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Abstract: The principal methods for the definition of thermodynamic entropy are 

discussed with special reference to those developed by Carathéodory, the Keenan School, 

Lieb and Yngvason, and the present authors. An improvement of the latter method is then 

presented. Seven basic axioms are employed: three Postulates, which are considered as 

having a quite general validity, and four Assumptions, which identify the domains of 

validity of the definitions of energy (Assumption 1) and entropy (Assumptions 2, 3, 4). The 

domain of validity of the present definition of entropy is not restricted to stable equilibrium 

states. For collections of simple systems, it coincides with that of the proof of existence 

and uniqueness of an entropy function which characterizes the relation of adiabatic 

accessibility proposed by Lieb and Yngvason. However, our treatment does not require the 

formation of scaled copies so that it applies not only to collections of simple systems, but 

also to systems contained in electric or magnetic fields and to small and few-particle systems. 
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1. Introduction 

From the origins of classical thermodynamics to the present time, several methods for the 

definitions of thermodynamic temperature and thermodynamic entropy have been developed. If we 

exclude the treatments based on statistical mechanics and those which postulate directly the existence 

and additivity of entropy, as well as the structure of the fundamental relations [1], most of the methods 

proposed in the literature, up to the most recent contributions, can be divided in three main categories: 

classical methods, Carathéodory-derived methods, Keenan-school methods. 

Classical methods start with the Zeroth-Law of thermodynamics (transitivity of mutual thermal 

equilibrium) [2,3] and the definition of empirical temperature, then define energy by a suitable statement 

of the First Law, and finally define thermodynamic temperature and entropy through the Kelvin-Planck 

statement of the Second Law [4], namely, it is impossible to construct an engine which, operating in a 

cycle, produces no effect except the lifting of a weight and the cooling of a thermal reservoir. 

In their original formulation, classical methods had a logical loop in the definition of energy. In 

fact, the First Law was stated as follows: in a cycle, the work done by a system is equal to the heat 

received by the system: 

Q W . (1)

The energy difference between state A2 and state A1 of a system A was defined as the value of Q ̶ W in 

any process for A from A1 to A2. Clearly, this definition is affected by a logical circularity, because it is 

impossible to define heat without a previous definition of energy. 

The circularity of Equation (1) was understood and resolved in 1909 by Carathéodory [5] who 

defined an adiabatic process without employing the concept of heat as follows. A vessel is called 

adiabatic if the state of the system inside it does not change when the bodies present outside the vessel 

are modified, provided that the vessel remains at rest and retains its original shape and volume. A 

process such that the system is contained within an adiabatic vessel at every instant of time is called an 

adiabatic process. Carathéodory stated the First Law as follows: the work performed by a system in 

any adiabatic process depends only on the end states of the system. 

Among the best treatments of thermodynamics by the classical method, we can cite, for instance, 

those by Fermi [6] and by Zemansky [3]. In these treatments, Carathéodory’s statement of the First 

Law is adopted. 

In his celebrated paper [5], Carathéodory also proposed a new statement of the Second Law and 

developed a completely new method for the definitions of thermodynamic temperature and entropy. 

The treatment refers to simple systems, stable equilibrium states, and quasistatic processes, i.e., 

processes in which the system evolves along a sequence of neighboring stable equilibrium states. A 

simple system is defined by Carathéodory as a system such that: 

(a) its stable equilibrium states are determined uniquely by n + 1 coordinates, 0, x1, … , xn, where 

x1, … , xn are deformation coordinates, i.e., coordinates which determine the external shape of 

the system, while 0 is not a deformation coordinate; 

(b) in every reversible quasistatic process, the work performed by the system is given by: 

1 1d ... dn nW p x p x      (2)
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where p1, … , pn are functions of 0, x1, … , xn; and 

(c) the (internal) energy U of the system, which is defined via the First Law, is additive, i.e., equals 

the sum of the energies of its subsystems. 

Carathéodory stated the Second Law (Axiom II) as follows: in every arbitrarily close neighborhood 

of a given initial state there exist states that cannot be reached by adiabatic processes. By employing a 

mathematical theorem on Pfaffian equations, he proved that, on account of the Second Law, there 

exists a pair of properties, M(0, x1, … , xn) and x0(0, x1, … , xn) such that for every quasistatic process: 

0d dU W M x    (3)

Through other assumptions on the conditions for mutual stable equilibrium, which include the 

Zeroth Law (transitivity of mutual stable equilibrium), Carathéodory proved that there exists a function 

τ(x0, x1, … , xn) called temperature such that if two systems A and B are in mutual stable equilibrium 

they have the same temperature. Moreover, by applying the additivity of energy, he proved that there 

exists a function f (τ), identical for all systems, such that: 

   0M f x    (4)

where    is another function that varies from system to system. 

He then defined thermodynamic temperature T and entropy S respectively as: 

   0

0,

'
0 '

0, d
ref

x

ref x

x
T c f S S x

c


      (5)

where c is an arbitrary constant and Sref is an arbitrary value assigned to the reference state with  

x0 = x0,ref . Finally, he rewrote Equation (3) in the form: 

d dU W T S    (6)

which, through Equation (2), yields the Gibbs relation for the stable equilibrium states of a simple system. 

Carathéodory's method for the definition of entropy has been the point of origin for several efforts 

along a similar line of thought. Some authors tried to simplify the treatment and make it less abstract [7–9], 

while others tried to improve the logical rigor and completeness [10]. Several references on the 

Carathéodory-derived methods for the definition of entropy are quoted and discussed in a recent paper 

by Lieb and Yngvason [11]. 

An alternative method for the treatment of the foundations of thermodynamics was introduced by 

Keenan [12] and developed by Hatsopoulos and Keenan [13] and by Gyftopoulos and Beretta [14]: It 

will be called the Keenan-school method. An advantage of this method, with respect to that of 

Carathéodory, is that the treatment does not employ the concepts of simple system and of quasistatic 

process so that it applies also to systems contained in electric and magnetic fields and, at least 

potentially, also to nonequilibrium states. Another step forward introduced by the Keenan school and 

developed particularly in [14] is the statement of a broad set of operational definitions of the basic 

concepts of thermodynamics such as those of system, property, state, isolated system, environment of a 

system, and thermal reservoir. The concept of adiabatic process introduced by Carathéodory is 

replaced in [14] by the simpler and less restrictive concept of weight process: a process of a system A 

such that the only net effect in the environment of A is a purely mechanical effect such as, for instance, 
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the raising of a weight in a gravitational field or the displacement of an electric charge in a uniform 

electrostatic field. The main difference between an adiabatic process and a weight process is that 

while the former implies a constraint on the whole time evolution of system A and its environment, the 

latter allows any kind of interaction during the process and sets a constraint only on the end states of 

the environment of A. 

The First Law is stated as follows. Any two states of a system can be the end states of a weight 

process. Moreover, the work performed by a system in any weight process depends only on the end 

states of the system [14]. 

The first part of the statement makes explicit a condition which is almost always employed 

implicitly when energy is defined through the Carathéodory statement of the First Law. However, the 

general validity of this condition is questioned in [11]. Indeed, it is possible to release this condition as 

shown in [15]. 

