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Abstract:

 We explore the information geometric structures among the thermodynamic potentials in the κ-thermostatistics, which is a generalized thermostatistics based on the κ-deformed entropy. We show that there exists two different kinds of dualistic Hessian structures: one is associated with the κ-escort expectations and the other with the standard expectations. The associated κ-generalized metrics are derived and related to the κ-generalized fluctuation-response relations among the thermodynamic potentials in the κ-thermostatistics.
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1. Introduction

The geometric approaches to thermodynamics and statistical mechanics have been developed since the early works of Gibbs [1] and Carathéodory [2]. Ruppeiner [3] and Weinhold [4,5] independently introduced the Riemannian metrics, which are constructed from thermodynamic potentials (entropy or internal energy). The thermodynamic fluctuations around the equilibrium states have been studied, and the associated Riemannian curvature has been related to an interaction that characterizes a thermodynamic system. On the other hand, information geometry [6] has been developed mainly in the fields of statistics, and it provides a useful framework for studying the family of probability distributions, mainly the exponential family, by using the geometric tools in affine differential geometry. One of the distinct features in information geometry is a dualistic structure of affine connections, which provides us a very useful tool for many scientific fields, such as information theory, statistics, neural networks, statistical physics, and so on.

Recently, for studying power law distributions, some deformed exponential families [7,8] have attracted attention in various scientific fields. Among the deformed exponential functions, the κ-deformed exponential function [9] was proposed recently and has been developed in many fields, such as statistical physics [9,10,11,12], thermostatistics, financial physics, social science, statistics, information theory and information geometry [13]. Although the physical meaning of the deformed parameter κ is not established yet, some theoretical foundations [14] of the κ-deformed exponential functions have been developed.

The κ-thermostatistics is a generalization of thermostatistics [15] based on κ-entropy [image: there is no content], which reduces to the standard Gibbs–Shannon entropy in the limit of [image: there is no content]. Since a deformed exponential probability density function (pdf) naturally induces the escort pdf [8] in general, the κ-deformed exponential pdf also leads to the κ-escort pdf. As a result, it is important to take into account the two different kinds of expectations: one is the κ-escort expectation, and the other is the standard expectation. Accordingly, the κ-entropy [image: there is no content], which is defined by the standard expectation, naturally induces the κ-escort entropy, which is expressed as the κ-escort expectation. While two of the authors (Tatsuaki Wada and Antonio M. Scarfone) studied the information geometric structures [13,16] of the κ-thermostatistics, the other author (Hiroshi Matsuzoe) showed that a deformed exponential family has two kinds of dualistic Hessian structures [17] in general. We here explore the information geometric structures concerning the κ-thermostatistics. Remarkably, as shown in this paper, there exist two different kinds of dualistic Hessian structures among the thermodynamic potentials in the κ-thermostatistics.

In the next section, we begin with a brief review of the geometric approach to thermodynamics and Callen’s thermostatistics [15]. Section 3 provides the preliminaries on the Hessian geometry concerning the information geometry based on the exponential family. It also provides the very basics of the κ-thermostatistics. In Section 4, we explain the dualistic structures of the Hessian geometries in the κ-thermostatistics. We explore the Hessian structure associated with the Legendre relations for the κ-entropy. We derive some non-trivial relations, which disappear in the standard limit of [image: there is no content]. The final section is devoted to the conclusions.



2. Thermodynamics and Thermostatistics

Consider a thermal equilibrium system characterized by the entropy S as a state function of the internal energy U and volume V, i.e., in entropy representation [image: there is no content]. We assume that the thermal system has a fixed number of particles. As is well known, the first law of thermodynamics is expressed as:



dS=1TdU+PTdV,



(1)




where T and P denote the temperature and the pressure of the thermal system, respectively. They are related by the relations:


1T=∂S∂UV,PT=∂S∂VU.



(2)




Mathematically, these relations are necessary and sufficient conditions, so that the Pfaff equation dS(U,V)−(1/T)dU−(P/T)dV=0 is an exact differential, and consequently, the entropy [image: there is no content] is a state function, as shown originally by Carathéodory [2]. Planck potential Ξ is given by:


Ξ1T,PT=S(U,V)−1TU−PTV,



(3)




which is nothing but the total Legendre transform of [image: there is no content].
For the sake of later convenience, instead of the concave function [image: there is no content], we use the convex function [image: there is no content], which is called negentropy, or negative entropy [18]. Introducing the set of the extensive variables [image: there is no content] with [image: there is no content], and the set of the intensive variables [image: there is no content] with [image: there is no content], Relations (2) can be compactly expressed as:



[image: there is no content]=∂i[image: there is no content],i=1,2,



(4)




where [image: there is no content]. The Legendre relation (3) becomes:


[image: there is no content]



(5)




and the dual relation of (4) is readily obtained from (5) as:


[image: there is no content]=∂iΞ,i=1,2.



