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1. Introduction

For a stationary process (Xt) the excess entropy E is the mutual information between the infinite past←−
X = . . . X−2X−1 and the infinite future

−→
X = X0X1 . . .. It has a long history and is widely employed
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as a measure of correlation and complexity in a variety of fields, from ergodic theory and dynamical
systems to neuroscience and linguistics [1–6]. For a review the reader is referred to [7].

An important question in classifying a given process is whether the excess entropy is finite or infinite.
In the former case the process is said to be finitary, and in the latter infinitary.

Over a finite alphabet, most of the commonly studied, simple process types are always finitary,
including all independent identically distributed (IID) processes, finite-order Markov processes, and
processes with finite-state hidden Markov model (HMM) presentations. However, there are also well
known examples of finite-alphabet, infinitary processes. For instance, the symbolic dynamics at the
onset of chaos in the logistic map and similar dynamical systems [7] and the stationary representation of
the binary Fibonacci sequence [8] are both infinitary.

These latter processes, though, only admit stationary HMM presentations with uncountable state sets.
Indeed, one can show that any process generated by a stationary, countable-state HMM either has positive
entropy rate or consists entirely of periodic sequences, which these do not. Versions of the Santa Fe
Process introduced in [6] are finite-alphabet, infinitary processes with positive entropy rate. However,
they were not constructed directly as hidden Markov processes, and it seems unlikely that they should
have any stationary, countable-state presentations either.

Here, we present two examples of stationary, countable-state HMMs that do generate finite-alphabet,
infinitary processes. To the best of our knowledge, these are the first explicit constructions of this type
in the literature. Although, subsequent to our release of the earlier version of the present work [9], two
additional examples were given in [10].

Our first example is nonergodic, and the information conveyed from the past to the future essentially
consists of the ergodic component along a given realization. This example is straightforward to construct
and, though previously unpublished, others are likely aware of it or similar constructions. The second,
ergodic example, though, is more involved, and both its structure and properties are novel.

To put these contributions in perspective, we note that any stationary, finite-alphabet process may be
trivially presented by a stationary hidden Markov model with an uncountable state set, in which each
infinite history←−x corresponds to a single state. Thus, it is clear that stationary HMMs with uncountable
state sets can generate finite-alphabet, infinitary processes. In contrast, for any finite-state HMM E is
always finite—bounded by the logarithm of the number of states. The case of countable-state HMMs lies
in-between the finite-state and uncountable-state cases, and it was previously not demonstrated whether
it is possible to have countable-state, stationary HMMs that generate infinitary, finite-alphabet processes
and, in particular, ergodic ones.

2. Background

2.1. Excess Entropy

We denote by H[X] the Shannon entropy in a random variable X , by H[X|Y ] the conditional
entropy in X given Y , and by I[X;Y ] the mutual information between random variables X and Y .
For definitions of these information theoretic quantities, as well as the definitions of stationarity and
ergodicity for a stochastic process (Xt), the reader is referred to [11].
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Definition 1. For a stationary, finite-alphabet process (Xt)t∈Z the excess entropy E is the mutual
information between the infinite past

←−
X = . . . X−2X−1 and the infinite future

−→
X = X0X1 . . . :

E = I[
←−
X ;
−→
X ] = lim

t→∞
I[
←−
X t;
−→
X t] , (1)

where
←−
X t = X−t . . . X−1 and

−→
X t = X0 . . . Xt−1 are the length-t past and future, respectively.

As noted in [7,12] this quantity, E, may also be expressed alternatively as:

E = lim
t→∞

(
H[
−→
X t]− h · t

)
, (2)

where h is the process entropy rate:

h = lim
t→∞

H[
−→
X t]

t
= lim

t→∞
H[Xt|

−→
X t] . (3)

That is, the excess entropy E is the asymptotic amount of entropy (information) in length-t blocks of
random variables beyond that explained by the entropy rate. The excess entropy derives its name from
this latter formulation. It is also this formulation that we use to establish that the process of Section 3.1
is infinitary.

Expanding the block entropy H[
−→
X t] in Equation (2) with the chain rule and recombining terms gives

another important formulation [7]:

E =
∞∑

t=1

(h(t)− h) , (4)

where h(t) is the length-t entropy-rate approximation:

h(t) = H[Xt−1|
−→
X t−1] , (5)

the conditional entropy in the t-th symbol given the previous t− 1 symbols. This final formulation will
be used to establish that the process of Section 3.2 is infinitary.

2.2. Hidden Markov Models

There are two primary types of hidden Markov models: edge-emitting (or Mealy) and state-emitting
(or Moore). We work with the former edge-emitting type, but the two are equivalent in that any model
of one type with a finite output alphabet may be converted to a model of the other type without changing
the cardinality of the state set by more than a constant factor—the alphabet size. Thus, for our purposes,
Mealy HMMs are sufficiently general. We also consider only stationary HMMs with finite output
alphabets and countable state sets.