A parameter of a system A is defined in [14] as a physical quantity determined by a real number, 

which describes an overall effect on A of bodies in the environment of A, such as the volume V of a 

container or the gravitational potential. An equilibrium state of a system A is defined as a stationary 

state of A which can be reproduced as a stationary state of an isolated system. An equilibrium state of 

A is called a stable equilibrium state if it cannot be modified in a process which leaves unchanged both 

the parameters of A and the state of the environment of A. The following statement of the Second Law 

is employed [14]. Among all the states of a system that have a given value E of the energy and are 

compatible with a given set of values n of the amounts of constituents and  of the parameters, there 

exists one and only one stable equilibrium state. Moreover, starting from any state of a system, it is 

always possible to reach a stable equilibrium state with arbitrarily specified values of amounts of 

constituents and parameters by means of a reversible weight process. 

The second part of this statement of the Second Law is very demanding and should be revised 

and/or clarified. Indeed, an arbitrary change in composition of a system A (such as one which requires 

destruction or creation of matter) cannot be obtained by a weight process for A (without the 

corresponding creation or destruction of antimatter). 

The definition of entropy is given by employing two auxiliary quantities, called generalized 

adiabatic availability and generalized available energy. This method for the definition of entropy has 

the advantage of emphasizing from the beginning the relation between entropy and the maximum work 

obtainable in a weight process with a given initial state but has the disadvantage of making the 

treatment longer and more complex. 

In recent years, two novel approaches to the definition of entropy have been introduced by Lieb and 

Yngvason [11,16,17] and by the present authors [18,19]. 

The definition of entropy proposed by Lieb and Yngvason is based on the concept of adiabatic 

accessibility. A state Y is said to be adiabatically accessible from a state X, in symbolic form X ≺ Y, if 

it is possible to change the state from X to Y by means of an interaction with some device and a weight 

in such a way that the device returns to its initial state at the end of the process whereas the weight may 

have changed its position in a gravitational field. 

Note that the concept of adiabatic accessibility defined above coincides with that of accessibility by 

means of a weight process as defined in Reference [14] and not with the adiabatic accessibility 

considered by Carathéodory. 
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If X ≺ Y but X is not adiabatically accessible from Y, the symbol X ≺≺ Y is employed. If both X ≺ Y 

and Y ≺ X, then X is said to be equivalent to Y, X  Y. Another key concept in the Lieb-Yngvason 

approach is that of scaled copy of a system. Let t be any positive real number,  a system, and X a state 

of . The t-scaled copy  
(t) of  is a system such that to every state X of  there corresponds a state t X 

of  
(t) where the values of all the extensive properties (volume, energy, mole numbers … ) are equal to 

t times the values they have in state X. 

The following axioms on the order relation ≺ are postulated: 

(A1) Reflexivity. X  X. 

(A2) Transitivity. X ≺ Y and Y ≺ Z implies X ≺ Z. 

(A3) Consistency. X ≺ Y and X’ ≺ Y’ implies (X, X’) ≺ (Y, Y’), where the pairs of states in brackets 

are states of the composite system ( ,  ’). 

(A4) Scaling invariance. If X ≺ Y , then t X ≺ t Y for every t > 0. 

(A5) Splitting and recombination. For 0 < t < 1, X  (t X, (1 – t) X). 

(A6) Stability. If, for some pairs of states X and Y, (X,  Z0) ≺ (Y,  Z1) holds for a sequence of  ’s 

tending to zero and some states Z0 and Z1, then X ≺ Y. 

While Axioms (A1), (A2), and (A3) describe properties that one expects as natural for the adiabatic 

accessibility relation among states, the other axioms, which refer to scaled copies of a system, limit in 

effect the validity of the treatment presented in References [11,16] to systems which can be considered 

as the union of simple systems, each in a stable equilibrium state. For instance, scaled copies cannot be 

formed for a dielectric system in an electrostatic field nor for a small system with non-negligible,  

non-local effects and/or near-wall rarefaction or capillarity effects. 

Lieb and Yngvason consider a set of stable equilibrium states, which they call state space and 

denote by , where the following assumption holds:  

Comparison hypothesis. Any two states X and Y in  are comparable, i.e., either X ≺ Y or Y ≺ X or both.  

They prove that in a state space  such that the comparison hypothesis holds for  and for every 

scaled copy of , axioms (A1) ÷ (A6) imply the entropy principle stated as follows: 

There is a real-valued function on all the stable equilibrium states of all systems (including 

compound systems), called entropy and denoted by S such that: 

(a) when X and Y are comparable states, then X ≺ Y if and only if S(X)  S(Y); 

(b) if X and Y are states of some (possibly different) systems 1 and 2 and if (X, Y) denotes the 

corresponding state in the state space 1 × 2 of the composite of the two systems, then the 

entropy is additive for these states, namely S((X, Y)) = S(X) + S(Y); 

(c) S is extensive, i.e., for each state X in state space  and every integer t > 0, we can write  

S((t X)) = t S(X) where state (t X) is the scaled copy of X belonging to the t-times scaled copy of  , 

ሺ௧ሻ. 

For a given state space , the entropy S can be determined by the following procedure. Let us 

consider two states in , X0 and X1, such that X0 ≺≺ X1 and, therefore, on account of the entropy 

principle, S(X0) < S(X1). Let X be a state in , such that X0 ≺ X ≺ X1. Then, it is possible to prove that 

there exists a unique real number  between 0 and 1 such that X  ((1 – ) X0,  X1). Once  has been 

determined, one has that: 
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       0 11    S X S X S X  . (7)

By the procedure explained above and Equation (7) one determines an entropy function on  which 

is unique for every choice of the reference states X0 and X1 or, equivalently, which is determined up to 

an arbitrary linear transformation:     S X a S X B  with a > 0. The entropy functions established 

on the single state space will not, in general, fulfill the additivity for different systems. However, it is 

possible to prove the following conclusion [16]. 

Assume that the comparison hypothesis holds for every multiple scaled copy of  of the type 

ሺ௧భሻ ൈ ⋯ൈ ሺ௧ಿሻ and let S be an entropy function defined on . Then there exist constants a and 

B( ) such that the function S defined for all the stable equilibrium states of all state spaces ሺ௧భሻ ൈ
⋯ൈ ሺ௧ಿሻ by the relation: 

     S X a S X B     (8)

for X  , satisfies additivity, i.e., S((X, Y)) = S(X) + S(Y)), extensivity, i.e., S(t X) = t S(X), and is such 

that whenever X and Y are in the same state space, then X ≺ Y if and only if S(X)  S(Y). 

Another result obtained by Lieb and Yngvason in References [11,16] is to prove that the 

comparison hypothesis can be deduced, for simple systems and their scaled products, as a consequence 

of nine other axioms, which also imply additional structure of the state spaces and lead, e.g., to the 

concepts of pressure and temperature and to the concavity of entropy. These results will not be 

discussed here. 

While References [11,16] refer exclusively to stable equilibrium states, very recently Lieb and 

Yngvason [17] presented an extension of the definition of entropy to a state space ̂  which contains 

also nonequilibrium states (but not all nonequilibrium states) and is such that the comparison 

hypothesis can be considered as valid in ̂ . The authors denote by  the subset of the stable 

equilibrium states and assume that in  the relation ≺ fulfils Axioms (A1)  (A6), moreover:  

(N1) in the rest of ̂ the relation ≺ fulfils Axioms (A1), (A2), (A3), and (A6); and 

(N2) for every ˆX   there exist X’, X”   such that X’ ≺ X ≺ X”. 

