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Abstract:

 In this note we introduce some divergence-based model selection criteria. These criteria are defined by estimators of the expected overall discrepancy between the true unknown model and the candidate model, using dual representations of divergences and associated minimum divergence estimators. It is shown that the proposed criteria are asymptotically unbiased. The influence functions of these criteria are also derived and some comments on robustness are provided.
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1. Introduction

The minimum divergence approach is a useful technique in statistical inference. In recent years, the literature dedicated to the divergence-based statistical methods has grown substantially and the monographs of Pardo [1] and Basu et al. [2] are important references that present developments and applications in this field of research. Minimum divergence estimators and related methods have received considerable attention in statistical inference because of their ability to reconcile efficiency and robustness. Among others, Beran [3], Tamura and Boos [4], Simpson [5,6] and Toma [7] proposed families of parametric estimators minimizing the Hellinger distance between a nonparametric estimator of the observations density and the model. They showed that those estimators are both asymptotically efficient and robust. Generalizing earlier work based on the Hellinger distance, Lindsay [8] and Basu and Lindsay [9] have investigated minimum divergence estimators, for both discrete and continuous models. Some families of estimators based on approximate divergence criteria have also been considered; see Basu et al. [10]. Broniatowski and Keziou [11] have introduced a minimum divergence estimation method based on a dual representation of the divergence between probability measures. Their estimators, called minimum dual divergence estimators, are defined in a unified way for both continuous and discrete models. They do not require any prior smoothing and include the classical maximum likelihood estimators as a benchmark. Robustness properties of these estimators have been studied in [12,13].

In this paper we apply estimators of divergences in dual form and corresponding minimum dual divergence estimators, as presented by Broniatowski and Keziou [11], in the context of model selection.

Model selection is a method for selecting the best model among candidate models. A model selection criterion can be considered as an approximately unbiased estimator of the expected overall discrepancy, a nonnegative quantity that measures the distance between the true unknown model and a fitted approximating model. If the value of the criterion is small, then the approximated candidate model can be chosen.

Many model selection criteria have been proposed so far. Classical model selection criteria using least square error and log-likelihood include the Cp-criterion, cross-validation (CV), the Akaike information criterion (AIC) based on the well-known Kullback–Leibler divergence, Bayesian information criterion (BIC), a general class of criteria that also estimates the Kullback–Leibler divergence (GIC). These criteria have been proposed by Mallows [14], Stone [15], Akaike [16], Schwarz [17] and Konishi and Kitagawa [18], respectively. Robust versions of classical model selection criteria, which are not strongly affected by outliers, have been firstly proposed by Ronchetti [19], Ronchetti and Staudte [20]. Other references on this topic can be found in Maronna et al. [21]. Among the recent proposals for model selection we recall the criteria presented by Karagrigoriou et al. [22], the divergence information criteria (DIC) introduced by Mattheou et al. [23]. The DIC criteria use the density power divergences introduced by Basu et al. [10].

In the present paper, we apply the same methodology used for AIC, and also for DIC, to a general class of divergences including the Cressie–Read divergences [24] in order to obtain model selection criteria. These criteria also use dual forms of the divergences and minimum dual divergence estimators. We show that the criteria are asymptotically unbiased and compute the corresponding influence functions.

The paper is organized as follows. In Section 2 we recall the duality formula for divergences, as well as the definitions of associated dual divergence estimators and minimum dual divergence estimators, together with their asymptotic properties, all these being necessary in the next section where we define new criteria for model selection. In Section 3, we apply the same methodology used for AIC to the divergences in dual form in order to develop criteria for model selection. We define criteria based on estimators of the expected overall discrepancy and prove their asymptotic unbiasedness. The influence functions of the proposed criteria are also derived. In Section 4 we present some conclusions.



2. Minimum Dual Divergence Estimators


2.1. Examples of Divergences

Let φ be a non-negative convex function defined from (0, ∞) onto [0, ∞] and satisfying φ(1) = 0. Also extend φ at 0 defining [image: there is no content]. Let (X, B) be a measurable space and P be a probability measure (p.m.) defined on (X, B). Following Rüschendorf [25], for any p.m. Q absolutely continuous (a.c.) w.r.t. P, the divergence between Q and P is defined by



[image: there is no content]



(1)




When Q is not a.c. w.r.t. P, we set D(Q, P) = ∞. We refer to Liese and Vajda [26] for an overview on the origin of the concept of divergence in statistics.

