

  A Novel Method for Increasing the Entropy of a Sequence of Independent, Discrete Random Variables




A Novel Method for Increasing the Entropy of a Sequence of Independent, Discrete Random Variables







Entropy 2015, 17(10), 7118-7132; doi:10.3390/e17107118




Article



A Novel Method for Increasing the Entropy of a Sequence of Independent, Discrete Random Variables



Mieczyslaw Jessa





Faculty of Electronics and Telecommunications, Poznan University of Technology, ul. Polanka 3, 61-131 Poznan, Poland; Tel.: +48-61-665-3854







Academic Editor: Raúl Alcaraz Martínez



Received: 23 April 2015 / Accepted: 12 October 2015 / Published: 22 October 2015



Abstract:

 In this paper, we propose a novel method for increasing the entropy of a sequence of independent, discrete random variables with arbitrary distributions. The method uses an auxiliary table and a novel theorem that concerns the entropy of a sequence in which the elements are a bitwise exclusive-or sum of independent discrete random variables.
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1. Introduction

Sequences of random variables play an important role in many fields of science. If we have a sequence of k random variables, then a natural and important question is as follows: what is the entropy of the sequence, and how does it grow with k? Examples include dynamical systems, cryptography, simulations, and statistics. Usually, we require that the value of the entropy be maximal or at least close to the maximum.

The literature devoted to sequences includes many books, journals and conference papers. The authors consider various aspects of sequences and their applications [1] but most of these papers concentrate on the mathematical description of sequences, e.g., as a ring of integers, the correlation within a sequence elements, measures of sequence complexity, whether a sequence can be modeled as a sequence of independent, identically distributed random numbers, and so on. The problem of maximizing the entropy of a sequence of independent, discrete random variables is considered mainly by scientists involved in the theory and practice of random numbers. Because high entropy of a random sequence is a necessary condition of its use in cryptography, several general methods that increase the sequence entropy have been proposed [2,3,4,5,6,7,8,9,10,11]. These methods include both very simple correctors and complicated hash functions or ciphers. Examples of simple correctors are combining exclusive-or two or more neighbor bits produced by a random source, feeding a linear feedback shift register (LFSR) with a sequence with small entropy, or using the von Neumann corrector. Examples of complicated correctors are hash functions SHA-1, SHA-2, decryption-encryption standard (DES), advanced encryption standard (AES), and so on. Solutions using extractor algorithms and resilient functions that “filter out” any deterministic bits from a raw sequence with a deterministic function also exist [5,6,7,8,9,10]. A good review of post-processing methods is given in [6].

In this paper, we define a bitwise exclusive-or sum of discrete random variables and prove formally that under certain assumptions, an infinite bitwise exclusive-or sum of independent discrete random variables with values encoded by l bits has a uniform distribution. We propose to use this property, the symbols that have already been produced, and an auxiliary table to produce a sequence that has almost maximal entropy using a single random source. The differences between existing algorithms and the algorithm XOR-B proposed in this paper are such that the uniform distribution has been proven formally and the algorithm does not need auxiliary deterministic circuit. Known algorithms are based on heuristic arguments and empirical experiments or introduce deterministic bits such as methods using LFSRs. The exception is the von Neumann corrector. Unfortunately, the von Neumann corrector produces sequences with variable and difficult to predict bit rates, which significantly limits its applications. Consequently, the most frequently used post-processing without an external auxiliary deterministic circuit and significant bit reduction uses a hash function or a cipher implemented in a field programmable gate array (FPGA) or in an application specific integrated circuit (ASIC) [11].

The organization of this paper is as follows. Section 2 contains the basic definitions. The proof of the proposed theorem and the algorithms for producing a sequence with almost maximal entropy with the use of a sequence with smaller entropy and an auxiliary table are contained in Section 3. The same section contains an example that illustrates a practical use of the proposed theorem. The paper ends with the conclusions in Section 4.



2. Bitwise Exclusive-or Sum of Random Variables

The mathematical environment for the method and theorem proposed in this paper is the probability space and operations on its elements. The probability space is a measurable space that is defined by a triple [image: there is no content], where [12,13,14]:


	(1)

	[image: there is no content] is any non-empty set called the sample space.