They then prove that the validity of Axioms (A1)  (A6) in  , together with the validity of Axioms 

(N1), (N2) and the comparison hypothesis in the new state space ̂  implies the existence and 

uniqueness (up to a linear transformation) of an entropy function Ŝ  in ̂ , which extends S (i.e., 

coincides with S in the subset  of the stable equilibrium states) and is such that X ≺ Y implies 

   ˆ ˆS X S Y  for any two states X and Y in ̂ . 

The contribution provided by Lieb and Yngvason [11,16,17] is an interesting and rigorous analysis 

of the conditions required for the definition of entropy in a set of states which can also contain 

nonequilibrium states. However, the definition of entropy along the Lieb-Yngvason method does not 

suggest a simple direct procedure to measure the entropy difference between any pair of equilibrium or 

nonequilibrium states. Moreover the method is not applicable, in its present form, to systems contained 

in external electric or magnetic fields nor to small scale and few particle systems, i.e., systems that do 

not allow the creation of scaled copies even in their stable equilibrium states.  

A different approach to the definition of entropy, inspired by the Keenan-school method but 

independent of it, was recently developed by the present authors [18,19]. This approach is based on a 
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set of operational definitions of the basic concepts (system, property, state, isolated system, 

environment of a system, weight process, equilibrium state, stable equilibrium state) very similar to 

that presented in Reference [14] and on the same statement of the First Law. On the other hand, only 

the first part of the Second Law statement of Reference [14] is retained. The second part is replaced by 

a separate assumption, which refers only to closed systems and is not claimed to have a fully general 

validity. The definition of entropy is not based any more on the concepts of generalized adiabatic 

availability and of generalized available energy. It is instead obtained directly from the basic 

assumptions and from the definition of energy. Moreover it is stated for closed systems and extended to 

open systems [19] only at a later stage of the development. This sharp separation between the 

treatments of closed and open systems singles out an important conceptual dissimilarity between the 

meaning of the energy (and entropy) difference between two states of a closed system and that of the 

energy (and entropy) difference between two states of an open system. Indeed, for a closed system, the 

energy difference between two states depends only on the unit fixed (once and for all) for energy, and 

the entropy difference depends only on the units fixed (once and for all) for energy and for 

thermodynamic temperature. In contrast, for an open system, the energy (and entropy) difference 

between two states depends also on the choices of the reference states for pure substances and on the 

energy (and entropy) values assigned to the pure substances in such reference states. 

In analogy with Reference [14], the concepts of separable systems and of systems uncorrelated 

from each other are introduced. Separability is a requirement for the definition of energy: if a system A 

is a source of long-range force fields for a system B, the energy of A (or of B) cannot be defined. 

Consider, for instance, two rigid bodies A and B in a gravitational field produced by the systems 

themselves: while the potential energy of the composite system AB can be defined, that of A or of B 

cannot. Non-correlation is a requirement imposed for the definition of the thermodynamic entropy, 

relevant for microscopic or mesoscopic systems, which can exhibit quantum-mechanical correlations 

with each other. 

In this paper, a further development of the method for the definitions of energy and entropy 

proposed in References [18,19] is presented, with the following improvements. Each of the axioms 

employed in the treatment is placed in one of two different categories: Postulates, which are 

statements with a declared fully general validity; Assumptions, which are not claimed to hold 

necessarily for all systems and states and as such determine the domain of validity of the definitions of 

energy and of entropy derived from them. In agreement with Lieb and Yngvason [11,16,17], the 

statement that any two states of a closed system can be the end states of a weight process (i.e., the 

comparison hypothesis) is not considered as having necessarily a general validity; this statement is not 

employed in the present treatment. The definition of the energy difference between any pair of states of 

a closed system is obtained through the following axioms: 

Assumption 1. Any pair of states of a closed system A, such that the system is separable from its 

environment in both states, can be interconnected by a weight polygonal for A.  

The concept of weight polygonal, already employed in Reference [15], is defined in Section 3. 

Postulate 1. The works done by a system in any two weight polygonals between the same initial and 

final states are identical. 
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The definition of entropy is based on two additional Postulates and three additional Assumptions.  

Postulate 2. Among all the states of a closed system A such that the constituents of A are contained in 

a given set of regions of space, there is a stable equilibrium state for every value of the energy EA. 

Assumption 2. Starting from any state in which the system is separable from its environment, a closed 

system A can be changed to a stable equilibrium state with the same energy by means of a zero work 

weight process for A in which the regions of space occupied by the constituents of A have no net changes. 

Postulate 3. There exist systems, called normal systems, whose energy has no upper bound. Starting 

from any state in which the system is separable from its environment, a normal system A can be 

changed to a non-equilibrium state with arbitrarily higher energy by means of a weight process for A 

in which the regions of space occupied by the constituents of A have no net changes. 

Assumption 3. There exist normal systems, called thermal reservoirs, which fulfill the  

following conditions: 

(a) the regions of space occupied by the constituents are fixed; 

(b) if R is a thermal reservoir in an arbitrary stable equilibrium state R1 and Rd is an identical 

copy of R also in arbitrary stable equilbrium state Rd
2, not necessarily equal to R1, then R and 

Rd are in mutual stable equilibrium. 

Assumption 4. Every pair of states (A1, A2) of a closed system A, such that A is separable and 

uncorrelated from its environment in both states, can be interconnected by a reversible standard 

weight process for AR, where R is an arbitrarily chosen thermal reservoir initially in an arbitrarily 

chosen stable equilibrium state. 

A standard weight process for AR is a weight process for the composite of systems A and R in 

which the end states of R are stable equilibrium states [18,19] (see definition in Section 4). 

It is shown in Section 5 that, if one disregards the conditions of separability and non-correlation 

(not discussed in References [11,16,17]), one can establish a relation between the domain of validity of 

the present definition of entropy and that of the definition developed by Lieb and Yngvason. Namely, 

for systems which allow the creation of scaled copies of their state space when their subsystems are in 

stable equilibrium states (i.e., collections of simple systems), the domain of validity of the present 

definition of entropy coincides with the domain of the states in which Lieb and Yngvason prove the 

existence and uniqueness of an entropy function which characterizes the relation of adiabatic 

comparability [17]. However, the domain of validity of the present definition of entropy extends also 

to systems which do not allow the creation of scaled copies even in their stable equilibrium states such 

as systems contained in electric or magnetic fields, systems with small number of particles for which 

wall rarefaction effects cannot be neglected, or multi-phase systems for which capillary and interfacial 

effects are important.  

2. Summary of Basic Definitions 

We briefly recall here some definitions of the basic concepts of thermodynamics employed in our 

treatment. A more complete and more detailed set of operational basic definitions can be found  

in References [18,19]. 
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With the term system we mean a set of material particles, of one or more kinds, such that, at each 

instant of time, the particles of each kind are contained within a given region of space. If the external 

surface of the union of the regions of space which contain the particles of the system cannot be crossed 

by any material particle, the system is called closed. 

Any system is endowed with a set of reproducible measurement procedures such that each procedure, 

if applied at an instant of time t, yields a result which is independent of the previous time evolution of the 

system. Each procedure of this kind defines a property of the system. The set of all the values of the 

properties of a system, at a given instant of time, defines the state of the system at that instant. 

A system can be in contact with other matter or surrounded by empty space. Moreover, force fields 

due to external matter can act in the region of space occupied by the system. If, at an instant of time, 

all the particles of the system are removed from the respective regions of space and brought far away, 

but a force field is still present in the region of space (previously) occupied by the system, then this 

force field is called an external force field. An external force field can be either gravitational, or 

electric or magnetic, or a superposition of the three. 

