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Abstract: Schizophrenia is a severe mental disorder associated with a significantly  

increased cardiovascular mortality rate. However, the underlying mechanisms leading to this 

cardiovascular disease (CVD) are not fully known. Therefore, the objective of this study was 

to characterize the cardiorespiratory influence by investigating heart rate, respiration and the 

causal strength and direction of cardiorespiratory coupling (CRC), based mainly on entropy 

measures. We investigated 23 non-medicated patients with schizophrenia (SZ), comparing 

them to 23 age- and gender-matched healthy controls (CO). A significantly reduced complexity 

was found for the heart rate and a significantly increased complexity in respiration and CRC 

in SZ patients when compared to corresponding measurements from CO (p < 0.001). CRC 

analyses revealed a clear coupling, with a driver-responder relationship from respiration to 

heart rate in SZ patients. Moreover, a slight driver-responder relationship from heart rate to 

respiration could be recognized. These findings lead to the assumption that SZ should be 

considered to be a high-risk group for CVD. We hypothesize that the varying 

cardiorespiratory regulation contributes to the increased risk for cardiac mortality. Therefore, 

regular monitoring of the cardiorespiratory status of SZ is suggested to identify autonomic 

regulation impairment at an early stage—to develop timely and effective treatment and 

intervention strategies. 
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1. Introduction 

Schizophrenia is referred to as one of the most severe mental disorders in the world, and patients with 

this condition are associated with high cardiac mortality rates. These patients have an approximately 15 

to 20-year shorter life expectancy and a relatively high risk for attaining cardiovascular disease (CVD); 

a three-fold increase in comparison to the general population has been reported for all age groups [1–3]. 

The largest single cause of death in schizophrenia leading to increased mortality is due to CVD, with 

CVD mortality ranging from 40% to 50% [4]. Important causal factors are related to lifestyle, the lack 

of physical activity, smoking, obesity, poor diet, substance abuse, diabetes, hypertension and the cardiac 

side effects of antipsychotics [1,4,5]. However, there is ample evidence that a dysfunction of the 

autonomic nervous system (ANS), determined by investigating heart rate variability (HRV), is obviously 

present in schizophrenia patients. These studies found a vagal withdrawal and a sympathetic 

predominance for these patients, as well as in part for their healthy first-degree relatives [6–10]. 

 In addition, recent investigation of respiration and cardiorespiratory coupling (CRC) [11–16] has 

become of great interest for these patients: it is well known that respiration represents an important 

homeostatic control mechanism (i.e., a sophisticated interplay between the brainstem and higher 

centers). However, there has until now been no study to our knowledge which has investigated causal 

coupling, or, along these lines, the causal coupling strength and coupling direction in these patients. 

Within the cardiorespiratory system, the effect of heart rate (HR) on breathing rate (BR) is denoted 

as “respiratory sinus arrhythmia” (RSA). The rhythmic fluctuations of HR in phase to respiration  

are caused by two major driving mechanisms: (1) the central influence of respiration on vagal cardiac 

motoneurons; and (2) the impact of respiration on intrathoracic pressure and stroke volume [17–20]. 

For the quantitative analyses of the cardiorespiratory system in univariate and bivariate ways, several 

linear and nonlinear time series analysis approaches were developed. Studies indeed showed that the 

coupling between the cardiovascular system and respiration is strongly nonlinear [21]. Therefore, linear 

methods seem to be inappropriate and not able to fully address physiological regulatory mechanisms 

within the cardiovascular system. Methods based on entropies have the common feature that they analyze 

a putative information transfer between time series and address either the uncertainty or predictability 

of time series. Complexity analysis can be performed by evaluating the entropy and entropy rate. Entropy 

(e.g., Shannon or Renyi) calculates the degree of complexity of a signal’s sample distribution. The largest 

entropy is obtained when the distribution is flat (i.e., the samples are identically distributed). On the 

contrary, if some values are more alike (e.g., the sample distribution is Gaussian), the entropy  

decreases [22]. However, a limitation of all univariate nonlinear methods is that they are not able to 

quantify the direct interrelationships such as the nonlinear influence of respiration on HR. Therefore, 
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they have limited power to reveal the underlying physiological mechanisms responsible for changes in 

cardiorespiratory complexity. 

The aim of this study was to characterize HRV, respiratory variability (RESPV) and CRC (strength 

and direction) as markers of cardiorespiratory function in schizophrenic patients. Therefore, we applied 

different methods of coupling analyses which could determine causal coupling strength and direction, 

especially with regard to entropy-based measures. We believe that our results are of great importance 

since they enhance the understanding of physiological regulation processes in SZ patients and identify 

at least a subgroup of patients which have a higher risk of developing cardiovascular diseases. 