Definition 2. A stationary, edge-emitting, countable-state, finite-alphabet hidden Markov model
(hereafter referred to simply as a countable-state HMM) is a 4-tuple (S,X , {T (x)}, π) where:

(1) S is a countable set of states.

(2) X is a finite alphabet of output symbols.



Entropy 2014, 16 1399

(3) T (x), x ∈ X , are symbol labeled transition matrices whose sum T =
∑

x∈X T
(x) is stochastic. T (x)

σσ′

is the probability that state σ transitions to state σ′ on symbol x.

(4) π is a stationary distribution for the underlying Markov chain over states with transition matrix T .
That is, π satisfies π = πT .

Remarks.

(1) “Countable” in Property 1 means either finite or countably infinite. If the state set S is finite, we
also refer to the HMM as finite-state.

(2) We do not assume, in general, that the underlying Markov chain over states with transition matrix
T is irreducible. Thus, even in the case that S is finite, the stationary distribution π is not
necessarily uniquely defined by the matrix T and is, therefore, specified separately.

Visually, a hidden Markov model may be depicted as a directed graph with labeled edges. The vertices
are the states σ ∈ S and, for all σ, σ′ ∈ S with T (x)

σσ′ > 0, there is a directed edge from state σ to state σ′

labeled p|x for the symbol x and transition probability p = T
(x)
σσ′ . These probabilities are normalized so

that the sum of probabilities on all outgoing edges from each state is 1. An example is given in Figure 1.

Figure 1. A hidden Markov model (the ε-machine) for the Even Process. The support for
this process consists of all binary sequences in which blocks of uninterrupted 1 s are even in
length, bounded by 0 s. After each even length is reached, there is a probability p of breaking
the block of 1 s by inserting a 0. The machine has two internal states S = {σ1, σ2}, a two
symbol alphabet X = {0, 1}, and a single parameter p ∈ (0, 1) that controls the transition
probabilities. The associated Markov chain over states is finite-state and irreducible and,
thus, has a unique stationary distribution π = (π1, π2) = (1/(2− p), (1− p)/(2− p)). The
graphical representation of the machine is given on the left, with the corresponding transition
matrices on the right. In the graphical representation the symbols labeling the transitions
have been colored blue, for visual contrast, while the transition probabilities are black.

σ1 σ2p|0
1− p|1

1|1

1

T (0) =

(
p 0

0 0

)

T (1) =

(
0 1− p
1 0

)

The operation of a HMM may be thought of as a weighted random walk on the associated graph.
From the current state σ the next state σ′ is determined by following an outgoing edge from σ chosen
according to the edge probabilities (or weights). During the transition, the HMM also outputs the symbol
x labeling this edge.

We denote the state at time t by St and the t-th symbol byXt, so that symbolXt is generated upon the
transition from state St to state St+1. The state sequence (St) is simply a Markov chain with transition
matrix T . However, we are interested not simply in this sequence of states, but also in the associated
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sequence of output symbols (Xt) that are generated by reading the labels off the edges as they are
followed. The interpretation is that an observer of the HMM may directly observe this sequence of
output symbols, but not the hidden internal states. Alternatively, one may consider the Markov chain
over edges (Et), of which the observed symbol sequence (Xt) is simply a projection.

In either case, the process (Xt) generated by the HMM (S,X , {T (x)}, π) is defined as the output
sequence of edge symbols, which results from running the Markov chain over states according to the
stationary law with marginals P(S0) = P(St) = π. It is easy to verify that this process is itself stationary,
with word probabilities given by:

P(w) = ‖πT (w)‖1 , (6)

where for a given word w = w1...wn ∈ X ∗, T (w) is the word transition matrix T (w) = T (w1) · · · T (wn).

Remark. Even for a nonstationary HMM (S,X , {T (x)}, ρ), where the state distribution ρ is not
stationary, one may always define a one-sided process (Xt)t≥0 with marginals given by:

P(
−→
X |w| = w) = ‖ρT (w)‖1 . (7)

Furthermore, though the state sequence (St)t≥0 will not be a stationary process if ρ is not a stationary
distribution for T , the output sequence (Xt)t≥0 may still be stationary. In fact, as shown in [12]
(Example 2.9), any one-sided process over a finite alphabet X , stationary or not, may be represented by
a countable-state, nonstationary HMM in which the states correspond to finite-length words in X ∗, of
which there are only countably many. By stationarity, a one-sided stationary process generated by such
a nonstationary HMM can be uniquely extended to a two-sided stationary process. So, in a sense, any
two-sided stationary process (Xt)t∈Z can be said to be generated by a nonstationary, countable-state
HMM. Though, this is a slightly unnatural interpretation of process generation in that the two-sided
process (Xt)t∈Z is not directly that obtained by reading symbols off the edges of the HMM as it runs along
transitioning between states in bi-infinite time. In either case, the space of stationary, finite-alphabet
processes generated by nonstationary, countable-state HMMs is too large: it includes all stationary,
finite-alphabet processes. Due to this, we restrict to the case of stationary HMMs where both the
state sequence (St) and output sequence (Xt) are stationary processes, and henceforth use the term
HMM implicitly to mean stationary HMM. Clearly, if one allows finite-alphabet processes generated by
nonstationary, countable-state HMMs there are infinitary examples.