(6)




where [image: there is no content].
It is also known that the Maxwell relations in thermodynamics are due to the irrelevance of the order of differentiating a thermodynamic potential (an analytic function) with respect to two variables, For instance, for the negentropy [image: there is no content], the following Maxwell relation:



∂∂V1T=∂∂UPT



(7)




is equivalent to the relation:


[image: there is no content]



(8)




The Hessian of the negentropy [image: there is no content] can be considered as a symmetric metric tensor of a manifold with the thermodynamic variables [image: there is no content] as its coordinates,


[image: there is no content]≡∂i∂j[image: there is no content],



(9)




which is equivalent to the Ruppeiner metric [3]. The inverse matrix of [image: there is no content] is given by:


gijR=∂i∂jΞ.



(10)




In Callen’s thermostatistics [15], the concept of the equilibrium states in conventional thermal physics is extended to the “equilibrium states”, which are characterized as the states that maximize the disorder, or the measure of information. A well-known measure of information is the Gibbs–Shannon entropy S, which is expressed as the expectation of [image: there is no content], i.e.,



[image: there is no content]



(11)




Here and hereafter, [image: there is no content] stands for the standard expectation with respect to a pdf [image: there is no content], which is characterized by the parameter [image: there is no content] with an appropriate degree of freedom M. Any extensive thermal quantity is considered as the expectation (or average) of the corresponding microscopic quantity, for instance the internal energy is given by:


U=∫dxp(x;T,P)E(x),



(12)




where [image: there is no content] is the microscopic energy of a configuration x and [image: there is no content] is a pdf depending on the intensive parameters T and P. Introducing the notation [image: there is no content] for the microscopic quantity associated with [image: there is no content], we can express the extensive thermal quantities as:


[image: there is no content]=∫dxp(x;θ)fi(x)=Epfi(x),i=1,2,...,M.



(13)




From the Legendre transformation (5) and Equation (13), we see that:


[image: there is no content]



(14)




We thus obtain that:


[image: there is no content]



(15)




and consequently, we see that the [image: there is no content] is an exponential pdf:


[image: there is no content]



(16)




The quantity:



∂iℓθ(x)≡∂ilnp(x;θ),i=1,2,…,M,



(17)




is called the score function in statistics, and it has zero expectation, i.e.,


Ep∂iℓθ(x)≡∫dxp(x;θ)∂ilnp(x;θ)=∫dx∂ip(x;θ)=∂iEp1=0,



(18)




which is due to the normalization [image: there is no content] of any pdf [image: there is no content]. From this, we readily confirm Relation (6) as:


0=Ep∂iℓθ(x)=Epfi(x)−∂iΞ(θ)=[image: there is no content]−∂iΞ(θ).



(19)




Let us introduce Fisher’s information matrix [image: there is no content] defined by:



[image: there is no content](θ)≡Ep∂iℓθ(x)∂jℓθ(x).i,j=1,2,…,M.



(20)




Differentiating both sides of Equation (18) with respect to θ, we obtain:


∫dx∂ip(x;θ)∂jℓθ(x)=−∫dxp(x;θ)∂i∂jℓθ(x).



(21)




Using this relation, the Fisher metric [image: there is no content] can be written equivalently in other different expressions:



(22)[image: there is no content]=∫dx∂ip(x;θ)∂jℓθ(x)(23)=−∫dxp(x;θ)∂i∂jℓθ(x)(24)=∫dx1[image: there is no content]∂ip(x;θ)∂jp(x;θ).








In particular, substituting Equation (15) into (23), we readily confirm that:


[image: there is no content]=∂i∂jΞ(θ)=gijR,



(25)




that is this Fisher metric for the exponential pdf (16) is a Hessian matrix and coincides with the inverse matrix of Ruppeiner metric [image: there is no content].



3. Preliminaries

In information geometry [6], a pair of dually-flat affine connections plays an essential role in the geometrical methods of statistical inference. A well-known dually-flat space is the statistical manifold of the exponential family, which can be naturally considered as a Hessian manifold.