2. Methods 

2.1. Data Recordings and Pre-Processing 

A high-resolution short-term ECG (at a 1000 Hz sampling frequency) and synchronized calibrated 

respiratory inductive plethysmography signal [11] (LifeShirt®, Vivometrics, Inc., Ventura, CA, USA) 

were recorded for 30 min. Investigations were performed between 3 and 6 p.m. in a quiet room which 

was kept comfortably warm (22–24 °C) and began after subjects had rested in supine position for 10 min. 

Subjects were asked to relax and to breathe normally to avoid hyperventilation. No further breathing 

instructions were given. Subjects were explicitly asked not to talk during the recording. The following 

time series were automatically extracted from the raw data records using in-house software 

(programming environment Delphi 3): 

− Time series of heart rate consisting of successive beat-to-beat intervals (BBI, tachogram); and 

− Time series of respiratory frequency (RESP, respirogram) as being the time intervals between 

consecutive breathing cycles. Figure 1. 

 

Figure 1. Examples of extracted 30-min time series: Tachograms (BBI, upper panel) and 

respirograms (RESP, lower panel) from a control (CO, healthy subject) (left) and a  

non-medicated patient with paranoid schizophrenia (SZ) (right). Note the typical lower 

variability in BBI sequences in the patient suffering from paranoid schizophrenia. Healthy 

control: meanNN_BBI = 942 ± 60 ms, meanNN_RESP = 4.5 ± 0.7 s; schizophrenic patient: 

meanNN_BBI = 711 ± 36 ms, meanNN_RESP = 3.4 ± 0.5 s. 

For cardiorespiratory coupling analyses, synchronized time series of BBI and RESP were achieved 

by resampling both time series via a linear interpolation method (2 Hz). All extracted time series were 

filtered by applying an adaptive variance estimation algorithm to remove and interpolate seldom 
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occurring ventricular premature beats and artefacts (e.g., movement, electrode noise and extraordinary 

peaks) [23] to obtain normal-to-normal beat time series (NN). 

2.2. Methods of Heart Rate Variability and Respiratory Variability 

2.2.1. Time and Frequency Domains 

Quantification of heart rate variability (HRV) and respiratory variability (RESPV) was performed by 

calculating several standard parameters from time (TD) and frequency domains (FD) [10]: 

− The mean value of the NN intervals (meanNN) of BBI (_BBI, [ms]) and RESP (_RESP, [s];  

BR: breathing rate as the number of breaths per minute, [1/min]); 

In addition, inspiration time (tin, [s]) and expiration time (tex, [s]) intervals were determined for each 

breath (Figure 2). 

 

 

Figure 2. Extraction of respiratory variability (RESPV) indices from the respiratory raw  

data file (respirogram: resp1, resp2, resp3,…; BR: breathing rate; tin: inspiration time;  

tex: expiration time). 

− Standard deviation (sdNN) of the NN intervals of BBI (_BBI, [ms]) and RESP (_RESP, [s]); 

− Renyi entropy (HRenyi025, [bit]) as generalization of the Shannon entropy quantifies the dispersion 

of the BBI time series values. The measure of variability is calculated by using the density 

distribution (histogram) of the NN intervals (class width of 8ms) along with the class probability 

pi (i = 1, ..., k with k as the total number of all classes) (1). The coefficient α determines the 

manner in which the probabilities of NN intervals of BBI (_BBI) and RESP (_RESP) are weighted 

(here: α = 0.25) (2). 

 (1)

 (2)
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− Normalized high-frequency power (0.15–0.4 Hz) [s2] of the NN intervals of BBI HFn_BBI; 

− The ratio between the low- and high-frequency powers of the estimated spectrum LF/HF_BBI [a.u.]. 

The power spectra of the time series were estimated using the Fast Fourier Transform. To avoid 

leakage effects, a Blackman Harris window function was applied. 

2.2.2. Symbolic Dynamics 

The analysis of symbolic dynamics (SD) has been proven to be sufficient for the investigation of 

complex systems and describes the nonlinear aspects of a time series [24]. First, BBI- and RESP time 

series were transformed into a symbol sequence of four symbols from the alphabet A = {0, 1, 2, 3} to 

classify dynamic changes within BBI and RESP. Three successive symbols are defined as a word. The 

resulting histogram contains the occurrence probability of each single word type within the symbol 

sequence. Based on these distributions, the Renyi entropy (SDRenyi025, [bit], α = 0.25) of word type 

probability distribution for BBI (_BBI) and RESP (_RESP) was calculated, the results of which describe the 

time series’ complexity. 