We consider now an important property known as unifilarity. This property is useful in that many
quantities are analytically computable only for unifilar HMMs. In particular, for unifilar HMMs the
entropy rate h is often directly computable, unlike in the nonunifilar case. Both of the examples
constructed in Section 3 are unifilar, as is the Even Process HMM of Figure 1.

Definition 3. A HMM (S,X , {T (x)}, π) is unifilar if for each σ ∈ S and x ∈ X there is at most one
outgoing edge from state σ labeled with symbol x in the associated graph G.

It is well known that for any finite-state, unifilar HMM the entropy rate in the output process (Xt) is
simply the conditional entropy in the next symbol given the current state:

h = H[X0|S0] =
∑

σ∈S

πσhσ , (8)
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where πσ is the stationary probability of state σ and hσ = H[X0|S0 = σ] is the conditional entropy in
the next symbol given that the current state is σ.

We are unaware, though, of any proof that this is generally true for countable-state HMMs. If the
entropy in the stationary distribution H[π] is finite, then a proof along the lines given in [13] carries
through to the countable-state case and Equation (8) still holds. However, countable-state HMMs may
sometimes have H[π] = ∞. Furthermore, it can be shown [12] that the excess entropy E is always
bounded above by H[π]. So, for the infinitary process of Section 3.2 we need slightly more than
unifilarity to establish the value of h. To this end, we consider a property known as exactness [14].

Definition 4. A HMM is said to be exact if for a.e. infinite future −→x = x0x1... generated by the HMM
an observer synchronizes to the internal state after a finite time. That is, for a.e. −→x there exists t ∈ N
such that H[St|

−→
X t = −→x t] = 0, where −→x t = x0x1...xt−1 denotes the the first t symbols of a given −→x .

In the appendix we prove the following proposition.

Proposition 1. For any countable-state, exact, unifilar HMM the entropy rate is given by the standard
formula of Equation (8).

The HMM constructed in Section 3.2 is both exact and unifilar, so Proposition 1 applies. Using this
explicit formula for h, we will show that E =

∑∞
t=1 (h(t)− h) is infinite.

3. Constructions

We now present the two constructions of (stationary) countable-state HMMs that generate infinitary
processes. In the first example the output process is not ergodic, but in the second it is.

3.1. Heavy-Tailed Periodic Mixture: An infinitary nonergodic process with a countable-state
presentation

Figure 2 depicts a countable-state HMM M , for a nonergodic infinitary process P . The machine M
consists of a countable collection of disjoint strongly connected subcomponents Mi, i ≥ 2. For each
i, the component Mi generates the periodic process Pi consisting of i − 1 1s followed by a 0. The
weighting (µ2, µ3, ..., ) over components is taken as a heavy-tailed distribution with infinite entropy. For
this reason, we refer to the process M generates as the Heavy-Tailed Periodic Mixture (HPM) process.

Intuitively, the information transmitted from the past to the future for the HPM Process is the
ergodic component i along with the phase of the period-i process Pi in this component. This is more
information than simply the ergodic component i, which is itself an infinite amount of information:
H[(µ2, µ3, ..., )] =∞. Hence, E should be infinite. This intuition can be made precise using the ergodic
decomposition theorem of Debowski [15], but we present a more direct proof here.
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Figure 2. A countable-state hidden Markov model (HMM) for the Heavy-Tailed Periodic
Mixture Process. The machine M is the union of the machines Mi, i ≥ 2, generating the
period-i processes of i − 1 1 s followed by a 0. All topologically allowed transitions have
probability 1. So, for visual clarity these probabilities are omitted from the edge labels
and only the symbols labeling the transitions are given. The stationary distribution π is
chosen such that the combined probability µi of all states in the the i-th component is µi =
C/(i log2 i), where C = 1/

(∑∞
i=2 1/(i log

2 i)
)

is a normalizing constant. Formally, the
HMM M = (S,X , {T (x)}, π) has alphabet X = {0, 1}, state set S = {σij : i ≥ 2, 1 ≤
j ≤ i}, stationary distribution π defined by πij = C/(i2 log2 i), and transition probabilities
T

(1)
ij,i(j+1) = 1 for i ≥ 2 and 1 ≤ j < i, T (0)

ii,i1 = 1 for i ≥ 2, and all other transitions
probabilities 0. Note that all logs here (and throughout) are taken base 2, as is typical when
using information-theoretic quantities.

