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Abstract: Using 1000 successive points of a pulse wave velocity (PWV) series, we 

previously distinguished healthy from diabetic subjects with multi-scale entropy (MSE) 

using a scale factor of 10. One major limitation is the long time for data acquisition (i.e., 

20 min). This study aimed at validating the sensitivity of a novel method, short time MSE 

(sMSE) that utilized a substantially smaller sample size (i.e., 600 consecutive points), in 

differentiating the complexity of PWV signals both in simulation and in human subjects that 

were divided into four groups: healthy young (Group 1; n = 24) and middle-aged (Group 2;  
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n = 30) subjects without known cardiovascular disease and middle-aged individuals with 

well-controlled (Group 3; n = 18) and poorly-controlled (Group 4; n = 22) diabetes mellitus 

type 2. The results demonstrated that although conventional MSE could differentiate the 

subjects using 1000 consecutive PWV series points, sensitivity was lost using only 600 

points. Simulation study revealed consistent results. By contrast, the novel sMSE method 

produced significant differences in entropy in both simulation and testing subjects.  

In conclusion, this study demonstrated that using a novel sMSE approach for PWV analysis, 

the time for data acquisition can be substantially reduced to that required for 600 cardiac 

cycles (~10 min) with remarkable preservation of sensitivity in differentiating among 

healthy, aged, and diabetic populations. 

Keywords: multi-scale entropy; scale factor; pulse wave velocity; age; diabetes 
 

1. Introduction 

Atherosclerosis, which is the major pathological change underlying most cardiovascular diseases, has 

been reported to be associated with advanced age, history of stroke, diabetes, hypertension, and 

cerebrovascular disease. Pulse wave velocity (PWV) is one of the most popular non-invasive parameters 

used for the assessment of atherosclerosis. Despite the different equipment used for data acquisition, a 

mean value is usually obtained from the examinee for evaluating the severity of the condition [1–6].  

On the other hand, Costa et al. found healthy subjects and those with heart conditions can be reliably 

differentiated by a simple measure based on the thermodynamical concept of “entropy” [7]. 

“Multi-scale entropy (MSE)” is a non-linear means of assessing the complexity of physiological  

signals [8–10]. Compared to the traditional complexity measures, MSE has the advantage of being 

applicable to both physiologic and simulated signals of finite length. MSE, which was first reported by 

Costa et al. to compare the differences in R-R interval (RRI) among healthy subjects, patients with atrial 

fibrillation and those with congestive heart failure (CHF) [8], has been successfully applied to the 

interpretation of physiological series and data from patients with various diseases. One of the advantages 

of complexity analysis using the MSE method is its ability to deal with non-linear and non-stationary 

signals [11]. A previous study has reported that area under the MSE curve between scale 6 and 20 can be 

used to assess disease severity in patients with CHF [12] and patients receiving unilateral primary 

carotid angioplasty and stenting were reported to exhibit acute increase of complexity in the 

neurocardiovascular dynamics [13]. In 2006, Escudero et al. reported significant differences in entropy 

values from signals of electroencephalograms (EEG) of healthy individuals and those with Alzheimer’s 

disease after data processing with MSE [14]. Accordingly, we have previously shown that healthy, aged, 

and diabetic subjects can be distinguished with MSE using 1000 successive PWV signals with a scale 

factor of 10 [11]. Despite being reliable, the whole recording process takes up to 30 min that is usually not 

well tolerated by aged or diseased subjects [11]. 

To refine the assessment approach, the present study proposes a novel means of computation, “short 

time multiscale entropy (sMSE)”, in an attempt to reduce the time for data acquisition through refined 

computation of the acquired data. To compare between MSE and sMSE in terms of their sensitivity and 
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validity in differentiating signals of small sample size and among healthy, aged, and diabetic subjects, 

both simulation signals and real PWV data from testing subjects were used for the current study. 