2.2.3. Compression Entropy 

1977 Ziv and Lempel [25] introduced a universal algorithm for lossless data compression (LZ77) via 

string-matching on a sliding window. The compression entropy (HCE) algorithm was introduced as a 

nonlinear index for describing the complexity of a time series [26]. HCE indicates to which extent time 

series (BBI, RESP) can be compressed by detecting repetitive sequences. If the length of the compressed 

text is large (L → ∞), the entropy of the compressed string HCE is determined to be length M of the 

compressed string divided by the length L of the original time series: 

(3)

In this study, we analyzed the NN intervals of BBI and RESP (HCE_BBI, HCE_RESP, [a.u.]) using look-

ahead buffer size b = 3 and window length w = 3. HCE = 1 means the highest complexity (i.e., no 

compression). The lower the HCE value, the lower is the complexity (i.e., a higher compression rate). 

2.2.4. Sample Entropy 

The term “sample entropy” (SampEn) was introduced by Richman and Moorman [27] as an 

improvement over the approximate entropy (ApEn), acting as a simple index for the overall complexity 

and predictability of a time series [28]. SampEn quantifies the conditional probability that two sequences 

of m consecutive data points being similar to each other (within a given tolerance r) will remain similar 

when one consecutive point is included. The SampEn algorithm requires the setting of two parameters: 

the tolerance level r and the pattern length m. In this study SampEn was calculated for the NN intervals 

of BBI and RESP (SampEn_BBI, SampEn_RESP, [a.u.]); in accordance with previous studies, the tolerance 

level of r = 0.15 × standard deviation of the time series (BBI, RESP), and m = 2 were selected. 
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2.3. Methods of Cardiorespiratory Coupling Analyses 

2.3.1. High Resolution Joint Symbolic Dynamics Analyses 

For nonlinear couplings between BBI and RESP, the high-resolution joint symbolic dynamics 

(HRJSD, [13]) were applied that are based on the analysis of bivariate dynamic processes using symbols. 

Thus, the direct analysis of successive signal amplitudes is based on discrete states (symbols) [29]. A 

bivariate sample vector X of two time series (x: BBI, y: RESP) is transformed into a bivariate symbol 

vector S with n beat-to-beat values using a priory defined alphabet A = {0, 1, 2}. Increasing values were 

coded as “2”, decreasing values were coded as “0”, and unchanging (no or little variability) values were 

coded as “1”, respectively. Subsequently, short words of symbol sequences were formed with a length 

of three, and the normalized joint probability of the occurrence of each word was estimated from the word 

distribution density matrix. Based on the word distribution density matrix, the Renyi entropy 

(HRJSDRenyi025, [bit], α = 0.25), functioning as the measurement of the general complexity of 

cardiorespiratory coupling, was calculated. High entropy values refer to a higher complexity level in the 

investigated time series, and vice versa. 

2.3.2. Normalized Short Time Partial Directed Coherence 

The partial directed coherence (PDC) method [30] can be used to detect both direct and indirect causal 

information transfers between complex physiological signals. Due to, that the original introduced PDC 

method cannot be applied to non-stationary signals a time-variant version is needed providing information 

about the partial correlative short-time interaction properties. In addition to, Milde et al. [31], the 

normalized short time partial directed coherence (NSTPDC) was introduced for nonstationary signal to 

evaluate dynamic coupling changes and to detect the level and direction of couplings in multivariate- 

and complex dynamic systems [32]. With the view to determining the coupling strength and direction 

between two time series, x and y, a coupling factor (CF) was proposed. CF was obtained by dividing the 

mean value of y coupled with x by the mean value of x coupled with y. Afterwards, the results were 

normalized to a specific set of values leading to the normalized factor (NF). The normalization factor 

NF determines the strength and the direction of all causal links between a set of multivariate time series 

as a function of frequency f. 

The NF takes the following values: NF = {−2, −1, 0, 1, 2}. Strong unidirectional coupling is indicated 

if NF is −2 or 2, bidirectional coupling with the determination of the driver-responder relationship if  

NF = −1 or 1, and equal influence in both directions and no coupling if NF = 0. 

In this study, NSTPDC indices were calculated by applying a window (the Hamming window) of 

lengths l, where l = 80 samples, and a shift of 20 samples (60 samples overlap between each window). 