σ21 σ22

σ31 σ32 σ33

σ41 σ42 σ43 σ44

···

M2

M3

M4

M =
⋃∞

k=2 Mk

1

0

1 1

0

1 1 1

0

1

Proposition 2. The HPM Process has infinite excess entropy.

Proof. For the HPM ProcessP we will show that (i) limt→∞H[
−→
X t] =∞ and (ii) h = 0. The conclusion

then follows immediately from Equation (2). To this end, we define sets:

Wi,t = {w : |w| = t and w is in the support of process Pi},
Ut =

⋃

2≤i≤t/2

Wi,t , and

Vt =
⋃

i>t/2

Wi,t .

Note that any word w ∈ Wi,t with i ≤ t/2 contains at least two 0s. Therefore:

(1) No two distinct states σij and σij′ with i ≤ t/2 generate the same length t word.

(2) The sets Wi,t, i ≤ t/2, are disjoint from both each other and Vt.
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It follows that each word w ∈ Wi,t, with i ≤ t/2, can only be generated from a single state σij of the
HMM and has probability:

P(w) = P(
−→
X t = w)

= P(S0 = σij) · P(
−→
X t = w|S0 = σij)

= πij · 1
= C/(i2 log2 i) . (9)

Hence, for any fixed t:

H[
−→
X t] =

∑

|w|=t

P(w) log
(

1

P(w)

)

≥
bt/2c∑

i=2

∑

w∈Wi,t

C

i2 log2(i)
log

(
i2 log2(i)

C

)

=

bt/2c∑

i=2

C

i log2(i)
log

(
i2 log2(i)

C

)
,

so:

lim
t→∞

H[
−→
X t] ≥

∞∑

i=2

C

i log2(i)
log

(
i2 log2(i)

C

)
=∞ , (10)

which proves Claim (i). Now, to prove Claim (ii) consider the quantity:

h(t+ 1) = H[Xt|
−→
X t]

=
∑

w∈Ut

P(w) ·H[Xt|
−→
X t = w] +

∑

w∈Vt

P(w) ·H[Xt|
−→
X t = w] . (11)

On the one hand, for w ∈ Ut, H[Xt|
−→
X t = w] = 0 since the current state and, hence, entire future are

completely determined by any word w ∈ Ut. On the other hand, for w ∈ Vt, H[Xt|
−→
X t = w] ≤ 1

since the alphabet is binary. Moreover, the combined probability of all words in the set Vt is simply the
probability of starting in some component Mi with i > t/2: P(Vt) =

∑
i>t/2 µi. Thus, by Equation (11),

h(t+ 1) ≤∑i>t/2 µi. Since
∑

i µi converges, it follows that h(t)↘ 0, which verifies Claim (ii).

3.2. Branching Copy Process: An infinitary ergodic process with a countable-state presentation

Figure 3 depicts a countable-state HMM M for the ergodic, infinitary Branching Copy Process.
Essentially, the machine M consists of a binary tree with loop backs to the root node. From the root
a path is chosen down the tree with each left-right (or 0-1) choice equally likely. But, at each step
there is also a chance of turning back towards the root. The path back is a not a single step, however.
It has length equal to the number of steps taken down the tree before returning back, and copies the
path taken down symbol-wise with 0 s replaced by 2 s and 1 s replaced by 3 s. There is also a high
self-loop probability at the root node on symbol 4, so some number of 4 s will normally be generated
after returning to the root node before preceding again down the tree. The process generated by this
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machine is referred to as the Branching Copy (BC) Process, because the branch taken down the tree is
copied on the loop back to the root.

Figure 3. A countable-state HMM for the Branching Copy Process. The machine M is
essentially a binary tree with loop-back paths from each node in the tree to the root node and a
self-loop on the root. At each node σ1

ij in the tree there is a probability 2qi of continuing down
the tree and a probability pi = 1−2qi of turning back towards the root σ1

01 on path lij ∼ σ1
ij →

σ2
ij → σ3

ij... → σiij → σ1
01. If the choice is made to head back, the next i− 1 transitions are

deterministic. The path of 0s and 1s taken to get from σ1
01 to σ1

ij is copied on the return with
0 s replaced by 2 s and 1 s replaced by 3 s. Formally, the alphabet is X = {0, 1, 2, 3, 4} and
the state set is S = {σkij : i ≥ 0, 1 ≤ j ≤ 2i, 1 ≤ k ≤ max{i, 1}}. The nonzero transition
probabilities are as depicted graphically with pi = 1 − 2qi for all i ≥ 0, qi = i2/[2(i + 1)2]

for all i ≥ 1, and q0 > 0 taken sufficiently small so that H[(p0, q0, q0)] ≤ 1/300. The graph
is strongly connected so the Markov chain over states is irreducible. Claim 1 shows that the
Markov chain is also positive recurrent and, hence, has a unique stationary distribution π.
Claim 2 gives the form of π.