A commonly used family of divergences is the so-called “power divergences” or Cressie–Read divergences. This family is defined by the class of functions



[image: there is no content]



(2)




for γ ∈ ℝ \ {0,1} and φ0(x) := − log x + x − 1, φ1(x) := x log x − x + 1 with [image: there is no content], [image: there is no content], for any γ ∈ ℝ. The Kullback–Leibler divergence (KL) is associated with φ1, the modified Kullback–Leibler (KLm) to φ0, the χ2 divergence to φ2, the modified χ2 divergence [image: there is no content] to φ−1 and the Hellinger distance to φ1/2. We refer to [11] for the modified versions of χ2 and KL divergences.

Some applied models using divergence and entropy measures can be found in Toma and Leoni-Aubin [27], Kallberg et al. [28], Preda et al. [29] and Basu et al. [2], among others.



2.2. Dual Form of a Divergence and Minimum Divergence Estimators

Let {Fθ, θ ∈ Θ} be an identifiable parametric model, where Θ is a subset of ℝp. We assume that for any θ ∈ Θ, Fθ has density fθ with respect to some dominating σ-finite measure λ. Consider the problem of estimating the unknown true value of the parameter θ0 on the basis of an i.i.d. sample X1,…, Xn with the law Fθ0.

In the following, [image: there is no content] denotes the divergence between fθ and [image: there is no content], namely



D(fθ,fθ0):=∫φ(fθ[image: there is no content])fθ0dλ.



(3)




Using a Fenchel duality technique, Broniatowski and Keziou [11] have proved a dual representation of divergences. The main interest on this duality formula is that it leads to a wide variety of estimators, by a plug-in method of the empirical measure evaluated to the data set, without making use of any grouping, nor smoothing.

We consider divergences, defined through differentiable functions φ, that we assume to satisfy (C.0) There exists 0 < δ < 1 such that for all c ∈ [1 − δ, 1 + δ], there exist numbers c1, c2, c3 such that



φ(cx)≤c1φ(x)+c2|x|+c3,∀x∈ℝ.



(4)




Condition (C.0) holds for all power divergences, including KL and KLm divergences.

Assuming that [image: there is no content] is finite and that the function φ satisfies the condition (C.0), the dual representation holds



[image: there is no content]



(5)




with



[image: there is no content]



(6)




where [image: there is no content] is the notation for the derivative of φ, the supremum in Equation (5) being uniquely attained in α = θ0, independently on θ.

We mention that the dual representation Equation (5) of divergences has been obtained independently by Liese and Vajda [30].

Naturally, for fixed θ, an estimator of the divergence [image: there is no content] is obtained by replacing Equation (5) by its sample analogue. This estimator is exactly



[image: there is no content]



(7)




the supremum being attained for



[image: there is no content]



(8)




Formula (8) defines a class of estimators of the parameter θ0 called dual divergence estimators. Further, since



infθ∈ΘD(fθ,fθ0)=D(fθ0,fθ0)=0



(9)




and since the infimum in the above display is unique, a natural definition of estimators of the parameter θ0, called minimum dual divergence estimators, is provided by



[image: there is no content]



(10)




For more details on the dual representation of divergences and associated minimum dual divergence estimators, we refer to Broniatowski and Keziou [11].



2.3. Asymptotic Properties

Broniatowski and Keziou [11] have proved both the weak and the strong consistency, as well as the asymptotic normality for the classes of estimators [image: there is no content], [image: there is no content] and [image: there is no content]. Here, we shortly recall those asymptotic results that will be used in the next sections. The following conditions are considered.

(C.1) The estimates [image: there is no content] and [image: there is no content] exist.

(C.2) [image: there is no content] tends to 0 in probability.

(a) for any positive ε, there exists some positive η such that for any α ∈ Θ with ||α − θ0 || > ε and for all θ ∈ Θ it holds that [image: there is no content].

(b) there exists some neighborhood [image: there is no content] of θ0 such that for any positive ε, there exists some positive η such that for all [image: there is no content] and all θ ∈ Θ satisfying ||θ − θ0|| > ε, it holds that [image: there is no content].