3.1. Hessian Geometry

We here briefly review the basics of the Hessian manifold. For more details, please see [17]. Let [image: there is no content] be a manifold, h be a positive definite metric and ([image: there is no content],h) be a Riemannian manifold. For an affine connection ∇, we can define the dual connection [image: there is no content] of ∇ associated with h by:



[image: there is no content]



(26)




where [image: there is no content] and Z are vector fields on [image: there is no content]. The affine connection ∇ is also the dual of [image: there is no content]. We say that ∇ is curvature free if the curvature tensor:


[image: there is no content]



(27)




vanishes everywhere on [image: there is no content]. Here, [image: there is no content]. The torsion tensor [image: there is no content] is defined by:


[image: there is no content](X,Y)≡∇XY−∇YX−[X,Y],



(28)




and we say that ∇ is torsion free if [image: there is no content] vanishes everywhere on [image: there is no content].
An affine connection ∇ is assumed to be torsion free in this study. If an affine connection ∇ is curvature free, we say that the ∇ is flat. In this case, there exists a coordinate system [image: there is no content] on [image: there is no content] locally, such that the connection coefficients [image: there is no content] of ∇ vanish on the coordinate neighborhood. Such a coordinate system [image: there is no content] is called an affine coordinate system.

For a Riemannian manifold ([image: there is no content],h) and a flat affine connection ∇ on [image: there is no content], the set [image: there is no content] is called a Hessian structure on [image: there is no content] if there exists, at least locally, a function Ψ, such that [image: there is no content]. This is expressed, in the coordinate form, as:



[image: there is no content]



(29)




where [image: there is no content] is the coordinate of an arbitrary point p on [image: there is no content].
It is known that for a Hessian manifold ([image: there is no content],∇,h) and the dual coordinate systems [image: there is no content] for ∇ and {[image: there is no content]} for [image: there is no content], there exists a pair of the potential functions Ψ and [image: there is no content] on [image: there is no content], such that:



Ψ([image: there is no content])+Ψ*(ηp)−[image: there is no content]·ηp=0,



(30)






[image: there is no content]=∂iΨ*(η),[image: there is no content]=∂iΨ(θ),



(31)






[image: there is no content]=∂i∂jΨ(θ),[image: there is no content]=∂i∂j[image: there is no content](η),



(32)




where the matrix [image: there is no content] of a Riemannian metric [image: there is no content] is the inverse matrix [image: there is no content] of [image: there is no content], and vice versa. The potential functions [image: there is no content] and [image: there is no content] are Legendre dual to each other and are called θ- and η-potential functions, respectively. Note also that ([image: there is no content],[image: there is no content],h) is a Hessian manifold associated with the potential function [image: there is no content].
For the exponential pdf:



[image: there is no content]



(33)




it is well known that Fisher metric [image: there is no content] is expressed as the Hessian of the potential function, e.g.,:


[image: there is no content](θ)=∂i∂jΨ(θ).



(34)




From Equation (33), we obtain


[image: there is no content]



(35)




Substituting this relation into Definition (20) and using [image: there is no content]=∂iΨ(θ), we see that:


[image: there is no content](θ)=Epfi−Epfifj−Epfj,i,j=1,2,…,M,



(36)




which is the covariance matrix characterizing the expectation of the fluctuations around the expectations [image: there is no content]. Physically, this means that the expectations of the relevant thermodynamic fluctuations characterize the metric [image: there is no content] of the statistical manifold [image: there is no content] for the equilibrium thermodynamics. In addition, since [image: there is no content]=∂i[image: there is no content], each component of [image: there is no content] describes a response function, which is the derivative of an extensive variable [image: there is no content] with respect to an intensive variable [image: there is no content]. As a result, the physical interpretation of Relation (36) is given by the fluctuation-response relations [15,16] for an equilibrium thermal system.
The canonical divergence function [6] for the two points p and r on [image: there is no content] can be defined by:



D(p,r)≡Ψ([image: there is no content])+[image: there is no content](ηr)−[image: there is no content]·ηr.



(37)




It is well known that for the exponential pdf, the canonical divergence coincides with the Kullback–Leibler (KL) divergence. In addition, for the exponential pdf [image: there is no content] and an arbitrary pdf [image: there is no content], we have:


∫dxr(x)lnp(x;θ)=∫dxr(x)∑mθmfm(x)−Ψ([image: there is no content])=[image: there is no content]·ηr−Ψ([image: there is no content]).