σ1
01

σ1
11 σ1

12

σ1
21 σ1

22 σ1
23 σ1

24

···

q0|0 q0|1

q1|0 q1|1 q1|0 q1|1

q2|0 q2|1 q2|0 q2|1 q2|0 q2|1 q2|0 q2|1

p0|4

p1|l11 p1|l12
p2|l21 p2|l24

p2|l22 p2|l23

σ1
11 σ1

01

σ1
12 σ1

01

σ1
21 σ2

21 σ1
01

σ1
22 σ2

22 σ1
01

σ1
23 σ2

23 σ1
01

σ1
24 σ2

24 σ1
01

l11 =

l12 =

l21 =

l22 =

l23 =

l24 =

···

p1|2

p1|3

p2|2 1|2

p2|2 1|3

p2|3 1|2

p2|3 1|3

1

By inspection we see that the machine is unifilar with synchronizing word w = 4, i.e., H[S1|X0 =

4] = 0. Since the underlying Markov chain over states (St) is positive recurrent, the state sequence (St)
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and symbol sequence (Xt) are both ergodic. Thus, a.e. infinite future −→x contains a 4, so the machine is
exact. Therefore, Proposition 1 may be applied, and we know the entropy rate h is given by the standard
formula of Equation (8): h =

∑
σ πσhσ. Since P(St = σ) = πσ for any t ∈ N, we may alternatively

represent this entropy rate as:

h =
∑

σ

(∑

w∈Lt

P(w)φ(w)σ

)
hσ

=
∑

w∈Lt

P(w)

(∑

σ

φ(w)σhσ

)

=
∑

w∈Lt

P(w)h̃w , (12)

where Lt = {w : |w| = t,P(w) > 0} is the set of length t words in the process language L, φ(w)
is the conditional state distribution induced by the word w (i.e., φ(w)σ = P(St = σ|−→X t = w)), and
h̃w =

∑
σ φ(w)σhσ is the φ(w)-weighted average entropy in the next symbol given knowledge of the

current state σ. Similarly, for any t ∈ N the entropy-rate approximation h(t+ 1) may be expressed as:

h(t+ 1) = H[Xt|
−→
X t] =

∑

w∈Lt

P(w)hw , (13)

where hw = H[Xt|
−→
X t = w] is the entropy in the next symbol after observing the word w. Combining

Equations (12) and (13) we have for any t ∈ N:

h(t+ 1)− h =
∑

w∈Lt

P(w)(hw − h̃w) . (14)

As we will show in Claim 6, concavity of the entropy function implies the quantity hw − h̃w is always
nonnegative. Furthermore, in Claim 5 we will show that hw− h̃w is always bounded below by some fixed
positive constant for any word w consisting entirely of 2s and 3s. Also, in Claim 3 we will show that
P(Wt) scales as 1/t, where Wt is the set of length-t words consisting entirely of 2s and 3s. Combining
these results it follows that h(t+ 1)− h ≥̃ 1/t and, hence, the sum E =

∑∞
t=1 (h(t)− h) is infinite.

A more detailed analysis with the claims and their proofs is given below. In this we will use the
following notation:

• Pσ(·) = P(·|S0 = σ),

• Vt = {w ∈ Lt : w contains only 0s and 1s} and Wt = {w ∈ Lt : w contains only 2s and 3s},

• πkij = P(σkij) is the stationary probability of state σkij ,

• Rij = {σ1
ij, σ

2
ij, ..., σ

i
ij}, and

• πij =
∑i

k=1 π
k
ij and π1

i =
∑2i

j=1 π
1
ij .

Note that:

Pσ1
01
(
−→
X t ∈ Vt) =

1− p0
t2

, for all t ≥ 1 , (15)
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and:

pi =
2i+ 1

(i+ 1)2
≤ 2

i
, for all i ≥ 1. (16)

These facts will be used in the proof of Claim 1.

Claim 1. The underlying Markov chain over states for the HMM is positive recurrent.

Proof. Let τσ1
01
= min{t > 0 : St = σ1

01} be the first return time to state σ1
01. Then, by continuity:

Pσ1
01
(τσ1

01
=∞) = lim

t→∞
Pσ1

01
(τσ1

01
> 2t)

= lim
t→∞

Pσ1
01
(
−→
X t+1 ∈ Vt+1)

= lim
t→∞

1− p0
(t+ 1)2

= 0 .