	(2)

	[image: there is no content] is a [image: there is no content]-algebra or [image: there is no content]-field, i.e., a collection of subsets of [image: there is no content] that satisfies four postulates:


	[image: there is no content],


	for any subset [image: there is no content], if [image: there is no content], then [image: there is no content],


	for any countable collection of subsets [image: there is no content], [image: there is no content], if [image: there is no content], then [image: there is no content], and,


	for any countable collection of subsets [image: there is no content], [image: there is no content], if [image: there is no content], then [image: there is no content].






	(3)

	[image: there is no content] is a countably additive measure, i.e., a mapping from [image: there is no content] to the closed interval [image: there is no content] such that [image: there is no content] and [image: there is no content].





The sample space [image: there is no content] is the set of all possible random outcomes of some experiment. A random variable assigns a numerical value to each of those outcomes [15]:

Definition 1. Given a probability space [image: there is no content], a random variable is a function X from [image: there is no content] to the real numbers R such that



[image: there is no content]



(1)




Formula (1) states that the function X must be measurable. For a continuous probability space, the sample space [image: there is no content] is uncountable, and the random variable X can assign an uncountable number of values. For the discrete probability space, the sample space [image: there is no content] is finite or countable [12,13,14,15].

Definition 2. We say that X is a discrete random variable if the function X assumes only a finite or countable number of values.

In this paper, we assume that a random source [image: there is no content] produces the sequences of symbols [image: there is no content], [image: there is no content]. The symbols are represented unequivocally by l-bit integer words 0, 1, …, p − 1 from the finite set [image: there is no content], where [image: there is no content]. The process of emitting symbols can be modeled as a stochastic process



[image: there is no content]



(2)




where [image: there is no content] are discrete random variables with values from the closed interval [image: there is no content].
Definition 3. The entropy of a stochastic process [image: there is no content] is defined by [16]



[image: there is no content]



(3)




when the limit exists.
Formula (2) determines the average rate of the asymptotic growth of the entropy [image: there is no content] with increasing k if the limit exists [16]. The entropy [image: there is no content] is also termed the entropy rate. The value of [image: there is no content] is in bits per time-step (bit/time-step). If [image: there is no content] is a sequence of independent and identically distributed (i.i.d.) random variables, then [16]



[image: there is no content]



(4)




If [image: there is no content] is a sequence of independent but not identically distributed random variables, then [16]


[image: there is no content]



(5)




Following Thomas and Cover, it worth noting that we can choose sequences of distributions on [image: there is no content] such that the limit [image: there is no content] does not exist [16].

The greatest value of [image: there is no content] is equal to l bits per time-step. This value is obtained when [image: there is no content] is a sequence of independent and uniformly distributed random variables. Thus, the key point for the greatest entropy is the independence and uniformity of the distributions on [image: there is no content].

Because the values of [image: there is no content] are encoded by l bits, the random variable [image: there is no content] can be written unequivocally as a sequence of l binary random variables [image: there is no content], [image: there is no content], i.e., [image: there is no content].

Let [image: there is no content] be another random source that produces sequences of symbols [image: there is no content], [image: there is no content]. As previously noted, the symbols are represented unequivocally by l-bit integer words 0, 1, …, p − 1 from the finite set [image: there is no content], where [image: there is no content], and the process of emitting symbols can be modeled as a stochastic process



[image: there is no content]



(6)




where [image: there is no content] are random variables with values from the closed interval [image: there is no content]. Each random variable [image: there is no content] can be written unequivocally as a sequence of l binary random variables [image: there is no content], [image: there is no content], i.e., [image: there is no content].
Definition 4. A bitwise exclusive-or sum [image: there is no content] of independent random variables [image: there is no content] and [image: there is no content] is an operation on sequences [image: there is no content] and [image: there is no content] of equal length of binary random variables that combines [image: there is no content] and [image: there is no content], [image: there is no content] using the exclusive-or operation, i.e.,



[image: there is no content]



(7)




If [image: there is no content] and [image: there is no content] are binary random variables, then [image: there is no content] is also a binary random variable. Consequently, [image: there is no content] are random variables with values in the closed interval [image: there is no content]. The probability that [image: there is no content] assumes a given value [image: there is no content] from [image: there is no content] is equal to [image: there is no content]. Similarly, the probability that [image: there is no content] assumes a given value [image: there is no content] from [image: there is no content] is equal to [image: there is no content]. For the random variable [image: there is no content], [image: there is no content], where [image: there is no content].