(C.3) There exists some neighborhood [image: there is no content] of θ0 and a positive function H with [image: there is no content] finite, such that for all [image: there is no content], ||m(α, θ0, x) || ≤ H (X) in probability.

(C.4) There exists a neighborhood [image: there is no content] of θ0 such that the first and the second order partial derivatives with respect to α and θ of [image: there is no content](fθ(x)fα(x))fθ(x) are dominated on [image: there is no content] by some λ-integrable functions. The third order partial derivatives with respect to α and θ of m (α, θ, x) are dominated on [image: there is no content] by some [image: there is no content] -integrable functions (where [image: there is no content] is the probability measure corresponding to the law [image: there is no content]).

(C.5) The integrals [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] are finite and the Fisher information matrix [image: there is no content] is nonsingular, t denoting the transpose.


Proposition 1

Assume that conditions (C.1)–(C3) hold. Then

(a) [image: there is no content] tends to 0 in probability.

(b) [image: there is no content] converges to θ0 in probability. If (C.1)–(C.5) are fulfilled, then

(c) n([image: there is no content]−θ0) and n(α⌢([image: there is no content])−θ0) converge in distribution to a centered p-variate normal random variable with covariance matrix I (θ0)−1.

For discussions and examples about the fulfillment of conditions (C.1)–(C5), we refer to Broniatowski and Keziou [11].





3. Model Selection Criteria

In this section, we apply the same methodology used for AIC to the divergences in dual form in order to develop model selection criteria. Consider a random sample X1, …, Xn from the distribution with density g (the true model) and a candidate model fθ from a parametric family of models (fθ) indexed by an unknown parameter θ ∈ Θ, where Θ is a subset of ℝp. We use divergences satisfying (C.0) and denote for simplicity the divergence D (fθ, g) between fθ and the true density g by Wθ.


3.1. The Expected Overall Discrepancy

The target theoretical quantity that will be approximated by an asymptotically unbiased estimator is given by



E[W[image: there is no content]]=E[Wθ|θ=[image: there is no content]]



(11)




where [image: there is no content] is a minimum dual divergence estimator defined by Equation (10). The same divergence is used for both Wθ and [image: there is no content]. The quantity E[W[image: there is no content]] can be viewed as the average distance between g and (fθ) and it is called the expected overall discrepancy between g and (fθ).

The next Lemma gives the gradient vector and the Hessian matrix of Wθ and is useful for evaluating the expected overall discrepancy E[W[image: there is no content]] through Taylor expansion. We denote by [image: there is no content] and [image: there is no content] the first and the second order derivative of fθ with respect to θ, respectively. We assume the following conditions allowing derivation under the integral sign.

(C.6) There exists a neighborhood Nθ of θ such that



[image: there is no content]



(12)




(C.7) There exists a neighborhood Nθ of θ such that



∫supu∈Nθ‖∂∂u[[image: there is no content](fug)f˙u]‖dλ<∞.



(13)





Lemma 1

Assume that conditions (C.6) and (C.7) hold. Then, the gradient vector [image: there is no content] of Wθ is given by



∫[image: there is no content](fθg)f˙θdλ



(14)




and the Hessian matrix [image: there is no content] is given by



∫[φ¨(fθg)f˙θf˙θtg+[image: there is no content](fθg)f˙θ] dλ.



(15)




The proof of this Lemma is straightforward, therefore it is omitted.

Particularly, when using Cressie–Read divergences, the gradient vector [image: there is no content] of Wθ is given by



1γ−1∫(fθ(z)g(z))γ−1f˙θ(z)dz,ifγ∈ℝ\{0,1}



(16)






−∫g(z)fθ(z)f˙θ(z)dz,ifγ=0



(17)






∫log(fθ(z)g(z))f˙θ(z)dz,ifγ=1



(18)




and the Hessian matrix [image: there is no content] is given by



[image: Entropy 16 02686f1]



(19)






∫g(z)fθ2(z)f˙θ(z)f˙θt(z)dz−∫g(z)fθ(z)f¨θ(z)dz,ifγ=0



(20)






∫log(fθ(z)g(z))f¨θ(z)dz+∫f˙θ(z)f˙θt(z)fθ(z)dz,ifγ=1.