(38)




Then, it follows that:


D(p,r)=[image: there is no content](ηr)−[image: there is no content]·ηr−Ψ([image: there is no content])=∫dxr(x)lnr(x)−lnp(x;θ)=∫dxr(x)ln[image: there is no content][image: there is no content].



(39)




The dual affine connections [image: there is no content] and [image: there is no content] are induced from the Fisher metric. The Christoffel symbol [image: there is no content] of the first kind for the e-affine connection [image: there is no content] and that [image: there is no content] for the m-affine connection [image: there is no content] are defined so that the next relation holds: [6]:



∂igjkF=[image: there is no content]+[image: there is no content].



(40)




More specifically, they are explicitly given by:


[image: there is no content]≡∫dx∂kp(x;θ)∂i∂jℓθ(x)=Ep∂kℓθ∂i∂jℓθ(x),



(41)






[image: there is no content]≡∫dx∂i∂jp(x;θ)∂kℓθ(x)=Ep1[image: there is no content]∂i∂jp(x;θ)∂kℓθ(x),



(42)




respectively.


3.2. κ-Thermostatistics

The κ-thermostatistics is a generalized thermostatistics [8] based on the κ-entropy [image: there is no content] given by:



[image: there is no content]≡−∫dxp(x)lnκp(x)=Ep−lnκp,



(43)




which mimics the Gibbs–Shannon entropy (11) by replacing the standard logarithm with the κ-logarithm. Here, the κ-logarithm [image: there is no content] [10,11] is a deformed function of the standard logarithm [image: there is no content] with a real parameter [image: there is no content].


lnκx≡xκ−x−κ2κ=1κsinhκlnx,



(44)




for [image: there is no content]. Its inverse function is given by:


[image: there is no content]



(45)




In the [image: there is no content] limit, the κ-exponential and the κ-logarithm reduce to the standard exponential [image: there is no content] and logarithm [image: there is no content], respectively.
We introduce another κ-deformed function:



[image: there is no content]



(46)




which is, in a sense, the conjugate (or co-function) of [image: there is no content], as [image: there is no content] is the co-function of [image: there is no content]. In the [image: there is no content] limit, this κ-deformed function reduces to the unit constant function [image: there is no content]. Similar to the κ-entropy [image: there is no content] being defined as the expectation of [image: there is no content], we introduce the following function:


[image: there is no content]≡∫dxp(x)uκp(x)=Epuκ(p),



(47)




as the expectation of [image: there is no content]. The κ-dependent constant α and λ are introduced so that they satisfy the following equations [13]:


ddxxlnκx=λlnκxα=lnκx+uκ(x),



(48)






ddxxuκ(x)=λuκxα=uκ(x)+κ2lnκx,



(49)




for any [image: there is no content]. These equations for the α and λ can be derived [12] from the MaxEnt principle for the κ-entropy [image: there is no content], and the solutions are expressed as:


α=1−κ1+κ12κ,λ=1−κ2,



(50)




which are related to each other according to:


[image: there is no content]



(51)




Note that in the standard limit of [image: there is no content], the parameter α reduces to [image: there is no content], and Relation (48) reduces to the well-known form:


ddxxlnx=lnx+1.



(52)




In other words, Relation (48) is a κ-generalization of the standard Relation (52). In addition, Relation (49) is non-trivial unless [image: there is no content], since it reduces to the trivial identity [image: there is no content] when [image: there is no content].



4. Dual Structures of the Hessian Geometries in the κ-Thermostatistics

In [16,19], we have derived the Legendre relations from the κ-deformed exponential pdf (see Equation (59)), which maximizes the κ-entropy [image: there is no content] under the constraints:



ηm=Epfm,m=1,2,⋯,M,



(53)




and the normalization of the pdf. Here, we follow the reverse order of the above derivation, i.e., starting from the Legendre relations, we derive the κ-deformed exponential pdf. We assume the Legendre relations for the θ- and η- potential functions [image: there is no content] and [image: there is no content]:


[image: there is no content]=θ·η−Ψκ☆(η),



(54)






[image: there is no content]=∂iΨκ☆(η),[image: there is no content]=∂iΨκ(θ)



(55)




with [image: there is no content] and recognizing the potential functions as:


Ψκ☆(η)=−[image: there is no content](η),Ψκ(θ)=[image: there is no content](θ)+γ(θ),



(56)




Then, we can derive the κ-deformed exponential pdf as follows. Using the useful Identity (48), we see that:


Epλlnκ[image: there is no content]α=Eplnκp(x;θ)+Epuκ(p(x;θ)=−[image: there is no content](η)+[image: there is no content](θ)=Ψκ☆(η)+Ψκ(θ)−γ(θ)=∑m=1MθmEpfm−γ(θ)=Ep∑m=1Mθmfm(x)−γ(θ).



