10.783 0.76 0.25 2.024 0.507 0,455 
Player 11 11.117 0.71 0.27 2.333 0.546 0,389 

Overall 10,347 0.74 0.25 2.129 0.526 0.400 

Players 7 and 8 covered the largest overall distance (12.520 and 12.556 km, respectively). On the 

other hand, the goalkeeper (player 1: 3.508	km) and central defenders (player 3: 9.075 km; player 4: 9.355 km) covered smaller overall distances. Both cases are in line with the literature [30,42,43]. 
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Generally, the largest distances are covered by midfielders since they act as links between defence and 

attack [36,42]. Bangsbo [44] reported that elite defenders and forwards cover approximately the same 

average distance, which is significantly less than the distance covered by midfield players. This study 

shows that central defenders, excluding goalkeepers since they are more constrained than other 

players, cover (with a large difference) a smaller distance than any other tactical position.  

In terms of heat maps entropy, the results are in line with the overall distance. All the midfielders 

have a larger entropy than the remaining teammates (player 7: ܧ = 2.470; player 8: ܧ = 2.449;  

player 6: ܧ = 2.372). On the other hand, the goalkeeper (player 1) presents the lower entropy value 

ܧ) = 0.515), followed by the right forward (player 10) with ܧ = 2.024, and the central defender 

(player 3) with ܧ = 2.083. These results can be easily explained by the tactical roles of each position. 

In football, midfielders act as a link between the defenders and the forwards [42]. Therefore, they 

present a higher level of participation in the periods of time with or without ball possession. Also, as 

the goalkeeper and the central defenders have different roles in specific confined TR, they present a 

smaller spatial distribution (lower heat maps entropy). Conversely, lateral positions (defenders and 

forwards) have a larger TR. In some cases, the lateral defenders participate in offensive attempts. The 

inverse is observed in the lateral forwards players, because they regularly help in the defensive 

moments. Hence, the low values of entropy from player 10 can be explained by his reduced 

participation in the defensive phase. 

The fractional coefficients show that the midfielders are the most unpredictable players. Players 6 

and 7 are characterised by values close to ߙതሾݐሿ = 0.68. These values are in line with the combination 

linear-random trajectories. This tendency makes sense since midfielders cover more distances. On the 

other hand the goalkeeper’s trajectory is defined by larger fractional coefficient values (ߙതሾݐሿ = 0.86). 

This result is in line with the combination constant-chaotic. In point of fact, this also makes sense since 

the goalkeeper stays most of the time around the same tactical region. The remaining players are 

somewhere between the combination constant-chaotic and linear-random, with more tendency for the 

linear-random. 

Going further on this analysis, the attraction domain previously defined was considered so as to 

study the number of times that each player remained within their stability region. In a quantitative 

point-of-view, if a player’s trajectory is classified as stable (based on ߚఛሾݐሿ and ߙሾݐሿ), then the 

stability is defined as 1. Otherwise, the stability is defined as -1. Putting differently, a player that is as 

often within the stable region and the unstable one, will have an overall stability level of 0. From this 

analysis it is possible to obtain the stability values per player on the ݔ-axis and ݕ-axis coordinates  

(see Figure 13). 

From the results shown, it is possible to observe that the goalkeeper (player 1) is the more unstable 

elements in both axes. On the other hand, defenders (players 2–5) are the elements with higher stability 

values. These values can be supported by the specific tactical missions of each player. Defenders 

should keep a large defensive stability by remaining in their tactical position, giving some equilibrium 

to the team. As a point of interest, a considerable number of goals suffered results from the defensive 

instability. Therefore, defenders should maintain their trajectories within their specific regions so as to 

ensure the possibility of recovering the ball in the offensive attempts by the opponent team. In contrast, 

the goalkeeper’s TR is evidently smaller than all his teammates. As such, at many moments of the 
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match (mainly in the offensive situations) the goalkeeper moves outside his TR, towards his remaining 

teammates. Such movements decrease the goalkeeper’s stability. 

Figure 13. Players’ stability levels at ݔ-axis and ݕ-axis coordinates. 

 

Using both concepts (predictability and stability) it is possible to observe that one player can be 

highly predictable (in terms of trajectory) while unstable (going outside his TR). On the other hand, a 

highly unpredictable player can be very stable if he stays most of the time inside his TR. Therefore, 

those two concepts are different and they provide an interesting set of information for coaches and 

their staff. The predictability level can be used to classify the oscillations during the football match 

while the stability level can be used to identify player’s responsiveness to his TR. To illustrate the 

relationship between predictability and stability, let us present Figure 14. The 3D chart on Figure 14 

depicts how the level of stability on the x-axis, ߚଵ, is related to the level of stability on the y-axis, ߚଶ, 

and the level of predictability represented by the fractional coefficient ߙ. 

Figure 14. Relationship between predictability ߙ and stability ߚఛ. 

 

As one may observe, the relationship between these measures is represented by a plane. Moreover, 

as already concluded from Figure 13, although players are more stable in the x-axis, there is a clear 

dependency between the stability on both axes. On the other hand, the level of predictability seems to 

vary in a significant manner depending on the positional main role of players. For instance, it is 

possible to divide the points into four clusters, wherein the goalkeeper (red circle) represents the first 
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cluster, the defenders represent the second cluster (blue triangles), the central players represent the 

third cluster (green lozenges) and the forwards represent the forth cluster (purple squares). 