2. Methods 

2.1. Subject Population and Grouping 

The testing subjects were divided into four groups, including healthy young individuals of age 

between 20 and 40 (Group 1, n = 24), healthy aged subjects of age between 20 to 40 (Group 2, n = 30), 

middle-aged patients with well-controlled diabetes mellitus type 2 (defined as age between 41 to 80 and 

6.5% < glycosylated hemoglobin (HbA1c) level < 8.0%) (Group 3, n = 18), and middle-aged patients 

with poorly-controlled diabetes mellitus type 2 (defined as age between 41 to 80 with HbA1c level ≥ 8.0%) 

(Group 4, n = 22). All participants were volunteers. Diabetic patients, who were recruited from the 

diabetic outpatient clinic of Hualien Hospital from July 2009 to October 2010, fit all the three criteria of: 

(1) fasting blood sugar > 126 mg/dL, (2) HbA1c level > 6.5%, and (3) established diagnosis of diabetes 

mellitus type 2 with a follow-up period > 2 years. On the other hand, healthy subjects, who were 

recruited from the health screening clinic of Hualien Hospital during the same period, had to fill out a 

questionnaire declaring the absence of medical history of cardiovascular diseases (i.e., stroke, 

hypertension, diabetes). The whole study has been approved by the Institutional Review Board (IRB)  

of Hualien Hospital and National Dong Hwa University. Informed consent forms were signed by all 

testing subjects. 

2.2. Measurement Protocol 

All subjects were allowed to rest in a supine position in a quiet, temperature-controlled room at  

26 ± 1 °C for 5 min before another 20 min of data acquisition. The six-channel ECG-PWV system was 

used for PWVfoot measurement. The distance from the sternal notch to the foot was the sum of the 

shortest distance from the sternal notch to medial patella, from medial patella to medial malleolus, and 

from medial malleolus to the tip of the second toe. Infrared sensors were put on the points of reference 

simultaneously to acquire data. ECG was obtained using the conventional method. After being 

processed through an analog-to-digital converter (USB-6009 DAQ, National Instruments, Austin, TX, 

USA) with a sampling frequency of 500 Hz, the digitized signals were stored in a computer. Because of 

its conspicuousness, the R wave on Lead II was chosen as a reference point, the time from which to the 

foot point of a pulse wave was defined as the time difference. Hence, the mean PWVfoot can be 

determined by averaging the values from both sides. The values of PWVfoot from point of reference 

within the 1000 cardiac cycles of recording were averaged to a mean value from both feet.  

2.3. Short Time Multiscale Entropy (sMSE) 

The original MSE comprises of two steps: (1) coarse-graining the signals using different time 

scales; (2) quantifying the degree of irregularity in each coarse-grained time series using sample 

entropy (SE) [15] which is a new family of statistics measuring complexity and regularity of clinical and 

experimental time series data. SE statistics provide an improved evaluation of time series regularity and 

should be a useful tool in studies of the dynamics of human cardiovascular physiology. SE is not defined 
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unless template and forward matches occur and is not necessarily reliable for small numbers of matches. 

SE (m, r, N) calculation was a process of sampling information about regularity in the time series. It used 

sample statistics to inform us of the reliability of the calculated result. The complexity of scale factors  

(τ = 1, 2, …, 10) was calculated using SE. 

On the other hand, the major challenge of MSE in clinical application is the need of massive data for 

reliability. Short time multiscale entropy (sMSE) is a novel computational approach that enables the use 

of large scale factor for analysis on data acquired through a shortened time period. The acquired time 

series then undergo Sample Entropy (SE) [15] computation with steady values of entropy obtained 

(Figure 1).  

Figure 1. Method of short time multi-scale entropy (sMSE) computation. 

 

Through altering the number of Lag from 0 to L (where L = τ – 1, τ = coarse-grained scale factor) on 

the native time series (1), a new time series, T(P), can be obtained (2). Thus, the number of new time 

series generated is L + 1: 

TN = {X1, X2, …, XN-1, XN} (1)

T(P) = {Xk, Xk+1, Xk+2, …, XN-1, XN}, k = p + 1, p = 0, 1, 2, …, L (2)

The L + 1 time series acquired then undergo coarse-grained processing with a scale factor τ (3), giving 

the time series of y(p)(τ). Hence: 
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The L + 1 y(p)(τ) are then subjected to Sample Entropy computation and averaged, giving sMSE of 

scale factor τ in (4): 

sMSEτ ൌ ଵ

ାଵ
∑ S
ୀ E (y(p)(τ)) (4)