Consider the union  of all the regions of space spanned by a system during its entire time 

evolution. If no other material particles, except those of the system, are present in  or touch the 

boundary of , and if the external force field in  is either vanishing or stationary, then we say that the 

system is isolated. Suppose that an isolated system I can be divided into two subsystems, A and B. 

Then, we can say that B is the environment of A and vice-versa. 

If, at a given instant of time, two systems A and B are such that the force field produced by B is 

vanishing in the region of space occupied by A and vice-versa, then we say that A and B are separable 

at that instant. The energy of a system A is defined only for the states of A such that A is separable 

from its environment. 

If, at a given instant of time, two systems A and B are such that the outcomes of the measurements 

performed on B are statistically independent of those of the measurements performed on A, and vice-versa, 

we say that A and B are uncorrelated from each other at that instant. The entropy of a system A is 

defined only for the states of A such that A is separable and uncorrelated from its environment. 

We call process of a system A from state A1 to state A2 a time evolution (AB)1  (AB)2 of the 

isolated system AB from (AB)1 (with A in state A1) to (AB)2 (with A in state A2), where B is the 

environment of A. A process of A is reversible if the isolated system AB can undergo a time evolution 

(AB)2  (AB)1 which restores it in its initial state (AB)1 and is called the reverse of (AB)1  (AB)2. A 

process of a system A is called a cycle for A if the final state A2 coincides with the initial state A1. A 

cycle for A is not necessarily a cycle for AB. 
An elementary mechanical system is a system such that the only admissible change of state for it is 

a space translation in a uniform external force field. An example is a particle which can only change its 

height in a uniform external gravitational field. A process of a system A from state A1 to A2, such that 

both at A1 and at A2 system A is separable from its environment, is called a weight process for A if the 

only net effect of the process in the environment of A is the change of state of an elementary 

mechanical system. We call work done by a system A in a weight process for A from A1 to A2, denoted 

by 12
AW  , the corresponding change in potential energy of the elementary mechanical system. The 

opposite of 12
AW  , denoted by 12

AW  , is called work received by A in the process. 
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An equilibrium state of a system is a state such that the system is separable and the state does not 

vary with time and can be reproduced while the system is isolated. An equilibrium state of a closed 

system A in which A is uncorrelated from its environment B is called a stable equilibrium state if it 

cannot be changed to a different state in which A is separable and uncorrelated from its environment by 

a process such that neither the regions of space where the constituents of A are contained nor the state 

of the environment B of A have net changes. Two systems, A and B, are in mutual stable equilibrium if 

the composite system AB (i.e., the union of both systems) is in a stable equilibrium state. 

3. Definition of Energy for a Closed System  

Weight polygonal and work in a weight polygonal. Consider an ordered set of n + 2 states of a 

closed system A, (A1, Ai1, Ai2, … , Ain-1, Ain, A2), such that in each of these states A is separable from its 

environment. If n + 1 weight processes exist, which interconnect A1 and Ai1, Ai1 and Ai2, … , Ain-1 and 

Ain, An and A2, regardless of the direction of each process, we say that A1 and A2 can be interconnected 

by a weight polygonal. For instance, if weight processes A1  A3 and A2  A3 exist for A, we say that 

A1  A3  A2 is a weight polygonal for A from A1 to A2. We call work done by A in a weight 

polygonal from A1 to A2 the sum of the works done by A in the weight processes with direction from A1 

to A2 and the opposites of the works done by A in the weight processes with direction from A2 to A1 [15]. 
The work done by A in a weight polygonal from A1 to A2 will be denoted by wpol

12
AW  ; its opposite will 

be called work received by A in a weight polygonal from A1 to A2 and will be denoted by wpol
12

AW  . 

Clearly, for a given weight polygonal, wpol wpol wpol
12 12 21

A A AW W W     . In the example of weight 

polygonal A1  A3  A2 sketched in Figure 1, one has that: 
wpol

12 13 23
A A AW W W    . (9)

Figure 1. Sketch of a weight polygonal A1  A3  A2; the arrows represent weight 

processes for A. 

 

Assumption 1. Every pair of states (A1, A2) of a closed system A, such that A is separable from its 

environment in both states, can be interconnected by means of a weight polygonal for A. 

Postulate 1. The works done by a system in any two weight polygonals between the same initial and 

final states are identical. 
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Comment. In Reference [15] it is proved that, in sets of states where sufficient conditions of 

interconnectability by weight processes hold, Postulate 1 can be proved as a consequence of the 

traditional form of the First Law, which concerns weight processes (or adiabatic processes). 

Definition of energy for a closed system and proof that it is a property. Let (A1, A2) be any pair of 

states of a closed system A, such that A is separable from its environment in both states. We call the 

energy difference between states A2 and A1 the work received by A in any weight polygonal from A1 to 

A2 expressed as: 
wpol wpol

2 1 12 12
A A A AE E W W     . (10)

Assumption 1 and Postulate 1 yield the following consequences: 

(a) the energy difference between two states A2 and A1 depends only on the states A1 and A2; 

(b) (additivity of energy differences) consider a pair of states (AB)1 and (AB)2 of a composite system 

AB, where both A and B are closed and denote by A1, B1 and A2, B2 the corresponding states of A 

B; then, if A, B and AB are separable from their environment in the states considered: 

2 1 2 1 2 1
AB AB A A B BE E E E E E     ;  (11)

(c)  (energy is a property) let A0 be a reference state of a system A, in which A is separable from its 
environment, to which we assign an arbitrarily chosen value of energy 0

AE ; the value of the 

energy of A in any other state A1 in which A is separable from its environment is determined 

uniquely by: 
wpol

1 0 01
A A AE E W   ,  (12)

where wpol
01
AW   is the work received by A in any weight polygonal for A from A0 to A1; 

(d) energy is defined for every set of states of any closed system A in which A is separable from its 

environment and Assumption 1 holds. 

Simple proofs of these consequences can be found in Section 5 of Reference [15] and will not be 

repeated here. 

Comment. Since the energy of A is defined only when A is separable from its environment, in the 

following we will consider as understood that A is separable from its environment in every state in 

which the energy of A is defined. 

4. Definition of entropy for a closed system  

Postulate 2. Among all the states of a closed system A such that the constituents of A are contained in 

a given set of regions of space, there is a stable equilibrium state for every value of the energy EA. 

Assumption 2. Starting from any state in which the system is separable from its environment, a 

closed system A can be changed to a stable equilibrium state with the same energy by means of a 

zero work weight process for A in which the regions of space occupied by the constituents of A have 

no net changes. 

Lemma 1. Uniqueness of the stable equilibrium state for a given value of the energy. There can be 

no pair of different stable equilibrium states of a closed system A with identical regions of space 

occupied by the constituents of A and the same value of the energy EA. 
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Proof. Since A is closed and in any stable equilibrium state it is separable and uncorrelated from its 

environment, if two such states existed, by Assumption 2 the system could be changed from one to the 

other by means of a zero-work weight process, with no change of the regions of space occupied by the 

constituents of A and no change of the state of the environment of A. Therefore, neither would satisfy 

the definition of stable equilibrium state. 

Postulate 3. There exist systems, called normal systems, whose energy has no upper bound. Starting 

from any state in which the system is separable from its environment, a normal system A can be 

changed to a non-equilibrium state with arbitrarily higher energy by means of a weight process for A 

in which the regions of space occupied by the constituents of A have no net changes. 