In addition to NF, the areas (ABBI→RESP, ARESP→BBI, [a.u.]) for identifying the coupling strength [18] were 

calculated using a trapezoidal numerical integration function to approximate the areas generated in space 

by CF values. These indices were used to assess the strength of the cardiorespiratory couplings. 

In order to take advantage of the aspect of stationarity for NSTPDC analyses, a normalization (zero 

mean and unitary variance) of the time series (BBI, RESP) was performed (4). Therefore, each sample i 

of the BBI- and RESP time series ݔ = ሼݔ, ݅ = 1,…ܰሽ and ݕ = ሼݕ, ݅ = 1,…ܰሽ with N as the maximal 

number of samples i (temporal index) was first normalized by subtracting the mean of ̅ݔ, then divided 
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by the standard deviation (std) of x or y respectively, thus obtaining the normalized time series xnorm and 

ynorm with zero mean and unitary variance: ݔሺ݅ሻ = ሺ݅ሻݔ − ሻݔሺ݀ݐݏݔ̅  (4)

2.3.3. Respiratory Sinus Arrhythmia 

Respiratory Sinus Arrhythmia (RSA) represents a measure of cardiac vagal tone characterized by 

heart rate (BBI) fluctuations that are in phase with inspiration and expiration [33]. RSA is based on the 

shortening BBI during inspiration and the lengthening of BBI during expiration. 

The RSA was quantified in the time domain using the peak-to-valley approach (RSAP2V, [ms]).  

The LifeShirt® automatically estimated RSA using the peak-to-valley approach for each breathing  

cycle [34]. 

In addition, RSA was quantified from the spontaneous respiratory band using an approach based on 

a complex detrending technique. This approach tends to remove periodic and aperiodic cardiac variations 

which are unrelated to respiration [34]. This was carried out by filtering the BBI (filtered RSA) in order 

to remove the variance associated with complex trends and slow sine waves in the supposed respiratory 

band (0.1–0.6 Hz). These filtered RSA time series were divided in 30 s-epochs for further analyses by 

applying the Higuchi fractal dimension (HFDRSA) and the Shannon entropy (ShannonRSA). HFD provides 

a classification of these time series according to their fractal characteristics (morphological structure) 

and enables the quantification of the complexity level in the underlying rhythm of the investigated signal. 

For a generated random signal, the fractal dimension tends toward the value of “2”, indicating that the 

signal is indiscriminately wavering [35]. HFDRSA represents the variation of the dimension of the filtered 

RSA time series. 

2.4. Patients 

In this study, 23 non-medicated patients suffering from paranoid schizophrenia (SZ) and 23 healthy 

control subjects (CO) matching in terms of age and gender (see Table 1) were enrolled. Patients were 

included only when they had not taken any medication for at least 8 weeks. Serum drug levels were controlled 

for legal (e.g., antipsychotics, antidepressants, benzodiazepines) and illegal drugs (e.g., cannabis). The 

diagnosis of paranoid schizophrenia was established when patients fulfilled DSM-IV criteria (Diagnostic 

and Statistical Manual of Mental Disorders, 4th edition. Psychotic symptoms were quantified using the 

positive and negative syndrome scale [36]). 

A thorough carried out interview and thorough clinical investigation was performed for CO to exclude 

any potential psychiatric- or other diseases, as well to double-check if there was any interfering medication. 

The structured clinical interview and a personality inventory (Freiburger Persönlichkeitsinventar) were 

additionally applied to CO to detect personality traits or disorders which might influence autonomic 

function [37]. 

This study complies with the declaration of Helsinki. All participants (SZ, CO) gave written informed 

consent to a protocol approved by the local ethics committee of the University Hospital Jena. 
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Table 1. Clinical and demographic data of enrolled study participants. 

Data 
Healthy subjects Schizophrenic patients 

(CO) (SZ) 

Number of participants 23 23 

Gender (male/female) 13/10 12/11 

Age (mean ± std in years) 30.3 ± 9.5 30.4 ± 10.3 

PANSS, mean (min-max) n.a. 85.7 (43-124) 

SANS, mean (min-max) n.a. 49.6 (14-81) 

SAPS, mean (min-max) n.a. 60.9 (6-108) 

Psychotic symptoms for acute schizophrenia were quantified using the Scale for the Assessment of Positive 

Symptoms (SAPS) and negative symptoms (SANS) and positive and negative syndrome scales (PANSS);  

n.a. not applicable. 