Hence, the Markov chain is recurrent and we have:

Eσ1
01
(τσ1

01
) =

∞∑

t=1

Pσ1
01
(τσ1

01
= t) · t

= p0 · 1 +
∞∑

t=1

Pσ1
01
(τσ1

01
= 2t) · 2t

= p0 +
∞∑

t=1

Pσ1
01
(
−→
X t ∈ Vt) · pt · 2t

≤ p0 +
∞∑

t=1

1− p0
t2
· 2
t
· 2t

<∞ ,

from which it follows that the chain is also positive recurrent. Note that the topology of the chain implies
the first return time may not be an odd integer greater than 1.

Claim 2. The stationary distribution π has:

π1
ij =

C

i2 · 2i , i ≥ 1, 1 ≤ j ≤ 2i , (17)

πkij =
C

i2 · 2i ·
2i+ 1

(i+ 1)2
, i ≥ 2, 1 ≤ j ≤ 2i, 2 ≤ k ≤ i , (18)

where C = π1
01(1− p0).

Proof. Existence of a unique stationary distribution π is guaranteed by Claim 1. Given this, clearly
π1
1 = π1

01(1−p0). Similarly, for i ≥ 1, π1
i+1 = π1

i (1−pi) = π1
i

i2

(i+1)2
, from which it follows by induction

that π1
i = π1

01(1 − p0)/i
2, for all i ≥ 1. By symmetry π1

ij = π1
i /2

i for each i ∈ N and 1 ≤ j ≤ 2i.
Therefore, for each i ∈ N, 1 ≤ j ≤ 2i we have π1

ij = π1
01(1 − p0)/(i

2 · 2i) = C/(i2 · 2i) as was
claimed. Moreover, for i ≥ 2, π2

ij = π1
ij · pi = π1

ij · 2i+1
(i+1)2

. Combining with the expression for π1
ij gives

π2
ij =

C
i2·2i · 2i+1

(i+1)2
. By induction, π2

ij = π3
ij = ... = πiij , so this completes the proof.
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Note that for all i ≥ 1 and 1 ≤ j ≤ 2i:

πij =
C

2i · i2 + (i− 1)
C

2i · i2 ·
2i+ 1

(i+ 1)2
≥ C

2i · i2 , and (19)

πij =
C

2i · i2 + (i− 1)
C

2i · i2 ·
2i+ 1

(i+ 1)2
≤ 3C

2i · i2 . (20)

Also note that for any t ∈ N and i ≥ 2t we have for each 1 ≤ j ≤ 2i:

(1) P(
−→
X t ∈ Wt|S0 = σkij) = 1, for 2 ≤ k ≤ di/2e+ 1.

(2)
(∑i

k=2 π
k
ij

)
/πij ≥ 1/3 and |{k : 2 ≤ k ≤ di/2e + 1}| ≥ 1

2
· |{k : 2 ≤ k ≤ i}|. Hence,

(∑di/2e+1
k=2 πkij

)
/πij ≥ 1/6.

Therefore, for each t ∈ N:

P(
−→
X t ∈ Wt|S0 ∈ Rij) ≥ 1/6 , for all i ≥ 2t and 1 ≤ j ≤ 2i . (21)

Equations (19), (20), and (21) will be used in the proof of Claim 3 below, along with the following
simple lemma.

Lemma 1 (Integral Test). Let n ∈ N and let f : [n,∞] → R be a positive, continuous, monotone-
decreasing function, then:

∫ ∞

n

f(x)dx ≤
∞∑

k=n

f(k) ≤ f(n) +

∫ ∞

n

f(x)dx .

Claim 3. P(Wt) decays roughly as 1/t. More exactly, C/12t ≤ P(Wt) ≤ 6C/t for all t ∈ N.

Proof. For any state σkij with i < t, P(
−→
X t ∈ Wt|S0 = σkij) = 0. Thus, we have:

P(Wt) = P(
−→
X t ∈ Wt)

=
∞∑

i=t

2i∑

j=1

P(S0 ∈ Rij) · P(
−→
X t ∈ Wt|S0 ∈ Rij)

=
∞∑

i=t

2i · P(S0 ∈ Ri1) · P(
−→
X t ∈ Wt|S0 ∈ Ri1) , (22)

where the final equality follows from symmetry. We prove the bounds from above and below on P(Wt)

separately using Equation (22).
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• Bound from below:

P(Wt) =
∞∑

i=t

2i · P(S0 ∈ Ri1) · P(
−→
X t ∈ Wt|S0 ∈ Ri1)

≥
∞∑

i=2t

2i · P(S0 ∈ Ri1) · P(
−→
X t ∈ Wt|S0 ∈ Ri1)

(a)

≥
∞∑

i=2t

2i · C

2i · i2 ·
1

6

=
C

6

∞∑

i=2t

1

i2

(b)

≥ C

6

∫ ∞

2t

1

x2
dx

=
C

12t
. (23)

Here, (a) follows from Equations (19) and (21) and (b) from Lemma 1.