(57)




Comparing the both sides, we obtain that:


λlnκ[image: there is no content]α=∑m=1Mθmfm(x)−γ(θ),



(58)




from which the κ-deformed exponential pdf:


p(x;θ)=αexpκ1λ∑m=1Mθmfm(x)−γ(θ),



(59)




is derived. Note that unlike in the standard case in which a relevant pdf is exponential, the parameter [image: there is no content] is not necessarily intensive and the variable [image: there is no content] is not necessarily extensive in general. In order to avoid misleading, we call [image: there is no content] an external parameter, which characterize a state of the thermal systems described by the κ-deformed exponential pdf (59), and we call [image: there is no content] an expectation variable.
For a deformed exponential pdf, it is known [8] that the so-called escort pdf is naturally induced. We thus introduce the κ-escort pdf [image: there is no content] [13] with respect to [image: there is no content] by:



[image: there is no content]≡1[image: there is no content][image: there is no content]λuκp(x;θ)α,



(60)




where [image: there is no content] is the normalization factor:


[image: there is no content]≡∫dx[image: there is no content]λuκ[image: there is no content]α,



(61)




and the corresponding κ-escort expectation [image: there is no content] of a function [image: there is no content] is defined by:


[image: there is no content]≡∫dxP(x;θ)A(x).



(62)




Having described the basics concerning κ-thermostatistics, we now consider its Hessian geometry. The next theorem relates a generalized score function [image: there is no content] to the generalized pdf [image: there is no content] for which the expectation of [image: there is no content] becomes zero. This zero-expectation of a generalized score function [image: there is no content] is an important and useful property, which correctly leads to the Legendre relations between an expectation value [image: there is no content] and the relevant thermodynamic potential, as shown in (19) for the standard score function (17).


Theorem 1. 
For the general score function in the form:



[image: there is no content]



(63)




with a given smooth differentiable functional [image: there is no content]of a pdf [image: there is no content], the expectation of [image: there is no content]with respect to the [image: there is no content]becomes zero if we choose:


[image: there is no content]



(64)




where [image: there is no content]denotes the inverse function of [image: there is no content].



Proof. 
For any pdf [image: there is no content], ∫dx∂ip(x)=0 because of the normalization ∫dxp(x)=1. Then:



∫dxP(x)sθ(x)=0,



(65)




if the condition:


P(x)∂iΛ(p(x))=P(x)∂Λ(p)∂p∂ip(x)∝∂ip(x),



(66)




is satisfied. This means that:


[image: there is no content]



(67)




Needless to say, an appropriate proportional factor is needed for the normalization of [image: there is no content].  ☐


A well-known example is given by [image: there is no content], i.e., the score function of (17). In this case, [image: there is no content], and Relation (18) is satisfied.

Now, let us introduce the κ-generalization [image: there is no content] of [image: there is no content]:



[image: there is no content]≡λlnκ[image: there is no content]α,



(68)




which reduces to [image: there is no content] in the limit of [image: there is no content]. The inverse function of [image: there is no content] is:


([image: there is no content])(−1)(t)=αexpκtλ,



(69)




and by using the relation:


[image: there is no content]



(70)




we have:


∂([image: there is no content])(−1)(t)∂t|t=[image: there is no content]=[image: there is no content]λuκ[image: there is no content]α∝P(x),



(71)




which is the κ-escort pdf Equation (60).
From Theorem 1, we see that the κ-score function ∂i[image: there is no content] has zero κ-escort expectation:



EP∂i[image: there is no content]=0.



(72)




In addition, for the κ-exponential pdf (59), the κ-score function ∂i[image: there is no content] becomes:


∂i[image: there is no content]=fi(x)−∂iγ(θ),



(73)




and consequently, we have:


[image: there is no content]



(74)




where [image: there is no content] is the dual coordinate of [image: there is no content] associated with the κ-escort expectations [image: there is no content]. Note also that the function [image: there is no content] is the θ-potential function associated with the κ-escort expectations [image: there is no content]. In this way, we have two different kinds of dual coordinates [image: there is no content] and [image: there is no content] for the same [image: there is no content] coordinate. We also see that:


∂iEPℓθκ−1=∂iEPλlnκ(p(x;θ)/α)=∂iEP∑mθmfm(x)−γ=∂i∑mθmEPfm−γ=∂i∑mθmηmesc−γ=[image: there is no content]+∑m(∂iθm)ηmesc−∂iγ=[image: there is no content],



(75)




where in the last step, we used:


∂iγ=∑m(∂iθm)∂mγ=∑m(∂iθm)ηmesc.