2.4. Short Time Multi-scale Entropy Index (sMEI) Using PWV Series 

The results of MSE from 1000 successive PWV signals were compared with those of sMSE acquired 

from computation on the first 600 PWV signals using the novel computation approach in the current 

study. Utilizing a scale factor of 10, the present study categorized scale factors into short time 

multi-scale entropy index with small scale (sMEISS, scale1 to scale5) (5) and short time multi-scale 

entropy index with large scale (sMEILS, scale 6 to scale 10) (6) that were used to compare with the 

respective values of MEISS and MEILS from our previous study using MSE [11]: 

sMEISS ൌ 10 ሺ∑ sMSEହ
ఛୀଵ τ) (5)

sMEILS ൌ 10 ሺ∑ sMSEଵ
ఛୀ τ) (6)

2.5. Study Design 

The study comprised two parts. The first part involved the design of the sMSE method with 

simulation signals of white noise and 1/f noise using the MATLAB R2008b package (MathWorks, 

Natick, MA, U.S.A.). The second part focused on computation of PWV-based multiscale entropy index 

in study subjects with small scale and that with large scale using MSE method on 1000 successive PWV 

signals that are referred to as MEISS (PWV1000) and MEILS (PWV1000), respectively. The computation 

has been previously described [11]. Utilizing the same approach, 600 successive PWV signals were 

obtained for the calculation of MEISS (PWV600) and MEILS (PWV600). Comparisons were first made 

between MEISS (PWV1000) and MEISS (PWV600) as well as between MEILS (PWV1000) and MEILS 

(PWV600) to study if a reduction in available data would affect the ability of differentiation among 

different groups. In addition, MEISS (PWV600) and MEILS (PWV600) were compared with sMEISS 

(PWV600) and sMEILS (PWV600), respectively, to investigate possible enhancement in sensitivities using 

the novel method for data processing.  

2.6. Statistical Analysis 

Average values are expressed as mean ± SD. Statistical Package for the Social Science (SPSS, 

version 14.0 for Windows, SPSS Inc., Chicago, IL, USA) was used for statistical analysis. Independent 

t-test was adopted for the determination of the significance of difference in study parameters among 

different groups. A probability value, p, of <0.05 represents statistical significance. 
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3. Results 

3.1. Computation of Sample Entropy Using Multi-Scale Entropy (MSE) and Short Time Multi-Scale 

Entropy (sMSE) Methods on Simulation Signals 

Values of sample entropy were acquired through multi-scale entropy (MSE) (Figure 2a) and short 

time multi-scale entropy (sMSE) (Figure 2b) methods using simulation white noise and 1/f noise with 

different scale factors on 30 sets of 1000 successive signals. The results showed that the values of sample 

entropy decreased with an increase in values of the coarse grained scale factor, regardless of the method 

used. On the other hand, computation with 1/f noise eliminated the effect of scale factor, giving a value 

of around 2 for both methods (Figure 2a,b). Comparison of changes in values of sample entropy using 

multi-scale entropy (MSE) and short time multi-scale entropy (sMSE) approaches with different scale 

factors on 600 successive white noise signals (Figure 3) showed a steady drop in sample entropy as the 

scale factor increased from 1 to 4. From the scale factor 5 onwards, sample entropy from MSE began to 

exhibit remarkable fluctuations, while that from sMSE showed a relatively steady decrease. 

Figure 2. Simulation signals. (a) Values of sample entropy acquired through multi-scale 

entropy (MSE) computation using white noise and 1/f noise with different scale factors on 

30 sets of 1000 successive signals. (b) Values of sample entropy acquired through short-time 

multi-scale entropy (sMSE) computation using white noise and 1/f noise with different scale 

factors on 30 sets of 1000 successive signals. 