• Bound from above:

P(Wt) =
∞∑

i=t

2i · P(S0 ∈ Ri1) · P(
−→
X t ∈ Wt|S0 ∈ Ri1)

(a)

≤
∞∑

i=t

2i · 3C

2i · i2 · 1

= 3C
∞∑

i=t

1

i2

(b)

≤ 3C

(
1

t2
+

∫ ∞

t

1

x2
dx

)

= 3C ·
(
1

t2
+

1

t

)

≤ 6C

t
. (24)

Here, (a) follows from Equation (20) and (b) from Lemma 1.

Claim 4. P(Xt ∈ {2, 3}|
−→
X t = w) ≥ 1/150, for all t ∈ N and w ∈ Wt.

Proof. Applying Claim 3 we have for any t ∈ N:

P(Xt ∈ {2, 3}|
−→
X t ∈ Wt) = P(

−→
X t+1 ∈ Wt+1|

−→
X t ∈ Wt)

= P(
−→
X t+1 ∈ Wt+1,

−→
X t ∈ Wt)/P(

−→
X t ∈ Wt)

= P(
−→
X t+1 ∈ Wt+1)/P(

−→
X t ∈ Wt)

≥ C/12(t+ 1)

6C/t

=
1

72
· t

t+ 1

≥ 1

150
.
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By symmetry, P(Xt ∈ {2, 3}|
−→
X t = w) is the same for each w ∈ Wt. Thus, the same bound must also

hold for each w ∈ Wt individually: P(Xt ∈ {2, 3}|
−→
X t = w) ≥ 1/150 for all w ∈ Wt.

Claim 5. For each t ∈ N and w ∈ Wt,
(i) h̃w ≤ 1/300 and
(ii) hw ≥ 1/150.
Hence, hw − h̃w ≥ 1/300.

Proof of (i). hσk
ij

= 0, for all i ≥ 1, 1 ≤ j ≤ 2i, and k ≥ 2. And, for each w ∈ Wt, φ(w)σ1
ij

= 0,

for all i ≥ 1 and 1 ≤ j ≤ 2i. Hence, for each w ∈ Wt, h̃w =
∑

σ∈S φ(w)σhσ = φ(w)σ1
01
hσ1

01
. By

construction of the machine hσ1
01
≤ 1/300 and, clearly, φ(w)σ1

01
can never exceed 1. Thus, h̃w ≤ 1/300

for all w ∈ Wt.

Proof of (ii). Let the random variable Zt be defined by: Zt = 1 ifXt ∈ {2, 3} and Zt = 0 ifXt 6∈ {2, 3}.
By Claim 4, P(Zt = 1|−→X t = w) ≥ 1/150 for any w ∈ Wt. Also, by symmetry, the probabilities of a 2

or a 3 following any word w ∈ Wt are equal, so P(Xt = 2|−→X t = w,Zt = 1) = P(Xt = 3|−→X t = w,Zt =

1) = 1/2. Therefore, for any w ∈ Wt:

hw = H[Xt|
−→
X t = w]

≥ H[Xt|
−→
X t = w,Zt]

≥ P(Zt = 1|−→X t = w) ·H[Xt|
−→
X t = w,Zt = 1]

≥ 1/150 · 1 .

Claim 6. For each t ∈ N and w ∈ Lt, hw − h̃w ≥ 0.

Proof. For w ∈ Lt, let Pw = P(Xt|
−→
X t = w) denote the probability distribution over the next output

symbol after observing the word w. Also, for σ ∈ S , let Pσ = P(Xt|St = σ) denote the probability
distribution over the next output symbol given that the current state is σ. Then, by concavity of the
entropy function H[·], we have that for any w ∈ Lt:

hw ≡ H[Pw] = H

[∑

σ∈S

φ(w)σ · Pσ
]
≥
∑

σ∈S

φ(w)σ ·H[Pσ] =
∑

σ∈S

φ(w)σhσ ≡ h̃w.

Claim 7. The quantity h(t)− h decays at a rate no faster than 1/t. More exactly, h(t+ 1)− h ≥ C
3600t

,
for all t ∈ N.

Proof. As noted above, since the machine satisfies the conditions of Proposition 1, the entropy rate is
given by Equation (8) and the difference h(t + 1) − h is given by Equation (14). Therefore, applying
Claims 3, 5, and 6 we may bound this difference h(t+ 1)− h as follows:
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h(t+ 1)− h =
∑

w∈Lt

P(w)(hw − h̃w)

≥
∑

w∈Wt

P(w)(hw − h̃w)

≥ P(Wt) ·
1

300

≥ C

3600t
.