The information retrieved from the fractional coefficient cannot be compared neither with the 

outcome provided by the total distance covered nor with the heat maps entropy. The distance covered 

can be the same for all players, without providing a specific characteristic about the behaviour of the 

player. The heat maps entropy only provides information about the spatial distribution of players on 

the field. This distribution may also be similar for two players without describing their trajectory over 

time. Only understanding the specific properties of each football player’s trajectory can improve the 

performance analysis and, likewise, improve the quality of the football training.  

6.3. Practical Remarks 

The information retrieved from the fractional coefficient cannot be compared with either the 

outcome provided by the total distance covered, or with the heat maps entropy. The distance covered 

can be the same for all players, without providing any specific characteristic about the behaviour of the 

player. The heat maps entropy only provides information about the spatial distribution of players on 

the field. This distribution may also be similar for two players without describing their trajectory over 

time. Only understanding the specific properties of each football player’s trajectory can improve the 

performance analysis and, likewise, to improve the quality of the football training. 

We should note that we are not redefining the concept of variability. Instead, this work proposes to 

analyse such variability by studying the regularity of players in returning to their own TR (stability), 

and by studying how predictable their trajectory may be (predictability). Stability, in science, is 

defined as its resistance to perturbations. In fact, this is a typical property shared by many dynamical 

systems, in which we could state that the stability is not only the resistance to a perturbation, but also 

the ability to return to the equilibrium point (or initial position) [45]. The existence of a stable 

equilibrium point implies the existence of a “restoring force” which is directed towards the equilibrium 

point. For instance, in the simple pendulum case study, this is a combination of the tension in the string 

and the force of gravity. Nevertheless, as opposed to the simple pendulum, the results presented here 

classify football players as non-linear dynamical systems, thus presenting chaotic or even stochastic 

trajectories. Although we assume that there is a steady-state point from which players converge, the 

truth is that they converge to an equilibrium point which is defined by their TR. In other words, a 

player’s orbit spirals in towards the equilibrium. The same can be said about the predictability of 

players. By definition, predictability is the degree to which a correct estimation of a system’s state can 

be made. This is in line with the concept of predictability in mathematics, wherein a process is 

classified as predictable if it is possible to know the “next” state at the present time. 

In many situations, the choice regarding the players from the first team is based on each player’s 

specific properties so as to adjust the team against their opponents. As such, one may choose between 

more stable players to focus on the defence, or more unpredictable ones to focus on the attack. The 

fractional coefficient can also be a useful method to improve the understanding about decision-making 

in sports. The main techniques used so far for this specific issue have been the approximate entropy 

and the Lyapunov exponent. Nevertheless, the applicability of such methods depends on the variable 

that better explains the level of predictability. For a more specific tactical analysis, one should go 
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further into understanding the fractional coefficient variability by resorting to stability theory. This is 

very important in understanding the player’s regularity on returning to his own TR. The stability 

confined to on attraction region has a great potential for use by coaches to classify the tactical oscillations 

of players, thus adjusting or readjusting the desired tactical behaviours. Also, the opponent coach can 

use this information to identify some unstable points and exploit them during the match. Nevertheless, 

it should be highlighted that neither the fractional coefficient, nor the stability analysis per se, are the 

ultimate answer to one’s needs in the context of football. Such team sport, as a complex and dynamic 

game, should be analysed using collective nonlinear methods. The classical perspective of the 

performance analysis has been overtaken using new technologies to improve the understanding of the 

individual and tactical parameters, mainly trying to explain the process variables. For the collective 

analysis, some metrics have been proposed based on the position of players over time [3,46,47]. 

Nevertheless, for the individual performance, the researchers have been emphasizing on the notational 

information (i.e., product variables) and kinematical information [43]. This paper provides a new  

take-home message on the individual performance of a football match, with the main purpose being the 

understanding of the specific properties of each player and their dynamical behaviour during the match. 

It is noteworthy that the herein proposed methodology proposed here was evaluated using one 

match. Its usefulness for coaches and sports analysts needs to be further assessed over multiple 

matches, with and without professional players. Note, however, that this requires the use of automatic 

tracking systems, such as AMISCO Pro and ProZone [48]. These systems provide online information 

to coaches and their staff about players’ movements (e.g., energy spent by a player). Nevertheless, 

despite of their efficiency and autonomous properties, player-to-player occlusion, similar player 

appearance, number of players changing over time, variability of players’ motion and noises or video 

blur present themselves as open problems [49]. Therefore, although generally autonomous, these 

tracking systems still require some human input as well as continual online verification by an operator 

to make sure that players are correctly tracked by the computer program [48]. Hence, beyond their 

expensive devices (e.g., many high-definition video cameras), those systems may benefit from the 

outcome provided by the fractional calculus methodology provided in this paper and previously 

presented in Couceiro et al. [17], to accurately and autonomously estimate a given player’s position 

over time. 

7. Conclusions 

New technological devices and mathematical methods have been used recently to analyse the 

performance of football players. Despite these developments, a gap still remains on understanding a 

player’s dynamical behaviour during the match. Some of the most important variables one may look at 

are inherent in a player’s variability, which one may classify based on the predictability and stability of 

his trajectory. This study proposed an approach to measure the predictability and stability levels of 

player’s trajectories based on the concepts inherent in Fractional Calculus. Furthermore, the variability 

of each player was measured using the well-known Shannon’s entropy and the approximate entropy. 

The fractional coefficient, explaining a given player’s trajectory, was used in order to estimate his 

predictability. The addition of a new parameter, herein denoted here as the stability vector, gave rise to 

an attraction domain defining the player’s stability. The results showed that the goalkeeper was the 
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most predictable and unstable player. The most unpredictable players were the midfielders while the 

most stable players were the defenders. All this information can be used by coaches to adjust and 

readjust the team’s strategy, as well as the tactical behaviour of players. 
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