(76)




The Legendre relations concerning [image: there is no content] are summarized as follows:


[image: there is no content]=γ(θ)+1,Ψκesc☆([image: there is no content])=EP[image: there is no content]−1,



(77)






[image: there is no content]=EPfi=∂iγ(θ),θi=∂∂[image: there is no content]Ψκesc☆([image: there is no content]),



(78)






Ψκesc☆([image: there is no content])=θ·[image: there is no content]−Ψκesc(θ).



(79)




Of course, in the [image: there is no content] limit, they reduce to the standard relations, respectively. Note that Ψκesc☆([image: there is no content]) is the κ-escort entropy, which is given by the κ-escort expectation.
Due to Equation (72), the κ-score function ∂i[image: there is no content] has non-zero expectation:



Ep∂i[image: there is no content]≠0,



(80)




in other words, it is biased. We then introduce the bias correction term Ep∂i[image: there is no content] as:


∂i[image: there is no content]−Ep∂i[image: there is no content].



(81)




However, as we will show below, it is remarkable that the bias correction term is expressed in terms of the function [image: there is no content] in Equation (47).

Theorem 2. 
For the κ-score function ∂i[image: there is no content]with the κ-generalized representation [image: there is no content]of Equation (68), the bias correction term is:



Ep∂i[image: there is no content]=∂i[image: there is no content](θ),



(82)




where [image: there is no content](θ)is the expectation of [image: there is no content].



Proof. 
The direct calculation shows that:



Ep∂i[image: there is no content]=∫dxp(x;θ)∂iλlnκ[image: there is no content]α=∫dxp(x;θ)λuκ[image: there is no content]α[image: there is no content]∂ip(x;θ)=∫dxλuκ[image: there is no content]α∂ip(x;θ)=∂i∫dxp(x;θ)uκ(p(x;θ))=∂i[image: there is no content](θ),



(83)




where we used the useful identities (48) and (49).  ☐


We hence introduce the modified κ-representation:



[image: there is no content]≡[image: there is no content]−[image: there is no content](θ),



(84)




and the modified κ-score function given by:


∂i[image: there is no content]−[image: there is no content](θ)=∂i[image: there is no content],



(85)




which of course, has zero expectation:


[image: there is no content]



(86)




by construction. Note that the modified κ-representation [image: there is no content] reduces to the standard one [image: there is no content] in the limit of [image: there is no content], because of lim[image: there is no content][image: there is no content]=1.
With the help of Equation (55), we can derive the following relations:



[image: there is no content]=∑m=1Mθmfm(x)−γ−[image: there is no content]=∑m=1Mθmfm(x)−Ψκ(θ),



(87)






∂i[image: there is no content]=fi(x)−∂iΨκ(θ),



(88)






∂i∂j[image: there is no content]=−∂i∂jΨκ(θ),



(89)




and from Equations (86) and (88), we confirm Relation (55) as:


0=Ep∂i[image: there is no content]=Epfi−∂iΨκ(θ)=[image: there is no content]−∂iΨκ(θ).



(90)




Now, taking the expectation of the both sides of Equation (73) and using (74) and (82), we obtain the important relation:



∂i[image: there is no content](θ)=Ep∂i[image: there is no content]=Epfi(x)−∂iγ(θ)=Epfi(x)−EPfi(x).



(91)




Thus, the θ-derivatives of the function [image: there is no content](θ) characterizes the difference between the standard and κ-escort expectations. This sheds light for understanding a physical role of the [image: there is no content] function. Note that since lim[image: there is no content][image: there is no content](θ)=1, the difference of the both expectations disappears in the standard limit of [image: there is no content].
We now consider the κ-generalized metric, which is the Hessian matrix of the κ-deformed θ-potential function:



gij(κ)≡∂i∂jΨκ(θ).