3. Increasing the Entropy of a Sequence of Discrete Random Variables with an Auxiliary Table

As noted in the previous section, the process of emitting symbols from [image: there is no content] can be modeled as a stochastic process [image: there is no content], [image: there is no content]. The maximal entropy of [image: there is no content] is obtained when [image: there is no content] are independent and uniformly distributed random variables. In this section, we assume that [image: there is no content] are independent but not uniformly distributed. They can also have different distributions for different k. We search for a computationally efficient algorithm for processing a sequence of symbols [image: there is no content] emitted by [image: there is no content] that provides at the output a sequence that can be modeled as a sequence of independent and uniformly distributed random variables. The proposed algorithm uses an auxiliary table T with L cells and has the following form:

Algorithm XOR-A

Initialization:

Fill all of the cells of T with the L subsequent l-bit words produced by [image: there is no content];

Computations:

for [image: there is no content] to N do



[image: there is no content]








end;

The subsequent l-bit words [image: there is no content] are written cyclically into table T and addressed from 0 to [image: there is no content]. During each step, we choose R + 1 l-bit words [image: there is no content], where [image: there is no content] is the current [image: there is no content] and [image: there is no content] are read from T. The addresses of [image: there is no content] depend on the random number [image: there is no content] being produced by an auxiliary random source with a uniform distribution. The elements of the R + 1 vectors [image: there is no content] are next summed modulo 2, which forms a single output [image: there is no content] with values from [image: there is no content]. To avoid multiple summing of the same number, the size of T satisfies the condition [image: there is no content], where R is an integer. For the same reason, we use [image: there is no content] instead of [image: there is no content]. Producing an N-element sequence [image: there is no content] requires the emission of (N + L) l-bit words [image: there is no content].

Algorithm XOR-A uses the property that a sequence formed from a sequence of independent random numbers is also random. This property has been used by MacLaren and Marsaglia [17] to permute sequences from the linear congruential pseudorandom generator with an auxiliary and simpler, pseudorandom number generator. They noticed that the shuffled sequence might have better statistical properties and a longer period. This method is known in the literature as Algorithm M [18]. Another heuristic approach used in algorithm XOR-A is the observation that combining XOR random words can also provide sequences with better statistical properties, in particular with higher entropy rates [19]. No exact theory explaining why combined generators can significantly improve the properties of sequences has been published yet. We know only the heuristic arguments. For example, Deng and George, and later Deng et al., provided arguments based on probability densities [20,21]. Some heuristic arguments come from Marsaglia [22]. One of the intuitive arguments for why combining improves the statistical properties of sequences and why it is better than shuffling is that a combined generator can produce new numbers, whereas shuffling only permutes existing elements.

An important factor in combined generators is the choice of mathematical operation that combines independent digital words. Because combining should not significantly increase the computation effort, only simple operations are considered: addition, addition modulo p, where p is an integer, and bitwise exclusive-or. The latter has a mixing property, commonly used, e.g., in ciphers. Examples include the decryption-encryption standard, the advanced encryption standard or the secure hash algorithms SHA-1 or SHA-2, etc., [11,23,24]. The XOR operation applied to sequences of bits produced by independent source generators also reduces the correlation between adjacent bits [3,6]. To use this property, we can divide a sequence into, e.g., l-bit disjoint blocks and compute the XOR function for each block. As the result, a sequence with a lower correlation between adjacent bits is obtained, but this method reduces the bit rate l times. Combining source streams according to Algorithm XOR-A decreases the output speed only slightly because of the fast operations used (this problem will be discussed at the end of Section 3). The distance between the elements that form the i-th, [image: there is no content], source stream changes randomly because [image: there is no content] is random. Let us emphasize, that this distance cannot be constant because the obtained source sequences are shifted versions of the same sequence. It cannot also be deterministic because elements of the source streams may repeat periodically, producing periodic patterns in the output sequence. This limits the use of algorithm XOR-A to sequences with a length not greater than the period of the auxiliary generator when the source of numbers [image: there is no content] is deterministic. However, if [image: there is no content] is produced by an entropy source, then this limitation does not exist.