Comments. Exceptions to this hypothesis are special systems, such as spin systems or systems that can 

access only a finite number of energy levels, for which the admissible values of the energy are 

bounded within a finite range. The additivity of energy implies that the union of two or more normal 

systems, each separable from its environment, is a normal system to which Postulate 3 applies. In 

traditional treatments of thermodynamics, Postulate 3 is not stated explicitly but is used, for example, 

when one states that any amount of work can be transferred to a thermal reservoir by a stirrer. 

Theorem 1. Impossibility of a Perpetual Motion Machine of the Second Kind (PMM2). If a normal 

system A is in a stable equilibrium state, it is impossible to lower its energy by means of a weight process 

for A in which the regions of space occupied by the constituents of A have no net change. 

Proof. (See sketch in Figure 2). Suppose that, starting from a stable equilibrium state Ase of A, by 

means of a weight process 1 with positive work WA = W > 0, the energy of A is lowered and the 

regions of space occupied by the constituents of A have no net change. On account of Postulate 3, it 

would then be possible to perform a weight process 2 for A in which the regions of space occupied by 

the constituents of A have no net change, the weight M is restored to its initial state so that the positive 

amount of energy WA = W > 0 is supplied back to A, and the final state of A is a nonequilibrium state, 

namely, a state clearly different from Ase. Thus, the composite zero-work weight process (1, 2) 

would violate the definition of stable equilibrium state. 

Figure 2. Illustration of the proof of Theorem 1. 
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Systems in mutual stable equilibrium. We say that two systems A and B, each in a stable equilibrium 

state, are in mutual stable equilibrium if the composite system AB is in a stable equilibrium state. 

Assumption 3. There exist normal systems, called thermal reservoirs, which fulfill the  

following conditions: 

(a) the regions of space occupied by the constituents are fixed; 

(b) if R is a thermal reservoir in an arbitrary stable equilibrium state R1 and Rd is an identical copy 

of R also in arbitrary stable equilibrium state Rd
2, not necessarily equal to R1, then R and Rd are 

in mutual stable equilibrium. 

Comment. Every normal single-constituent system without internal boundaries and applied external 

fields, and with a number of particles of the order of one mole (so that the simple system 

approximation as defined in page 263 of Reference [14] applies), when restricted to a fixed region of 

space of appropriate volume and to the range of energy values corresponding to the so-called triple-

point stable equilibrium states, is an excellent approximation of a thermal reservoir. 

Indeed, for a system of this kind, when three different phases (such as, solid, liquid and vapor) are 

present, two stable equilibrium states with different energy values have, with an extremely high 

approximation, the same temperature (here not yet defined) and, thus, fulfill the condition for the 

mutual stable equilibrium of the system and a copy thereof. 

The existence of thermal reservoirs has been implicitly assumed in almost every traditional 

treatment of thermodynamics. It has been a basic assumption in treatments of the physics of open 

quantum systems [20], fluctuation theory [21], quantum measurement [22], and thermodynamics in the 

quantum regime [23]. 

Reference thermal reservoir. A thermal reservoir chosen once and for all is called a reference 

thermal reservoir. To fix ideas, we choose water as the constituent of our reference thermal reservoir, 

i.e., sufficient amounts of ice, liquid water, and water vapor at triple point conditions. 

Standard weight process. Given a pair of states (A1, A2) of a closed system A and a thermal reservoir 

R, we call standard weight process for AR from A1 to A2 a weight process for the composite system AR 

in which the end states of R are stable equilibrium states. We denote by  sw

1 1 2 2A R A R  a standard 

weight process for AR from A1 to A2 and by  
1 2

swR

A A
E the corresponding energy change of the thermal 

reservoir R. 

Assumption 4. Every pair of states (A1, A2) of a closed system A, such that A is separable and 

uncorrelated from its environment in both states, can be interconnected by a reversible standard 

weight process for AR, where R is an arbitrarily chosen thermal reservoir initially in an arbitrarily 

chosen stable equilibrium state. 

Theorem 2. For a given closed system A and a given thermal reservoir R, among all the standard 

weight processes for AR between a given pair of states (A1, A2) of A in which A is separable and 

uncorrelated from its environment, the energy change  
1 2

swR

A A
E of the thermal reservoir R has a lower 

bound which is reached if and only if the process is reversible. 



Entropy 2014, 16 1560 

 

 

Proof. Let AR  denote a standard weight process for AR from A1 to A2, and revAR a reversible one; 

the energy changes of R in processes AR and revAR are, respectively,  
1 2

swR

A A
E and  

1 2

sw revR

A A
E . With 

the help of Figure 3, we will prove that regardless of the initial state of R: 

(a)    
1 2 1 2

sw rev swR R

A A A A
E E   ; 

(b) if also AR is reversible, then    
1 2 1 2

sw sw revR R

A A A A
E E   ; 

(c) if    
1 2 1 2

sw sw revR R

A A A A
E E   , then also AR is reversible. 

Figure 3. Illustration of the proof of Theorem 2. 

 

Proof of (a). Let us denote by R1 and R2 the initial and the final states of R in process revAR . Let us denote 

by Rd the duplicate of R which is employed in process AR , and by 3
dR  and 4

dR the initial and the final 

states of Rd in this process. Let us suppose ab absurdo that    
1 2 1 2

sw rev swR R

A A A A
E E   , and consider the 

composite process ( revAR , AR ), where revAR  is a reverse of revAR . This process would be a weight 

process for RRd in which, starting from the stable equilibrium state 2 3
dR R , the energy of RRd is lowered and 

the regions of space occupied by the constituents of RRd have no net changes, in contradiction to 

Theorem 1. Therefore,    
1 2 1 2

sw rev swR R

A A A A
E E   . 

Proof of (b). If AR is reversible too, then, in addition to    
1 2 1 2

sw rev swR R

A A A A
E E   , the relation 

   
1 2 1 2

sw sw revR R

A A A A
E E    must hold too. Otherwise, the composite process ( revAR , AR ) would be a 

weight process for RRd in which, starting from the stable equilibrium state 1 4
dR R ,the energy of RRd is 

lowered and the regions of space occupied by the constituents of RRd have no net changes, in contradiction 

to Theorem 1. Therefore,    
1 2 1 2

sw sw revR R

A A A A
E E   . 

Proof of (c). Let AR be a standard weight process for AR, from A1 to A2, such that 

   
1 2 1 2

sw sw revR R

A A A A
E E   , and let R1 be the initial state of R in this process. Let revAR be a reversible 

standard weight process for AR, from A1 to A2, with the same initial state R1 of R. Thus, 3
dR coincides 

with R1 and 4
dR coincides with R2. The composite process ( AR , revAR ) is a cycle for the isolated 

3
dR 4

dR

revAR

AR

1A

1R

2A

2R
1 2

swrev( )R
A AE 

1 2

sw( )R
A AE



Entropy 2014, 16 1561 

 

 

system ARB, where B is the environment of AR. As a consequence, AR is reversible, because it is a 

part of a cycle of the isolated system ARB. 

Theorem 3. Let R' and R'' be any two thermal reservoirs and consider the energy changes,  
1 2

swrev'R

A A
E

and  
1 2

swrev"R

A A
E respectively, in the reversible standard weight processes  swrev' '

' 1 1 2 2AR A R A R    and 

 swrev" "
" 1 1 2 2AR A R A R   , where (A1, A2) is an arbitrarily chosen pair of states of any closed system A, 

such that A is separable and uncorrelated from its environment in both states. Then the ratio 

   
1 2 1 2

swrev swrev' "R R

A A A A
E E   

(a) is positive; 

(b) depends only on R' and R'', i.e., it is independent of (i) the initial stable equilibrium states of R' 

and R'', (ii) the choice of system A, and (iii) the choice of states A1 and A2. 