(92)




Accounting for Relation (55), we can rewrite Equation (92) as:


gij(κ)=∂i[image: there is no content]=∂iEpfj=∫dx∂ip(x;θ)f(x),



(93)




and taking into account the relation:


∂ip(x;θ)=[image: there is no content]λuκ([image: there is no content]α)fi(x)−∂iγ=[image: there is no content]P(x;θ)fi(x)−∂iγ,



(94)




we obtain:


gij(κ)=∂iEpfj=∫dx∂ip(x;θ)fj(x)=[image: there is no content]∫dxP(x;θ)fi(x)−∂iγfj(x)=[image: there is no content]∫dxP(x;θ)fi(x)−EPfifj(x)=[image: there is no content]EPfi(x)−EPfifj(x),=[image: there is no content]EP(fi−EPfi)(fj−EPfj),



(95)




which states that the response function ∂iEpfj associated with the expectation [image: there is no content] is related to the fluctuation associated with the κ-escort expectation. This is a κ-generalization of the standard fluctuation-response relation, as pointed out firstly by Naudts [8]. In the previous work [16], we applied the result (95) to a κ-generalization of the grand-canonical ensemble. We emphasized that the response functions for the standard expectations are related to the κ-escort expectations of the fluctuations around the κ-escort expectations.
Similarly, we next consider the κ-generalized escort metric, which is the Hessian matrix of the κ-escort θ-potential function [image: there is no content]:



gij(κ−esc)≡∂i∂jΨκesc(θ)=∂iηjesc=∂iEPfj=∫dx∂iP(x;θ)f(x).



(96)




Taking the derivative of the normalization factor [image: there is no content] of (61) with respect to [image: there is no content], and using Relations (48), (49) and (94), we obtain:


∂i[image: there is no content]=∫dxp(x;θ)uκp(x;θ)λuκ[image: there is no content]α3fi(x)−∂iγ(θ).



(97)




Similar to Relation (95), which relates the metric [image: there is no content] to the thermodynamic fluctuations associated with the κ-escort expectation, we can relate the metric [image: there is no content] to a certain kind of thermodynamic fluctuation. To this end, based on Relation (97), we introduce the double-escort pdf [image: there is no content] defined by:


[image: there is no content]≡1[image: there is no content]p(x;θ)uκp(x;θ)λuκ[image: there is no content]α3,



(98)




which is the escort pdf of the κ-escort pdf (60), and [image: there is no content] denotes the normalization factor:


[image: there is no content]≡∫dxp(x;θ)uκp(x;θ)λuκ[image: there is no content]α3,



(99)




The double-escort κ-expectation [image: there is no content] of a function [image: there is no content] is defined by:


[image: there is no content]≡∫dxP˜(x;θ)A(x).



(100)




By using the double-escort κ-expectation, Relation (97) is expressed as:



∂i[image: there is no content]=[image: there is no content]E˜P˜fi−EPfi,



(101)




which is similar to Relation (91), and we see that the η-derivatives of the normalization factor [image: there is no content] characterize the difference between the double-escort κ-expectation and the κ-escort expectation.
By using the double-escort pdf, we obtain:



∂iP(x;θ)=1[image: there is no content][image: there is no content]P˜(x;θ)fi(x)−EPfi−P(x;θ)∂i[image: there is no content].



(102)




Substituting Relation (101) into this and after some calculations, we finally obtain that:


gij(κ−esc)=∂iEPfj=∫dx∂iP(x;θ)fj(x)=[image: there is no content][image: there is no content]E˜P˜(fi−EPfi)(fj−EPfj),



(103)




which is the κ-generalization of the fluctuation-response relation associated with the double-escort κ-expectations. To the best of our knowledge, this is the first report to show Relation (103) in the literature.
Next, similar to the representation [image: there is no content], we consider the quantity:



[image: there is no content]≡λuκ[image: there is no content]α,



(104)




as the co-representation of [image: there is no content]. From Relation (58), we see that:


[image: there is no content]



(105)




We think that this new quantity represents a certain kind of fluctuation characterized by the deformed parameter κ. The difference between the expectation of [image: there is no content] and that of [image: there is no content] is:


Ep[image: there is no content]−Ep[image: there is no content]=Ep∑mθmfm(x)−γ(θ)−Epuκp(x;θ)+κ2lnκp(x;θ)=θ·η−γ(θ)−[image: there is no content]−κ2Ψκ☆(η)=θ·η−Ψκ(θ)−κ2Ψκ☆(η)=(1−κ2)Ψκ☆(η).