Algorithm XOR-A provides a sequence [image: there is no content] of l-bit words. Because a bitwise exclusive-or sum of random variables is also a random variable, each [image: there is no content] is a value of a certain discrete random variable [image: there is no content], [image: there is no content]. A set of l-bit words [image: there is no content] is formed randomly and independently of the previous sets. Consequently, [image: there is no content] and [image: there is no content] are also independent for any [image: there is no content]. The open problem is the distribution of variables [image: there is no content] when [image: there is no content] can have arbitrary, the same or different distributions.

Theorem 1.

If


	(1)

	Random variables [image: there is no content], [image: there is no content] are independent,



	(2)

	An auxiliary source provides the random numbers [image: there is no content] with a uniform distribution



	(3)

	[image: there is no content],



	(4)

	[image: there is no content],





then the random variable [image: there is no content] has a uniform distribution in the interval [image: there is no content] for [image: there is no content].
Proof. Independently of k and the value of [image: there is no content], the random variable [image: there is no content], [image: there is no content] is a bitwise exclusive-or sum of [image: there is no content] independent random variables with theoretically arbitrary, the same or different distributions. Consequently, proving the distribution of [image: there is no content], [image: there is no content] can be reduced to proving the distribution of the random variable



[image: there is no content]



(8)




where [image: there is no content] are independent with arbitrary, the same or different distributions. Because the values of [image: there is no content], [image: there is no content] are encoded by l bits, the random variable [image: there is no content] can also be written unequivocally as a sequence of l binary random variables [image: there is no content], [image: there is no content], i.e., [image: there is no content]. Similarly, the values of Z are also encoded by l bits, and Z can be written unequivocally as a sequence of l binary random variables [image: there is no content], [image: there is no content], i.e., [image: there is no content]. It is also that


[image: there is no content]



(9)




To prove that Z has a uniform distribution, we first show that [image: there is no content] for [image: there is no content], where P denotes the probability and [image: there is no content]. The key to this proof is a calculation trick and the methodology introduced by R. B. Davies in a private paper [3]. The link to this page can also be found at the National Institute of Standards and Technology (NIST) webpage [25]. If [image: there is no content] takes the values of 0 and 1, then [image: there is no content] takes the values of 1 and −1. Consequently [3],



[image: there is no content]



(10)




If [image: there is no content], then [image: there is no content]. Assuming that [image: there is no content] is the expected value (mean) of the random variable [image: there is no content], we obtain the following:



[image: there is no content]



(11)




If [image: there is no content] are independent, then



[image: there is no content]



(12)




Because



[image: there is no content]



(13)




we obtain


[image: there is no content]



(14)




or


[image: there is no content]



(15)




where


[image: there is no content]



(16)




Considering the sign of [image: there is no content],



[image: there is no content]



(17)




Based on the assumption, the random variables can assume any value from the interval [image: there is no content] with a nonzero probability, and no value from [image: there is no content] is “certain,” i.e., it cannot be assumed with a probability equal to unity. Consequently, any subsequence of an l-bit sequence also appears with a nonzero and smaller than unity probability, and the variables [image: there is no content], [image: there is no content], [image: there is no content] assume both zero and one for each i. In this case, the expected value [image: there is no content] is always nonzero and is smaller than unity, i.e.,



[image: there is no content]



(18)




Because the product of the numbers with values in the interval [image: there is no content] decreases to zero as the quantity of multiplied numbers increases, we obtain



[image: there is no content]



(19)




Variable [image: there is no content] takes only two values, zero or one. It leads to the following equality



[image: there is no content]



(20)




Because the random variables [image: there is no content], [image: there is no content] assume all values from [image: there is no content] with a nonzero and smaller than unity probability and [image: there is no content] for all [image: there is no content], the variable [image: there is no content] has a uniform distribution in [image: there is no content] for R approaching infinity. This completes the proof.

Let us emphasize that the assumption that [image: there is no content], .. assumes values from [image: there is no content] with a nonzero and smaller than unity probability is necessary to draw the conclusion that equal probabilities of assuming zeros and ones by [image: there is no content] results in a uniform distribution of [image: there is no content]. This assumption eliminates all of the specific situations, i.e., combining variables with fixed (probability equal unity) values or the lack of some numbers (zero probability). As an example, let us consider the case of [image: there is no content]. If [image: there is no content] assumes, e.g., only two values, 3 and 0, with a probability of 1/2 (the numbers 1 and 2 are assumed to have zero probability), then the result of the combination is the numbers 3 or 0, independent of R. The number 3 is obtained if we combine an odd number of number 3s, and the number 0 is obtained for an even number of number 3s, although [image: there is no content] and [image: there is no content].