Figure 4. Illustration of the proof of Theorem 3, part (a). 

 

Proof of (a). With the help of Figure 4, let us suppose that  
1 2

swrev' 0R

A A
E  . Then,  

1 2

swrev"R

A A
E cannot be 

zero. In fact, in that case the composite process ( 'AR , "AR ), which is a cycle for A, would be a 

weight process for R' in which, starting from the stable equilibrium state R'1, the energy of R' is 

lowered and the regions of space occupied by the constituents of R' have no net changes, in 

contradiction to Theorem 1. Moreover,  
1 2

swrev"R

A A
E cannot be positive. In fact, if it were positive, the 

work performed by R'R'' as a result of the overall weight process ( 'AR , "AR ) for R'R'' would be: 

   
1 2 1 2

swrev swrev' " ' "R R R R

A A A A
W E E       , (13)

where both terms are positive. After the process ( 'AR , "AR ), on account of Postulate 3 and 

Assumption 2, one could perform a weight process "R  for R'' in which a positive amount of energy 

equal to  
1 2

swrev"R

A A
E is given back to R'' and the latter is restored to its initial stable equilibrium state. 

As a result, the composite process ( 'AR , "AR , "R ) would be a weight process for R' in which, 

starting from the stable equilibrium state R'1, the energy of R' is lowered and the regions of space 

occupied by the constituents of R' have no net changes, in contradiction to Theorem 1. Therefore, the 

condition  
1 2

swrev' 0R

A A
E  implies  

1 2

swrev" 0R

A A
E  . 

1''R 2''R

'AR

''AR

1A

1'R

2A

2'R
1 2

' swrev( )R
A AE

1 2

'' swrev( )R
A AE
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Let us suppose that  
1 2

swrev' 0R

A A
E  . Then, for process 'AR one has that  

2 1

swrev' 0R

A A
E  . By 

repeating the previous argument, one proves that for process "AR one has that  
2 1

swrev" 0R

A A
E  . 

Therefore, for process "AR one has that  
1 2

swrev" 0R

A A
E  . 

Proof of (b). Choose a pair of states (A1, A2) of a closed system A such that A is separable and 

uncorrelated from its environment and consider the reversible standard weight process 

 swrev

' 1 1 2 2AR A R' A R'    for AR’ with R' initially in state R'1 and the reversible standard weight 

process  swrev

" 1 1 2 2"AR A R A R"   for AR'' with R'' initially in state R''1. Then choose a pair of states 

(A'1, A'2) of another closed system A' such that A' is separable and uncorrelated from its environment 

and consider the reversible standard weight process  swrev

' ' 1 1 2 2A R A' R' A' R'    for A'R' with R' 

initially in state R'1 and the reversible standard weight process  swrev

' " 1 1 2 2A R A' R" A' R"    for A'R'' 

with R'' initially in state R''1. 

With the help of Figure 5, we will prove that the changes in energy of the reservoirs in these 

processes obey the relation: 

 
 

 
 

1 2 1 2

1 2 1 2

swrev swrev

'

swrev swrev

'

R' R'

A A A' A

R" R"

A A A' A

E E

E E

 


 
. (14)

Let us assume:  
1 2

swrev' 0R

A A
E   and  

1 2

swrev' 0R

A' A'
E  , which implies, on account of part (a) of the proof, 

that  
1 2

swrev
0R''

A A
E  and  

1 2

swrev
0R''

A' A'
E  . This is not a restriction, because it is possible to reverse the 

processes under consideration. 

Now, as is well known, any real number can be approximated with arbitrarily high accuracy by a 

rational number. Therefore, we will assume that the energy changes  
1 2

swrev'R

A A
E and  

1 2

swrev'R

A' A'
E are 

rational numbers so that whatever is the value of their ratio, there exist two positive integers m and n 

such that    
1 2 1 2

swrev swrevR' R'

A A A' A'
E E n m   , i.e.: 

   
1 2 1 2

swrev swrevR' R'

A A A' A'
m E n E   . (15)

Figure 5. Illustration of the proof of Theorem 3, part (b). 

 

1"R 2"R

'AR

"AR

1A

1'R

2A

2'R
1 2

' swrev( )R
A AE

1 2

" swrev( )R
A AE 

m times

m times
1"R 2"R

' 'A R

' "A R

1'A

1'R

2'A

2'R
1 2

' swrev
' '( )R

A AE 

1 2

" swrev
' '( )R

A AE
n times

n times
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As sketched in Figure 5, let us consider the composite processes A and A'  defined below. A  is 

the following composite weight process for the composite system AR'R'': starting from the initial state 

R'1 of R' and R''2 of R'', system A is brought from A1 to A2 by a reversible standard weight process for 

AR' and then from A2 to A1 by a reversible standard weight process for AR''; whatever the new states of 

R' and R'' are, again system A is brought from A1 to A2 by a reversible standard weight process for AR' 

and back to A1 by a reversible standard weight process for AR'' until the cycle for A is repeated m 

times. Similarly, A'  is a composite weight process for the composite system A'R'R'' whereby starting 

from the end states of R' and R'' reached by process A , system A' is brought from A'1 to A'2 by a 

reversible standard weight process for A'R''; then from A'2 to A'1 by a reversible standard weight 

process for A'R'; and so on until the cycle for A' is repeated n times. 
Clearly, the whole composite process ( A , A' ) is a cycle for AA'. Moreover, it is a cycle also for 

R'. In fact, on account of Theorem 2, the energy change of R' in each process AR' is equal to 

 
1 2

swrev'R

A A
E , regardless of its initial state, and in each process A'R' is equal to  

1 2

swrev'R

A' A'
E  . 

Therefore, the energy change of R' in the whole composite process ( A , A' ) is 

   
1 2 1 2

swrev swrevR' R'

A A A' A'
m E n E    and equals zero on account of Equation (15). As a result, after ( A , A' ), 

reservoir R' has been restored to its initial state so that ( A , A' ) is a reversible weight process for R''. 

Again, on account of Theorem 2, the overall energy change of R'' in the whole composite process is 

   
1 2 1 2

swrev swrevR'' R''

A A A' A'
m E n E    . If this quantity were negative, Theorem 1 would be violated. If this 

quantity were positive, Theorem 1 would also be violated by the reverse of the process, ( A , A' ). 

Therefore, the only possibility is that    
1 2 1 2

swrev swrev
0R'' R''

A A A' A'
m E n E     , i.e.: 

   
1 2 1 2

swrev swrevR'' R''

A A A' A'
m E n E   . (16)

Finally, taking the ratio of Equations (15) and (16), we obtain Equation (14) which is our conclusion. 

Temperature of a thermal reservoir. Let R be a given thermal reservoir and R0 a reference thermal 

reservoir. Select an arbitrary pair of states (A1, A2) of a closed system A such that A is separable and 

uncorrelated from its environment in both states and consider the energy changes  
1 2

swrevR

A A
E and 

 0

1 2

swrev
R

A A
E in two reversible standard weight processes from A1 to A2, one for AR and the other for 

AR0, respectively. We call the temperature of R the positive quantity: 

 
 

0
1 2

0

1 2

swrev

swrev

R

A AR R

R

A A

E
T T

E





, (17)

where 
0RT is a positive constant associated arbitrarily with the reference thermal reservoir R0. 