(21)




When the true model g belongs to the parametric model (fθ), hence [image: there is no content], the gradient vector and the Hessian matrix of Wθ evaluated in θ = θ0 simplify to



[[image: there is no content]]θ=θ0=0



(22)






[[image: there is no content]]θ=θ0=φ¨(1)I(θ0).



(23)




The hypothesis that the true model g belongs to the parametric family (fθ) is the assumption made by Akaike [16]. Although this assumption is questionable in practice, it is useful because it provides the basis for the evaluation of the expected overall discrepancy (see also [23]).



Proposition 2

When the true model g belongs to the parametric model (fθ), assuming that conditions (C.6) and (C.7) are fulfilled for [image: there is no content] and θ = θ0, the expected overall discrepancy is given by



[image: Entropy 16 02686f2]



(24)




where Rn=o(||[image: there is no content]−θ0||2) and θ0 is the true value of the parameter.



Proof

By applying a Taylor expansion to Wθ around the true parameter θ0 and taking θ=[image: there is no content], on the basis of Equations (22) and (23), we obtain



[image: Entropy 16 02686f3]



(25)




Then Equation (24) is proved.




3.2. Estimation of the Expected Overall Discrepancy

In this section we construct an asymptotically unbiased estimator of the expected overall discrepancy, under the hypothesis that the true model g belongs to the parametric family (fθ).

For a given θ ∈ Θ, a natural estimator of Wθ is



[image: Entropy 16 02686f4]



(26)




where m (α, θ, x) is given by formula (6), which can also be expressed as



[image: Entropy 16 02686f5]



(27)




using the sample analogue of the dual representation of the divergence.

The following conditions allow derivation under the integral sign for the integral term of Qθ.

(C.8) There exists a neighborhood Nθ of θ such that



∫supu∈Nθ‖∂∂u[[image: there is no content](fufα⌢(u))fu]‖dλ<∞.



(28)




(C.9) There exists a neighborhood Nθ of θ such that



[image: Entropy 16 02686f6]



(29)





Lemma 2

Under (C.8) and (C.9), the gradient vector and the Hessian matrix of Qθ are



[image: there is no content]



(30)






[image: there is no content]



(31)






Proof

Since



[image: there is no content]



(32)




derivation yields



[image: Entropy 16 02686f7]



(33)




Note that, by its very definition, [image: there is no content] is a solution of the equation



[image: there is no content]



(34)




taken with respect to α, therefore



[image: there is no content]



(35)




On the other hand,



[image: Entropy 16 02686f8]



(36)






[image: there is no content]



(37)






Proposition 3

Under conditions (C.1)–(C.3) and (C.8)–(C.9) and assuming that the integrals [image: there is no content], [image: there is no content] and [image: there is no content] are finite, the gradient vector and the Hessian matrix of Qθ evaluated in θ=[image: there is no content] satisfy



[∂∂θQθ][image: there is no content]=0



(38)






[∂2∂2θQθ][image: there is no content]=φ¨(1)I(θ0)+oP(1).



(39)






Proof

By the very definition of [image: there is no content], the equality (38) is verified. For the second relation, we take θ=[image: there is no content] in Equation (31) and obtain



[image: Entropy 16 02686f9]



(40)




A Taylor expansion of [image: there is no content] as function of (α, θ) around to (θ0, θ0) yields



[image: Entropy 16 02686f10]








Using the fact that [image: there is no content] is finite, the weak law of large numbers leads to



[image: Entropy 16 02686f11]



(41)




Then, since (α⌢([image: there is no content])−θ0)=oP(1) and ([image: there is no content]−θ0)=oP(1), and taking into account that [image: there is no content] and [image: there is no content] are finite, we deduce that



[image: Entropy 16 02686f12]



(42)




Thus we obtain Equation (39).

In the following, we suppose that conditions of Proposition 1, Proposition 2 and Proposition 3 are all satisfied. These conditions allow obtaining an asymptotically unbiased estimator of the expected overall discrepancy.