(a) (b) 

Figure 3. Comparison of changes in values of sample entropy using multi-scale entropy 

(MSE) and short time multi-scale entropy (sMSE) methods with different scale factors on 

600 successive simulated white noise signals. 
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3.2. Demographic and Biochemical Parameters 

Subjects in Group 3 was significantly older than those in Group 2 who, in turn, were significantly 

older than those in Group 1 (all p < 0.001) (Table 1). The duration of diagnosed diabetes was 

significantly longer in Group 4 than that in Group 3 (p < 0.001). Although there was no significant 

difference in body mass index (BMI) among the four groups, the waist circumference was significantly 

larger with systolic blood pressure higher in individuals in Group 3 compared to those in Group 2  

(both p = 0.005). Besides, the pulse pressure was also substantially higher in Group 3 than that in Group 2 

(p = 0.001). Moreover, the levels of HbA1c were significantly different among the four groups with 

Group 4 being the highest, followed by Group 3, Group 2, and Group 1 (Group 1 vs. Group 2, p = 0.007; 

Group 2 vs. Group 3 and Group 3 vs. Group 4, p < 0.001), although the parameter was within normal 

range (i.e., <6.0%) in Group 1 and Group 2. Serum triglyceride levels were also significantly higher in 

Group 4 than in Group 3 (p = 0.037). Furthermore, fasting blood sugar level was highest in Group 4, 

followed by Group 3 and Group 2, while there was no notable difference between Group 1 and Group 2 

(Group 2 vs. Group 3, p < 0.001; Group 3 vs. Group 4, p = 0.003). 

Table 1. Comparison of anthropometric, hemodynamic, serum biochemical, arterial 

stiffness parameters among the testing subjects. 

Parameter Group 1 Group 2 Group 3 Group 4 

Number 24 30 18 22 
Ages (years) 25.8 ± 5.6 52.6 ± 6.6 ** 56.5 ± 9.3 57.9 ± 9.5 
Duration of Diabetes (years) 0 0 6.8 ± 3.8 11.7 ± 6.8 ++ 
Circumference (cm) 79.9 ± 10.8 84.3 ± 10.1 92.2 ± 10.1 ε 96.7 ± 12.8 
BMI (kg/m2) 22.6 ± 3.5 24.2 ± 3.9 26.9 ± 3.7 28.4 ± 5.2 
SBP (mmHg) 115.5 ± 9.8 115.5 ± 14.4 129.8 ± 22.0 ε 125.7 ± 19.4 
DBP (mmHg) 70.1 ± 6.6 73.9 ± 10.0 78.5 ± 13.6 75.5 ± 10.8 
PP (mmHg) 44.5 ± 6.6 41.1 ± 9.4 51.2 ± 12.3 ε 45.1 ± 6.7 
HbA1c (%) 5.5 ± 0.2 5.8 ± 0.4 * 6.8 ± 0.7 εε 9.53 ± 1.9 ++ 
HDL (mg/dL) 41.7 ± 11.5 49.4 ± 14.1 39.9 ± 11.4 43.2 ± 14.9 
Triglyceride (mg/dL) 100.6 ± 74.0 106.0 ± 54.9 107.0 ± 51.7 156.9 ± 74.3 + 
Fasting Blood Sugar (mg/dL) 92.4 ± 8.4 96.1 ± 9.9 128.5 ± 28.1 εε 182.8 ± 61.9 + 

Group 1: Healthy young subjects without known cardiovascular disease; Group 2: Healthy middle-aged 
subjects without known cardiovascular disease; Group 3: Middle-aged individuals with well-controlled 
diabetes mellitus type 2; Group 4: Middle-aged patients with poorly-controlled diabetes mellitus type 2. Values 
are expressed as mean ± SD. BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic blood 
pressure; PP = pulse pressure; HbA1c = glycosylated hemoglobin; HDL = high-density lipoprotein.* p < 0.05: 
Group 1 vs. Group 2, ε p < 0.05: Group 2 vs. Group 3, + p < 0.05: Group 3 vs. Group 4, ** p < 0.001: Group 1 vs. 
Group 2, εε p < 0.001: Group 2 vs. Group 3, ++ p < 0.001: Group 3 vs. Group 4 

3.3. Comparisons among PWV1000, MEISS (PWV1000), MEILS (PWV1000), MEISS (PWV600),  

MEILS (PWV600), sMEISS (PWV600) and sMEILS (PWV600) 