Clearly, the temperature TR of R is defined only up to the arbitrary multiplicative constant 
0RT . If 

for R0 we select a thermal reservoir consisting of ice, liquid water, and water vapor at triple-point 

conditions and we set 
0RT = 273.16 K, we obtain the Kelvin temperature scale. 
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Corollary 1. The ratio of the temperatures of two thermal reservoirs, R' and R'', is independent of the 

choice of the reference thermal reservoir and can be measured directly as: 

 
 

1 2

1 2

swrev

swrev

R'
R'

A A

R'' R''

A A

ET

T E





, (18)

where  
1 2

swrevR'

A A
E and  

1 2

swrevR''

A A
E are the energy changes of R' and R'' in two reversible standard weight 

processes, one for AR' and the other for AR'', which interconnect the same pair of states (A1, A2) such 

that A is separable and uncorrelated from its environment in both states. 

Proof. Let  0

1 2

swrev
R

A A
E  be the energy change of the reference thermal reservoir R0 in any reversible 

standard weight process for AR0 which interconnects the same states (A1, A2) of A. From Equation (17) 

we have that: 

 
 

0
1 2

0

1 2

swrev

swrev

R'

A AR' R

R

A A

E
T T

E





 , 

 
 

0
1 2

0

1 2

swrev

swrev

R''

A AR'' R

R

A A

E
T T

E





,  (19)

so that the ratio R' R''T T is given by Equation (18). 

Corollary 2. Let (A1, A2) be any pair of states of a closed system A such that A is separable and 

uncorrelated from its environment in both states and let  
1 2

swrevR

A A
E be the energy change of a thermal 

reservoir R with temperature TR in any reversible standard weight process for AR from A1 to A2. Then, 

for the given system A, the ratio  
1 2

swrevR R

A A
E T  depends only on the pair of states (A1, A2), i.e., it is 

independent of the choice of reservoir R and of its initial stable equilibrium state R1. 

Proof. Let us consider two reversible standard weight processes from A1 to A2, one for AR' and the 

other for AR'', where R' is a thermal reservoir with temperature TR’ and R'' is a thermal reservoir with 

temperature TR’’. Then, Equation (18) yields: 

   
1 2 1 2

swrev swrevR' R''

A A A A

R' R''

E E

T T

 
 . (20)

Definition of entropy for a closed system and proof that it is a property. Let (A1, A2) be any pair of 

states of a closed system A such that A is separable and uncorrelated from its environment in both 

states, and let R be an arbitrarily chosen thermal reservoir placed in the environment B of A. We call 

the entropy difference between A2 and A1 the quantity: 

 
1 2

swrev

2 1

R

A AA A
R

E
S S

T


   , (21)

where  
1 2

swrevR

A A
E is the energy change of R in any reversible standard weight process for AR from A1 to 

A2 and TR is the temperature of R. On account of Corollary 2, the right hand side of Equation (21) is 

determined uniquely by states A1 and A2. 
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Let A0 be a reference state of A in which A is separable and uncorrelated from its environment and 
assign to A0 an arbitrarily chosen value 0

AS of the entropy. Then, the value of the entropy of A in any 

other state A1 of A in which A is separable and uncorrelated from its environment is determined 

uniquely by the equation: 

 
0 1

swrev

1 0

R

A AA A
R

E
S S

T


  ,  (22)

where  
0 1

swrevR

A A
E  is the energy change of R in any reversible standard weight process for AR from A0 

to A1 and TR is the temperature of R. 

Therefore, entropy is a property of any closed system A, defined in every set of states of A where 

Assumptions 2 and 4 hold. 

Theorem 4. Additivity of entropy differences. Consider the pair of states (C1 = A1B1, C2 = A2 B2) of 

the composite system C = AB such that A and B are closed, A is separable and uncorrelated from its 

environment in both states A1 and A2, and B is separable and uncorrelated from its environment in both 

states B1 and B2. Then: 

2 2 1 1 2 1 2 1
AB AB A A B B
A B A BS S S S S S     .  (23)

Proof. Let us choose a thermal reservoir R with temperature TR and consider the composite process 

(AR, BR) where AR is a reversible standard weight process for AR from A1 to A2, while BR is a 

reversible standard weight process for BR from B1 to B2. The composite process (AR, BR) is a reversible 

standard weight process for CR from C1 to C2 in which the energy change of R is the sum of the energy 

changes in the constituent processes AR and BR, i.e.,      
1 2 1 2 1 2

swrev swrev swrev
.R R R

C C A A B B
E E E     Therefore: 

     
1 2 1 2 1 2

swrev swrev swrevR R R

C C A A B B

R R R

E E E

T T T

  
  .  (24)

Equation (24) together with the definition of the entropy difference, Equation (21), yield Equation (23). 

Comment. As a consequence of Theorem 4, if the values of entropy are chosen so that they are additive 

over the subsystems in their reference states, the entropy of a composite system is equal to the sum of 

the entropies of the constituent subsystems. 

Theorem 5. Let (A1, A2) be any pair of states of a closed system A such that A is separable and 

uncorrelated from its environment in both states, and let R be a thermal reservoir with temperature TR. 

Furthermore, let ARirr be any irreversible standard weight process for AR from A1 to A2 and let 

 
1 2

swirrR

A A
E  be the energy change of R in this process. Then: 

 
1 2

swirr

2 1

R

A A A A
R

E
S S

T


   . (25)

Proof. Let ARrev be any reversible standard weight process for AR from A1 to A2 and let  
1 2

swrevR

A A
E  be 

the energy change of R in this process. On account of Theorem 2: 
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1 2 1 2

swrev swirrR R

A A A A
E E   . (26)

Since TR is positive, from Equations (26) and (21) one obtains: 

   
1 2 1 2

swirr swrev

2 1

R R

A A A A A A
R R

E E
S S

T T

 
     . (27)

Theorem 6. (Principle of entropy nondecrease). Let (A1, A2) be a pair of states of a closed system A 

such that A is separable and uncorrelated from its environment in both states, and let (A1  A2)w be 
any weight process for A from A1 to A2. Then, the entropy difference 2 1

A AS S  is equal to zero if and only 

if the weight process is reversible; it is strictly positive if and only if the weight process is irreversible. 

Proof. If (A1  A2)w is reversible, then it is a special case of a reversible standard weight process for 

AR in which the initial stable equilibrium state of R does not change. Therefore,  
1 2

swrev
0R

A A
E  ; and by 

applying the definition of entropy difference, Equation (21), one obtains: 

 
1 2

swrev

2 1 0

R

A AA A
R

E
S S

T


    . (28)

If (A1  A2)w is irreversible, then it is a special case of an irreversible standard weight process for 

AR in which the initial stable equilibrium state of R does not change. Therefore,  
1 2

swirr
0R

A A
E  , and 

Equation (25) yields: 

 
1 2

swirr

2 1 0

R

A AA A
R

E
S S

T


    . (29)

Moreover, if a weight process (A1  A2)w for A is such that 2 1 0A AS S  , then the process must be 

reversible, because we just proved that for any irreversible weight process 2 1 0A AS S  ; if a weight 

process (A1  A2)w for A is such that 2 1 0A AS S  , then the process must be irreversible, because we 

just proved that for any reversible weight process 2 1 0A AS S  . 