Proposition 4

When the true model g belongs to the parametric model (fθ), the expected overall discrepancy evaluated at [image: there is no content] is given by



[image: there is no content]



(43)




where Rn=o(||θ0−[image: there is no content]||2).



Proof

A Taylor expansion of Qθ around to [image: there is no content] yields



[image: Entropy 16 02686f13]



(44)




and using Proposition 3, we have



[image: Entropy 16 02686f14]



(45)




Taking θ = θ0, for large n, it holds



[image: Entropy 16 02686f15]



(46)




and consequently



[image: Entropy 16 02686f16]



(47)




Where Rn=o(||θ0−[image: there is no content]||2).

According to Proposition 2 it holds



[image: Entropy 16 02686f17]



(48)




Note that



[image: Entropy 16 02686f18]



(49)




Then, combining Equation (48) with Equations (49) and (47), we get



[image: Entropy 16 02686f19]



(50)




Proposition 4 shows that an asymptotically unbiased estimator of the expected overall discrepancy is given by



Q[image: there is no content]+φ¨(1)([image: there is no content]−θ0)tI(θ0)([image: there is no content]−θ0).



(51)




According to Proposition 1, n([image: there is no content]−θ0) is asymptotically distributed as Np (0, I (θ0)−1). Consequently, n([image: there is no content]−θ0)tI(θ0)([image: there is no content]−θ0) has approximately a [image: there is no content] distribution. Then, taking into account that no(||[image: there is no content]−θ0||2)=oP(1), an asymptotically unbiased estimator of n-times the expected overall discrepancy evaluated at [image: there is no content] is provided by



nQ[image: there is no content]+φ¨∂(1)p.



(52)







3.3. Influence Functions

In the following, we compute the influence function of the statistics Q[image: there is no content]. As it is known, the influence function is a useful tool for describing the robustness of an estimator. Recall that a map T defined on a set of distribution functions and parameter space valued is a statistical functional corresponding to an estimator [image: there is no content] of the parameter θ, if [image: there is no content]=T(Fn), where Fn is the empirical distribution function associated to the sample. The influence function of T at fθ is defined by



IF(x; T, Fθ):=∂T(F˜εx)∂ε|ε=0



(53)




where [image: there is no content] being the Dirac measure putting all mass at x. Whenever the influence function is bounded with respect to x, the corresponding estimator is called robust (see [31]).

Since



Q[image: there is no content]=1n∑i=1nm(α⌢([image: there is no content]),[image: there is no content],Xi),



(54)




the statistical functional corresponding to Q[image: there is no content], which we denote by U (•), is defined by



[image: there is no content]



(55)




where tθ(f) is the statistical functional associated to the estimator [image: there is no content] and V (F) is the statistical functional associated to the estimator [image: there is no content].


Proposition 5

The influence function of Q[image: there is no content] is



[image: there is no content]



(56)






Proof

For the contaminated model [image: there is no content], it holds



[image: Entropy 16 02686f20]



(57)




Derivation with respect to ε yields



[image: Entropy 16 02686f21]








Note that m (θ0, θ0, y) = 0 for any y and [image: there is no content]. Also, some straightforward calculations give



[image: there is no content]



(58)




On the other hand, according to the results presented in [12], the influence function of the minimum dual divergence estimator is



[image: there is no content]



(59)




Consequently, we obtain Equation (60).

Note that, for Cressie–Read divergences, it holds



[image: there is no content]



(60)




irrespective of the used divergence, since [image: there is no content], for any γ.

Generally, [image: there is no content] is not bounded, therefore the robustness of the statistics Q[image: there is no content], as measured by the influence function, does not hold.





4. Conclusions

The dual representation of divergences and corresponding minimum dual divergence estimators are useful tools in statistical inference. The presented theoretical results show that, in the context of model selection, these tools provide asymptotically unbiased criteria. These criteria are not robust in the sense of the bounded influence function, but this fact does not exclude the stability of the criteria with respect to other robustness measures. The computation of Q[image: there is no content] could lead to serious difficulties, for example when considering various regression models to choose from. Such difficulties are implied by the double optimization in the criterion. Therefore, from the computation point of view, some other existing model selection criteria could be preferred. On the other hand, some performant computation techniques, involving such a double optimization, could arrive in the favor of using these new criteria also. These problems represent the topic of future research.
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