(106)




Note that this relation is non-trivial unless [image: there is no content] and in the limit of [image: there is no content] Relation (106) reduces to the definition Eplnp(x;θ)=[image: there is no content](η).
Taking the κ-escort expectation of (105), we see that:



EP[image: there is no content]=1[image: there is no content]∫dx[image: there is no content]λuκ[image: there is no content]αλuκ[image: there is no content]α=1[image: there is no content]∫dxp(x;θ)=1[image: there is no content],



(107)




which states that the normalization factor [image: there is no content] of the κ-escort pdf characterizes the expectation of the above fluctuations. Next, taking derivative of [image: there is no content] with respect to [image: there is no content], we have:


∂i[image: there is no content]=κ2∑mθmfm(x)−γ(θ)∂i∑mθmfm(x)−γ(θ)λ2+κ2∑mθmfm(x)−γ(θ)2=κ2λlnκ[image: there is no content]αλuκ[image: there is no content]α∂i[image: there is no content].



(108)




Then, the expectation of the tangent vector ∂i[image: there is no content] becomes:


Ep∂i[image: there is no content]=∫dxp(x)∂iλuκ[image: there is no content]α=∫dxp(x)κ2λlnκ[image: there is no content]α[image: there is no content]∂ip(x)=κ2∫dxλlnκ[image: there is no content]α∂ip(x)=κ2∂i∫dxp(x)lnκp(x)=κ2∂iΨκ☆(η)=κ2[image: there is no content],



(109)




which is the corresponding relation to (82).
Finally, we derive the canonical divergences for the two dualistic Hessian structures. For the κ-deformed exponential pdf [image: there is no content] and an arbitrary pdf [image: there is no content], we have:



∫dxr(x)lnκp(x;θ)+∫dxr(x)uκp(x;θ)=∫dxr(x)λlnκ[image: there is no content]α=∫dxr(x)∑m(θp)mfm(x)−γ([image: there is no content])=[image: there is no content]·ηr−γ([image: there is no content]).



(110)




Then, the canonical divergence [13] associated with the potential functions [image: there is no content] and [image: there is no content] becomes:


D(κ)(p,r)=Ψκ☆(ηr)−[image: there is no content]·ηr−Ψκ([image: there is no content])=∫dxr(x)lnκr(x)−lnκp(x;θ)−uκp(x;θ)+[image: there is no content]([image: there is no content])=∫dxr(x)lnκr(x)−lnκp(x;θ)−∫dxr(x)−p(x;θ)uκp(x;θ),



(111)




which reduces to the KL divergence (39) in the limit of [image: there is no content].
Similarly, for the κ-deformed exponential pdf [image: there is no content] and an arbitrary pdf [image: there is no content], we have:



ERℓθp(κ)=ER∑m(θp)mfm(x)−γ([image: there is no content])=[image: there is no content]·ηresc−γ([image: there is no content]),



(112)




where [image: there is no content] denotes the κ-escort expectation with respect to [image: there is no content]. Then, the canonical divergence associated with the potential functions [image: there is no content] and [image: there is no content] becomes:


D(esc−κ)(p,r)=(Ψκesc)☆(ηr)−[image: there is no content]·ηresc−Ψκesc([image: there is no content])=EPℓθr(κ)−1−[image: there is no content]·ηresc−γ([image: there is no content])−1=EPℓθr(κ)−ERℓθp(κ)=EPlnκr(x)+uκr(x)−ERlnκp(x;θ)+uκp(x;θ),



(113)




which also reduces to the KL divergence Equation (39) in the limit of [image: there is no content].


5. Conclusions

We have studied the dualistic Hessian geometries among the thermodynamic potentials in the κ-thermostatistics. Since a deformed exponential pdf naturally induces the escort pdf [8] in general, the κ-deformed exponential pdf also induces the κ-escort pdf. Consequently, it is important to take into account both kinds of expectations: one is the κ-escort expectation, and the other is the standard expectation. The Legendre relations among the thermodynamic potentials concerning both expectations are explored, and we have found a remarkable feature that for the affine-coordinate θ, there exist the two different kinds (η and [image: there is no content]) of the dual affine-coordinates. The two different κ-deformed metrics [image: there is no content] and [image: there is no content] are related to the thermodynamic fluctuations (95) and (103), respectively. Particularly, in order to establish the new κ-generalization (103) of the fluctuation-response relation, we introduced the double-escort κ-expectation given in (100). We believe that these κ-generalizations of the fluctuation-response relation play important roles in a future study of a non-equilibrium thermodynamic system described in the κ-thermostatistics.

Further studies are necessary to understand the roles of the different kinds of the dual affine-coordinates in thermodynamic geometries concerning the deformed functions. In addition, since the independence of an exponential pdf plays a fundamental role in the equilibrium statistical physics and thermodynamics, it is interesting to further study the generalization of the independence on a deformed pdf [20] based on the results obtained in this study.
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