Unlike PWV1000 and MEISS (PWV1000), MEILS (PWV1000) was higher in Group 1 than that in 

Group 2 (p = 0.03), significantly higher in Group 2 than that in Group 3 (p = 0.016), and higher in 

Group 3 compared to that in Group 4 (p = 0.04). Moreover, unlike MEISS (PWV600), MEILS 

(PWV600), and sMEISS (PWV600), sMEILS (PWV600) was significantly higher in Group 1 than that in 
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Group 2 (p = 0.029), higher in Group 2 than that in Group 3 (p = 0.045), and higher in Group 3 than 

that in Group 4 (p = 0.045) (Table 2). 

Table 2. Comparison of multiple entropy parameters among the testing subjects. 

Parameter Group 1 Group 2 Group 3 Group 4 

PWV1000(m/s) 4.4 ± 0.3 4.7 ± 0.4 * 5.0 ± 0.3 ε 5.1 ± 0.6 
MEISS (PWV1000) 96.5 ± 4.4 97.4 ± 4.3 98.4 ± 6.7 91.5 ± 12.5+ 
MEILS (PWV1000) 89.4 ± 7.3 84.3 ± 6.3 * 79.6 ± 9.2 ε 71.9 ± 12.6+ 
MEISS (PWV600) 97.0 ± 7.6 99.1 ± 4.3 100.9 ± 8.3 93.3 ± 12.4+ 
MEILS (PWV600) 88.3 ± 10.8 86.1 ± 12.8 85.2 ± 11.0 82.9 ± 11.6 
sMEISS (PWV600) 95.9 ± 10.0 96.8 ± 7.1 96.9 ± 11.3 89.2 ± 12.1+ 
sMEILS (PWV600) 92.2 ± 8.9 86.8 ± 11.3 * 80.5 ± 6.2 ε 73.7 ± 11.4+ 

PWV1000 = The mean of 1000 successive points of PWV series using the distance from the sternum to the 
second toe divided by the time difference between R wave on LeadⅡof ECG to the corresponding foot point of 
pulse wave of second toe; MEISS (PWV1000) = 1000 successive PWV-based multiscale entropy index with small 
scale; MEILS (PWV1000) = 1000 successive PWV-based multiscale entropy index with large scale; MEISS 
(PWV600) = 600 successive PWV-based multiscale entropy index with small scale; MEILS (PWV600) = 600 
successive PWV-based multiscale entropy index with large scale; sMEISS (PWV600) = 600 successive 
PWV-based short time multiscale entropy index with small scale; sMEILS (PWV600) = 600 successive 
PWV-based short time multiscale entropy index with large scale. 

There was an overall reduction in sample entropy with an increase in scale factors (Figure 4). While 

no significant difference among the four groups was noted on a scale factor less than 6, significant 

differences began to emerge when the scale factor was 6 or above. The value of sample entropy was 

highest in Group 1, followed by that of Group 2, Group 3, and Group 4. 

Figure 4. Values of sample entropy obtained through computation using short time 

multi-scale entropy (sMSE) method on 600 successive pulse wave velocity (PWV) signals 

from human subjects. Group 1: Healthy young subjects without known cardiovascular 

disease; Group 2: Healthy middle-aged subjects without known cardiovascular disease; 

Group 3: Middle-aged individuals with well-controlled diabetes mellitus type 2; Group 4: 

Middle-aged patients with poorly-controlled diabetes mellitus type 2. 
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4. Discussion 

Pulse wave velocity (PWV) is one of the most popular noninvasive assessment tools for the 

assessment of atherosclerosis [2,5,16] that operates on the assumption that PWV is a stationary 

parameter. However, after analyzing the data on PWV over 1000 cardiac cycles within 30 min, our 

previous study [11] demonstrated that PWV is a non-stationary parameter, the variability of which may 

reflect subtle atherosclerotic change that was missed by taking only the mean value for analysis. That 

study explored the possibility of combining MSE and PWV in assessing sugar control and progression 

of vascular pathology in diabetic patients and elderly to allow timely therapeutic intervention. Other than 

MSE, various tools for non-linear data analysis are available, including Ensemble Empirical Mode 

Decomposition (EEMD) [17,18], linguistic [19,20] and fractal [21,22] analyses.  