5. Correspondence between the Implications of Assumptions 2 and 4 and Those of the 

Comparison Hypothesis of Lieb and Yngvason, for a Collection of Simple Systems 

In this Section, we consider a closed system A which is composed of simple subsystems so that 

scaled copies of A can be formed when its simple subsystems are in stable equilibrium. For A, we 

consider a set of states ̂  such that, for every state, A is separable and uncorrelated from its 

environment and energy is defined. 

We prove that: 

(1) if Postulates 2 and 3 and Assumptions 2 and 4 hold in ̂ , then the comparison hypothesis (i.e., 

every pair of states can be interconnected by a weight process for A) holds in ̂ (see Theorem 6); 

(2) if (i) the comparison hypothesis holds in ̂ ; (ii) the relation ≺ fulfils Axioms (A1)  (A6) of 

References [11,16,17] in the subset  of the stable equilibrium states of ̂ 	and Axioms N1, N2 
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of Reference [17] in ̂ , so that, due to (i) and (ii) entropy is defined in ̂  and has its  

well-known characteristics; (iii) every pair of stable equilibrium states of  can be 

interconnected by a reversible standard weight process for AR where R is any thermal reservoir 

initially in an arbitrarily chosen stable equilibrium state; then Assumptions 2 and 4 hold in ̂  

(see Theorem 8 below). 

Postulates 2 and 3, condition (ii) (for a system composed of simple subsystems) and condition (iii) 

can be considered as always fulfilled (the latter by any quasistatic process in which a reversible Carnot 

engine is employed). Therefore, one can conclude that, for a system composed of simple subsystems, 

the domain of validity of the definition of entropy presented here (as determined by Assumptions 2 and 4) 

coincides with the domain of the states in which Lieb and Yngvason prove the existence and 

uniqueness of an entropy function which characterizes the relation of adiabatic comparability (as 

determined by the comparison hypothesis). 

Theorem 7. Consider a set of states ̂  of a closed system A such that in the whole set, A is separable 

and uncorrelated from its environment, energy is defined, and Postulates 2, 3 and Assumptions 2, 4 

hold. Then, every pair of states (A1, A2) of ̂ 	can be interconnected by a weight process for A. 

Proof. Let (A1, A2) be any pair of states of ̂  and consider a reversible standard weight process 

(A1R1 A2R2)sw for AR where R is an arbitrarily chosen thermal reservoir, which exists due to 

Assumption 4. If the energy of R in state R2 coincides with that in state R1, then state R2 coincides with R1 

on account of Postulate 2 and Lemma 1 so that (A1R1 A2R2)sw is a weight process for A from A1 to A2.  

Suppose that the energy of R in state R2 is lower than that in state R1. On account of Postulate 3 and 

Assumption 2, there exists a weight process for R from R2 to R1. The composite process (A1R1 

A2R2)sw followed by this process is a weight process for A from A1 to A2, because R is restored in its 

initial state. 

Suppose that the energy of R in state R2 is higher than that in state R1. On account of Postulate 3 and 

Assumption 2, there exists a weight process for R from R1 to R2. This process, followed by the reverse 

of (A1R1 A2R2)sw, forms a weight process for A from A2 to A1. 

Comment. Note that Assumptions 2 and 4 yield in ̂ 	the comparison hypothesis and, a fortiori, 

Assumption 1. The latter is stated here as an independent assumption because it is supposed to also 

hold in broader sets of states. 

Theorem 8. Consider a set of states ̂  of a closed system A such that, in the whole set, A is separable 

and uncorrelated from its environment and energy is defined. Moreover: 

(i) the comparison hypothesis holds; 

(ii) the relation ≺ fulfils Axioms N1, N2 of Reference [17] and Axioms (A1)  (A6) of 

References [11,16,17] in the subset of stable equilibrium states so that, due to (i) and (ii), 

entropy is defined and has its well-known characteristics; 

(iii)every pair of stable equilibrium states can be interconnected by a reversible standard weight 

process for AR where R is an arbitrarily chosen thermal reservoir initially in an arbitrarily 

chosen stable equilibrium state. 

Then Assumptions 2 and 4 hold in ̂ , namely: 



Entropy 2014, 16 1568 

 

 

(a) starting from any state of ̂ , a system A can be changed to a stable equilibrium state with the 

same energy by means of a zero-work weight process for A in which its regions of space have 

no net changes; 

(b) every pair of states (A1, A2) of ̂  can be interconnected by a reversible standard weight 

process for AR, where R is an arbitrarily chosen thermal reservoir initially in an arbitrarily 

chosen stable equilibrium state. 

Proof of (a). Let A1 be any state of ̂ , let A2se be the stable equilibrium state in  with the same 

energy and with the same regions of space occupied by the constituents of A, and assume that A1 does 

not coincide with A2se so that, by the highest entropy principle, 2se 1
A AS S . Due to the comparison 

hypothesis, there exists a weight process for A, either from A1 to A2se or from A2se to A1. However, since 

2se 1
A AS S , the latter cannot exist because it would violate the principle of entropy nondecrease. 

Therefore, the weight process from A1 to A2se is necessarily possible. 

Proof of (b). Let (A1, A2) be any pair of states of A in ̂  and consider the stable equilibrium states A3se 

and A4se in  such that A3se has the same regions of space occupied by A and the same entropy as A1, 

while A4se has the same regions of space occupied by A and the same entropy as A2. States A3se and A4se 

exist because, for every spatial configuration of the system, the entropy of A at equilibrium can assume 

all the allowed values for A between the lower bound (at zero temperature) and positive infinity. On 

account of the comparison hypothesis, a weight process for A which interconnects A1 and A3se exists 

and is reversible due to the principle of entropy nondecrease. Similarly, a reversible weight process for 

A exists between A2 and A4se. Finally, due to (iii), a reversible standard weight process for AR between 

A3se and A4se exists for every choice of R and of its initial stable equilibrium state. The composite of 

these processes is a reversible standard weight process for AR between A1 and A2. 

4. Conclusions  

The principal methods for the definition of thermodynamic entropy have been analyzed with special 

reference to the most recent contributions. Then, an improvement of the treatment of the foundations 

of thermodynamics proposed by the present authors has been presented. In particular, the definition of 

energy has been extended to a set of states of a closed system A where not necessarily any pair of 

states of A can be interconnected by a weight process for A. Moreover, the domains of validity of the 

definitions of energy and of entropy have been clarified by dividing the axioms into two different 

groups: three Postulates, which are declared as having a fully general validity, and four Assumptions, 

which identify the domain of validity of the definition of energy (Assumption 1) and that of entropy 

(Assumptions 2, 3 and 4). 

It has been proven that, for a system which allows the formation of scaled copies when its 

subsystems are in stable equilibrium, Assumptions 2, 3 and 4 yield, in our framework, the definition of 

entropy in a domain which coincided with that in which Lieb and Yngvason prove, in their framework, 

the existence and uniqueness of an entropy function which characterizes the relation of adiadatic 

comparability, through the comparison hypothesis (every pair of states can be interconnected by a 

weight process for the system). As a consequence, the domain of validity of the definition of entropy 

presented here can be considered as an extension of the domain of validity of the definition proposed 



Entropy 2014, 16 1569 

 

 

by Lieb and Yngvason to systems which do not allow the creation of scaled copies even in their stable 

equilibrium states. 

The domain of validity of the definition of entropy presented here does not include necessarily all 

nonequilibrium states of any system, but, at the same time, is not necessarily restricted to stable 

equilibrium states nor to some particular class of systems. 
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