Words [image: there is no content] are chosen from the words that were already produced by the random source [image: there is no content]. Theorem 1 shows that perfect uniformity (the entropy equal to l bits/time-step) can only be obtained in the limit [image: there is no content], i.e., for table T with [image: there is no content] cells. In a practical system, L is finite, and consequently, the entropy can only be close to the theoretical limit. Assuming a fixed R, which results from the assumed acceptable value of the entropy [image: there is no content] of sequence [image: there is no content], the smallest L is equal to [image: there is no content] ([image: there is no content]). A small m enables some of the words [image: there is no content] chosen in step n to repeat for the next several iterations with a large probability. A greater value for m reduces this probability but increases the size of table T. A smallest acceptable m should ensure that the smallest distance, i.e., [image: there is no content], repeats statistically no more frequently than every [image: there is no content] iterations when we use [image: there is no content] as [image: there is no content]. This condition can be written as



[image: there is no content]



(21)




where P is the probability. Because [image: there is no content] has a uniform distribution, Condition (21) takes the following form:


[image: there is no content]



(22)




or


[image: there is no content]



(23)




Because m must be an integer, inequality (23) takes the form



[image: there is no content]



(24)




where [image: there is no content] is the smallest integer number that is greater than [image: there is no content], [image: there is no content]. A given distance [image: there is no content] repeats statistically every [image: there is no content] iterations for [image: there is no content] or rarely, when [image: there is no content].
The basic weakness of algorithm XOR-A is the necessity of using an additional source of randomness that provides random numbers [image: there is no content] with a uniform distribution. Because the proof of the proposed theorem indicates that such numbers are available at the output of algorithm XOR-A, they can be used to produce the numbers [image: there is no content]. We exploit here the fact that any subsequence of digits of a random number can be used to form another random number. Therefore, if [image: there is no content] is random, then any sequence formed from bits of [image: there is no content] is also random [19]. Assuming that



[image: there is no content]



(25)




where the truncation operation leaves the m higher-order bits of number [image: there is no content], the algorithm XOR-A can be modified in the following way:
Algorithm XOR-B

Initialization:

Choose the size L of an auxiliary Table T;

Fill all of the cells of T with the L subsequent l-bit words produced by [image: there is no content];



[image: there is no content]








Computations:

for [image: there is no content] to N do



[image: there is no content]








end;

A limitation for algorithm XOR-B is the number R of words [image: there is no content] that are read from T. Parameter R must satisfy the condition



[image: there is no content]



(26)




One of the factors determining the utility of a proposed algorithm is its computational complexity. The framework for the complexity of computations is contained in a classical paper by M. O. Rabin [26]. In algorithm XOR-B the following operations on l-bit words can be extracted during the production a single l-bit word [image: there is no content]:


	[image: there is no content]—division of two l-bit numbers with a rest,


	[image: there is no content]—multiplication of two l-bit numbers,


	[image: there is no content]—addition of two l-bit numbers,




where operation (i) can be reduced to multiplication by an inverse number. Assuming that the elementary operation is addition, the complexity of computations of (i) and (ii) can be equal to [image: there is no content], [image: there is no content] or [image: there is no content], where O is one of the family of Bachmann-Landau notations known as “Big O” [27,28]. The concrete value depends on the assumed multiplication algorithm. The complexity of the computation of (iii) is [image: there is no content] or [image: there is no content]. As previously, the details depend on the addition algorithm assumed. Algorithm XOR-B also uses logic operation XOR on l-bit words. The computational complexity of this operation can be reduced to l multiplications of one-bit numbers with addition in the Galois field GF(2). The complexity of this operation is [image: there is no content]. The dominating operation in algorithm XOR-B is:


[image: there is no content]



(27)




The assignment from Equation (27) can be factored into R operations XOR of the form



[image: there is no content]



(28)




The complexity of Equation (28) is equal to:



f(l)=l2(multiplications)+l(addition)+l2(division with rest)+C(constant time of reading elements from table T)+l(l-bit XOR)



(29)




Omitting a constant C, Equation (29) is reduced to



[image: there is no content]



(30)




Because the dominating operation is multiplication, the computational complexity of algorithm XOR-B can be assessed as [image: there is no content] for a simple multiplication of l-bit numbers, [image: there is no content] for the multiplication of l-numbers with Karatsuba’s algorithm and [image: there is no content] for the Schönhage–Strassen algorithm. When algorithm XOR-B is implemented in a hardware supporting multiplication of l-bit numbers, the time of multiplication can be the same as for the elementary operation. Consequently, the complexity of Equation (28) can be reduced to [image: there is no content]. It is the same as the complexity of hash algorithms with the same word length ([image: there is no content] for SHA-1 and SHA-256/224 and [image: there is no content] for SHA-512/384).