With the above decay on h(t) established we easily see the Branching Copy Process must have infinite
excess entropy.

Proposition 3. The excess entropy E for the BC Process is infinite.

Proof. E =
∑∞

t=1 (h(t)− h). By Claim 7, this sum must diverge.

4. Conclusions

Any stationary, finite-alphabet process can be presented by a stationary HMM with an uncountable
state set. Thus, there exist stationary HMMs with uncountable state sets capable of generating infinitary,
finite-alphabet processes. It is impossible, however, to have a finite-state, stationary HMM that generates
an infinitary process. The excess entropy E is always bounded by the entropy in the stationary
distribution H[π], which is finite for any finite-state HMM. Countable-state HMMs are intermediate
between the finite and uncountable cases, and it was previously not shown whether infinite excess
entropy was possible in this case, or not. We have demonstrated that it is indeed possible, by giving
two explicit constructions of finite-alphabet, infinitary processes generated by stationary HMMs with
countable state sets.

The second example, the Branching Copy Process, is also ergodic—a strong restriction. It is a priori
quite plausible that infinite E might only occur in the countable-state case for nonergodic processes.
Moreover, both HMMs we constructed are unifilar, so the ε-machines [12,16] of the processes have
countable state sets as well. Again, unifilarity is a strong restriction to impose, and it is a priori
conceivable that infinite E might only occur in the countable-state case for nonunifilar HMMs. Our
examples have shown, though, that infinite E is possible for countable-state HMMs, even if one requires
both ergodicity and unifilarity.

Following the original release of the above results [9] two additional examples of both ergodic and
nonergodic infinitary, finite-alphabet processes with countable-state HMM presentations appeared [10].
For these examples it was shown that the mutual information E(t) = I[

←−
X t;
−→
X t] between length-t blocks

diverges as a power law. Whereas, in our nonergodic example it diverges sublogarithmically and in
our ergodic example, presumably, at most logarithmically. The ergodic example given in [10] is also
somewhat simpler than ours. However, the HMM presentation for the ergodic process there is not unifilar
and, moreover, one does not expect the ε-machine for this process to have a countable state set either.
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Taking this all into account leaves open the question: Is power law divergence of E(t) possible for
ergodic processes with unifilar, countable-state HMM presentations?
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Appendix

We prove Proposition 1 from Section 2.2, which states that the entropy rate of any countable-state,
exact, unifilar HMM is given by the standard formula:

h = H[X0|S0] =
∑

σ∈S

πσhσ . (25)

Proof. Let Lt = {w : |w| = t,P(w) > 0} be the set of length t words in the process language L, and let
φ(w) be the conditional state distribution induced by a word w ∈ Lt: i.e., φ(w)σ = P(St = σ|−→X t = w).
Furthermore, let h̃w =

∑
σ φ(w)σhσ be the φ(w)-weighted average entropy in the next symbol given

knowledge of the current state σ. And, let hw = H[Xt|
−→
X t = w] be the entropy in the next symbol after

observing the word w. Note that:

(1) h(t+ 1) = H[Xt|
−→
X t] =

∑
w∈Lt P(w)hw , and

(2)
∑

σ πσhσ =
∑

σ

(∑
w∈Lt P(w)φ(w)σ

)
hσ =

∑
w∈Lt P(w) (

∑
σ φ(w)σhσ) =

∑
w∈Lt P(w)h̃w .

Thus, since we know h(t) limits to h, it suffices to show that:

lim
t→∞

∑

w∈Lt

P(w)(hw − h̃w) = 0 . (26)

Now, for any for any w ∈ Lt, we have |hw − h̃w| ≤ log |X |. However, for a synchronizing word
w = w1...wt with H[St|

−→
X t = w] = 0, hw − h̃w is always 0, since the distribution φ(w) is concentrated

only on a single state. Combining these two facts gives the estimate:
∣∣∣∣∣
∑

w∈Lt

P(w)(hw − h̃w)
∣∣∣∣∣ ≤

∑

w∈Lt

P(w) · |hw − h̃w| ≤ log |X | · P(NSt) , (27)

whereNSt is the set of length-twords that are nonsynchronizing and P(NSt) is the combined probability
of all words in this set. Since the HMM is exact, we know that for a.e. infinite future −→x an observer
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will synchronize exactly at some finite time t = t(−→x ). And, since it is unifilar, the observer will remain
synchronized for all t′ ≥ t. It follows that P(NSt) must be monotonically decreasing and limit to 0:

lim
t→∞

P(NSt) = 0 . (28)

Combining Equation (27) with Equation (28) shows that Equation (26) does in fact hold, which
completes the proof.
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