Albeit sensitive in differentiating healthy, aged, and diabetic subjects, one of the pitfalls of applying 

MSE for PWV signal analysis is the relatively long time needed for data collection that involves the 

acquisition of 1000 successive points of PWV series in 30 min [11]. Our experience showed that, 

although a scale factor of 10 can be used for analyzing 1000 successive PWV signals to produce 

significant outcomes, the use of scale factor 10 on a smaller sample size acquired within a shorter time 

period would give aberrant results (Figure 3). In an attempt to solve the problem, the current study 

introduced a novel non-linear computational method, sMSE, that gave values of sample entropy 

comparable to those obtained through MSE from a relatively long period of simulation signals  

(Figure 2a,b). The results, therefore, are consistent with those from the study of Peng et al. that also 

demonstrated similar results in simulation study on healthy subjects and those with cardiac diseases [23]. 

Using a relatively small simulation sample size of 600, the changes in sample entropy acquired with 

MSE and sMSE were compared (Figure 3). The results showed spiking increases in entropy at a scale 

factor of 6, 9, and 10 using the MSE method, while sample entropy from sMSE exhibited a relatively 

steady reduction throughout the elevation in scale factor from 1 to 10. Compared to traditional MSE, the 

significantly reduced standard deviation of sMSE indicates the reduction of the cost of the 

experimentation. Therefore, despite a smaller sample size, sMSE could still produce results similar to 

that of MSE on a large sample (Figure 2a). The results highlight the applicability of sMSE in the analysis 

of signals acquired through a long time period and also those from a relatively short period (i.e., 600 

consecutive points of PWV series) using a scale factor of 10 to produce steady results that could not be 

obtained through the original MSE approach. The results from simulation studies are consistent with 

those from human subjects. Although MEISS (PWV600) and MEILS (PWV600) failed to reproduce the 

significant results from MEISS (PWV1000) and MEILS (PWV1000) after curtailing the sampling size, 

sMEISS (PWV600) and sMEILS (PWV600) were found to be as sensitive as MEISS (PWV1000) and MEILS 

(PWV1000) in differentiating among the four groups. Failure in differentiation among the four groups 

using MEILS (PWV600) (Table 2) may be due to the marked fluctuations in sample entropy at large scale 

factors (Figure 3). Furthermore, consistent with the findings of previous studies [11], the results of the 

present study also demonstrated a reduction in signal complexity with age and the severity of diabetes 

(Figure 4).  

Regarding the physiological significance of the non-stationarity of biological signals, previous 

studies have utilized MSE in the evaluation of cardiac variables including R–R interval, heart rate, and 

heart rate variability [23–25] and revealed a decrease in signal complexity (SE) with an increase in age 
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and disease conditions such as atrial fibrillation and congestive heart failure [23–26]. Reduction in 

physiological complexity, therefore, reflects impaired physiological responses of an individual to 

changes in the external environment. Consistently, there have been previous reports regarding  

MSE analyses in diabetic patients, indicating impaired autonomic neural activities in the diabetic 

population [27–29]. Based on this knowledge, the current study investigated the feasibility of shortening 

the time for data acquisition in differentiating among the healthy, aged, and diabetic populations 

compared using a novel method of computation. 

The present study has its limitations. First, compared with MSE, the method of sMSE requires a 

larger amount of computation. Second, although we have established a signal-to-scale factor ratio of 100 

(i.e., 1000 successive signals/scale factor 10) as a minimal requirement for successful computation using 

the MSE approach and a reduced ratio of 60 for sMSE in this study, whether aberrancy would arise from 

sMSE using a ratio below 60 remains to be elucidated. 

5. Conclusions 

The present study demonstrated that, using a novel sMSE approach for PWV signal analysis, the time 

for data acquisition can be substantially reduced from 1000 to 600 cardiac cycles with remarkable 

preservation of sensitivity in differentiating among the healthy, aged, and diabetic populations compared 

with the conventional MSE method. 
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