The total computational effort depends on both l and parameter R. Parameter R does not depend on l and is assumed to be fixed value for algorithm XOR-B. Computational effort determines a total time of computations and is usually measured in clock cycles necessary to execute an algorithm. In our case, it is production of a single number [image: there is no content]. It requires: R operations XOR defined by Equation (28), one load of l-bit word, one computation of [image: there is no content], one truncation, and one substitution [image: there is no content]. The detailed comparison of XOR-B with SHA-1 and SHA-2 is reliable when the same software and hardware platform is used for all algorithms. We limit our considerations to general comment, because it is not a subject of this paper. For very large R, greater than 80 rounds for SHA-1, SHA-512/384 and 64 rounds for SHA-256/224, the algorithm XOR-B can theoretically be slower. However, the high value of R indicates that some numbers [image: there is no content] occur with very small probability. There is no proof that SHA-1 and SHA-2 always provide uniform distribution at the output for biased raw sequences [29].


Example

Theorem 1 indicates that the simplest method for increasing the entropy of a sequence is to group its elements into blocks with [image: there is no content] elements and compute the bitwise exclusive-or sum of all of the elements for each block. This method is numerically inefficient because to obtain an N-element sequence with a greater entropy, a random source [image: there is no content] must produce [image: there is no content] symbols [image: there is no content]. Using an auxiliary table and the symbols already produced by source [image: there is no content], the production of the N-element sequence with theoretically the same entropy requires emitting [image: there is no content] symbols, where [image: there is no content], [image: there is no content]. For example, if [image: there is no content] and [image: there is no content], then the source [image: there is no content] must produce 11,000 symbols for the first method and 1160 symbols when algorithm XOR-B is used.

To compare different methods and assess the uniformity of the distribution of numbers obtained using the proposed theorem, a pseudorandom number generator with a Gaussian distribution of generated numbers was used. The Gaussian distribution occurs in many physical phenomena and plays a key role in the Shannon model of communication. As a source of independent numbers, we used a pseudorandom number generator from the Mathematica package [30]. The instruction [image: there is no content] provides numbers with a Gaussian distribution with an average [image: there is no content] and standard deviation [image: there is no content]. Because the obtained numbers are both positive and negative, we first compute their absolute values. Next, we consider numbers from the interval encoded by [image: there is no content] bits, where [image: there is no content] is the number of bits that encode the integer part and [image: there is no content] is the number of bits that encode the fractional part. If a generated number does not belong to the interval [image: there is no content] (generated numbers can, theoretically, assume values from minus to plus infinity), then we repeat the generation to obtain a number from this interval. The output is the bitwise exclusive-or sum of the [image: there is no content] numbers [image: there is no content], for which the values belong to [image: there is no content]. The distance between the addresses of [image: there is no content] changes randomly for each iteration. This additional randomness comes from the higher-order bits of the output number [image: there is no content], excluding the first iteration, when it is fixed and equal to unity. In the experiment, [image: there is no content] is fixed and equal to 16 bits. The value of [image: there is no content] is changed to obey the three exemplary ranges of the Gaussian distribution: [image: there is no content], [image: there is no content], and [image: there is no content]. Consequently, [image: there is no content] for the range [image: there is no content], and [image: there is no content] for the ranges [image: there is no content] and [image: there is no content]. It was also assumed that [image: there is no content] and [image: there is no content]. The size of table L is equal to [image: there is no content], where [image: there is no content].

To assess the uniformity of the obtained distributions, a chi-square test was used. This test measures the agreement between the empirical distribution and the theoretical distribution for a given degree of freedom (number of categories) and significance level. The value of the statistic [image: there is no content] is computed using the formula [18,19]



[image: there is no content]



(31)




where H is the number of categories, Ni is the number of samples from the i-th category, Pi is the probability that each sample falls into category i, and N is the total number of samples. The critical value [image: there is no content] of the chi-square test for 50 categories and the significance level [image: there is no content], chosen in the numerical experiment, is equal to 74.92 (we do not assess the parameters of the distribution). The results of the tests for [image: there is no content], ranges [image: there is no content], [image: there is no content], [image: there is no content], and the two methods of producing uniformly distributed random numbers are summarized in Table 1, Table 2 and Table 3.
The results shown in Table 1 indicate that we require only four numbers from the interval [image: there is no content] to form uniformly distributed numbers from the numbers with Gaussian distributions with [image: there is no content] and [image: there is no content] for both methods. When the probability of producing certain numbers from [image: there is no content] decreases, the parameter R increases.







Table 2. The values of the statistic [image: there is no content] for the range [image: there is no content].



	
Grouping Subsequent Elements into [image: there is no content] Element Blocks






	
R

	
4

	
5

	
6

	
7

	
8

	
9




	
[image: there is no content]

	
109.98

	
85.61

	
65.79

	
21.93

	
33.99

	
48.16




	
Algorithm XOR-B




	
R

	
4 (m = 2, L = 16)

	
5 (m = 3, L = 49)

	
6 (m = 3, L = 48)

	
7 (m = 3, L = 56)

	
8 (m = 3, L = 128)

	
9 (m = 4, L = 144)




	
[image: there is no content]

	
173.56

	
86.24

	
54.96

	
41.76

	
38.86

	
51.23










Considering the numbers from the interval [image: there is no content], we must sum the bitwise exclusive-or for at least seven numbers to pass the chi-square test. Exploiting the numbers from the tail of the Gaussian distribution, we need 21 or more numbers from the interval [image: there is no content] for both methods. The use of algorithm XOR-B requires significantly fewer numbers [image: there is no content] to produce an N element output sequence than grouping subsequent [image: there is no content] into [image: there is no content] element blocks.




Table 1. The values of the statistic [image: there is no content] for the range [image: there is no content].



	
Grouping Subsequent Elements into [image: there is no content]Element Blocks






	
R

	
1

	
2

	
3

	
4

	
5

	
6




	
[image: there is no content]

	
226.41

	
76.42

	
55.28

	
39.59

	
53.14

	
51.69




	
Algorithm XOR-B




	
R

	
1 (m = 0, L = 1)

	
2 (m = 1, L = 4)

	
3 (m = 2, L = 12)

	
4 (m = 2, L = 16)

	
5 (m = 3, L = 40)

	
6 (m = 3, L = 48)




	
[image: there is no content]

	
219.81

	
97.13

	
37.19

	
37.52

	
45.13

	
34.85










Table 3. The values of the statistic [image: there is no content] for the range [image: there is no content].



	
Grouping Subsequent Elements into [image: there is no content] Element Blocks






	
R

	
5

	
10

	
15

	
20

	
25

	
30




	
[image: there is no content]

	
4400.60

	
383.53

	
80.57

	
50.69

	
51.81

	
48.97




	
Algorithm XOR-B




	
R

	
5 (m = 3, L = 40)

	
10 (m = 4, L = 160)

	
15 (m = 4, L = 240)

	
20 (m = 5, L = 640)

	
25 (m = 5, L = 800)

	
30 (m = 5, L = 960)




	
[image: there is no content]

	
3589.55

	
362.47

	
75.39

	
64.20

	
50.29

	
53.58









4. Conclusions

In this paper, a novel method for increasing the entropy of a sequence of discrete random variables has been proposed. The elements of this sequence are a bitwise exclusive-or sum of independent random variables that model the output of a random source. The proposed algorithms use an auxiliary table and a novel theorem proved in this paper. The theorem and the algorithms provide an efficient method for converting a sequence of independent random variables with a practically arbitrary distribution into a sequence of independent and uniformly distributed random variables, i.e., with entropy close to maximal. The algorithm XOR-B does not need an additional circuit and requires only [image: there is no content] input words per one output word. Grouping the subsequent words into [image: there is no content] element blocks requires [image: there is no content] input words per one output symbol.

The areas for applications include dynamical systems, especially chaotic systems as a source of random numbers, chaos-based cryptography, traditional cryptography, statistics, simulation experiments, and many others fields in which random sequences with entropy close to the maximal value are needed.
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