2.5. Statistics 

The nonparametric exact two-tailed Mann-Whitney U-test (SPSS 21.0) was performed to non-normally 

distributed indices (the significant Kolmogorov-Smirnov test) to evaluate continuous baseline variables 

as well as differences in autonomic indices between SZ and CO. The significance level was set to p < 

0.05 (Bonferroni-Holm adjustment: p < 0.001). In addition, all results were presented as mean ± standard 

deviation. 

Multivariate analysis based on stepwise discriminant analysis in combination with receiver operator 

characteristic (ROC) curves was applied only to univariate significant indices in order to evaluate 

differences between SZ and CO. The sensitivity (SENS), specificity (SPEC) and area under the ROC 

curve (AUC) were determined for univariate significant indices and for sets consisting of two or three 

significant indices. 

3. Results 

3.1. Univariate Analyses of Heart Rate Variability, Respiratory Variability and Cardiorespiratory 

Coupling Analyses 

3.1.1. Time- and Frequency Domains 

HRV analysis revealed highly significant differences (p < 0.001) in all indices from TD for both 

groups (see Table 2). Thereby, SZ were characterized by reduced mean basic beat-to-beat intervals 

(meanNN_BBI) and variability (sdNN_BBI) as well as reduced complexity (HRenyi025_BBI) in comparison to 

CO. The TD indices achieved values for sensitivity of up to 91.3% (e.g., meanNN_BBI with a value of 

AUC = 89%), as well as values for specificity of up to 95.7% (HRenyi025_BBI). 

All FD indices were significantly different (p < 0.05) between SZ and CO, and revealed values for 

sensitivity of up to 69.6% (LFn_BBI) and specificity of up to 91.3% (HFn_BBI, LF/HF_BBI) with an AUC 

of 72%. Variability analyses of RESP in the TD revealed highly significant (p < 0.001) reduced mean 

breathing rates (meanNN_RESP = 3.2 ± 0.8 s; BR = 18.8 1/min) and highly significant (p < 0.001) reduced 

inspiration and expiration times in SZ when compared to CO (see Table 2). Inspiration time (tin) revealed 
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values for sensitivity = 78.3%, specificity = 91.3% and AUC = 89%. Expiration time revealed values for 

sensitivity = 65.2%, specificity = 100% and AUC = 83%. 

Table 2. Univariate statistical analysis results of heart rate- and respiratory variability in the 

time and frequency domains to discriminate between patients suffering from paranoid 

schizophrenia (SZ) and healthy subjects (CO). 

 
Index p 

CO SZ 
SENS SPEC AUC

mean ± std mean ± std 

T
D

_B
B

I meanNN_BBI [ms] *** 954.5 ± 128.0 741.2 ± 112.5 91.3 73.9 0.89 

sdNN_BBI [ms] ** 61.3 ± 19.9 43.0 ± 16.1 65.2 91.3 0.78 

HRenyi025_BBI [bit] *** 5.26 ± 0.56 4.80 ± 0.53 56.5 95.7 0.78 

F
D

_B
B

I LFn_BBI [s2]  * 0.54 ± 0.20 0.69 ± 0.12 69.6 73.9 0.72 

HFn_BBI [s2]  * 0.46 ± 0.20 0.31 ± 0.12 52.2 91.3 0.72 

LF/HF_BBI [a.u.] * 1.74 ± 1.57 2.94 ± 2.28 52.2 91.3 0.72 

T
D

_R
E

S
P
 meanNN_RESP [s] *** 4.53 ± 1.54 3.20 ± 0.80 69.6 91.3 0.83 

sdNN_RESP [s] n.s. 0.92 ± 0.50 0.87 ± 0.64 43.5 82.6 0.58 

tin [s] *** 1.87 ± 0.47 1.35 ± 0.23 78.3 91.3 0.89 

tex [s] *** 2.50 ± 1.00 1.65 ± 0.49 65.2 100.0 0.83 

BBI—beat-to-beat intervals, RESP—time intervals between consecutive breathing cycles, TD—time domain, 

FD—frequency domain, meanNN—mean value of the NN intervals of BBI and RESP, sdNN—standard 

deviation of the NN intervals of BBI and RESP, HRenyi025—Renyi entropy, HFn—normalized high frequency 

power (0.15–0.4 Hz), LFn—normalized low frequency power (0.04–0.15 Hz), tin—inspiration time, tex—expiration 

time, SENS—sensitivity, SPEC—specificity, AUC—area under the ROC curve, mean value ± standard 

deviation, p—univariate significance (* p < 0.05, ** p < 0.01, *** p < 0.001, n.s. —not significant,  

a.u. —arbitrary units). 

3.1.2. Nonlinear Domain 

SD analysis of BBI revealed highly significantly reduced SDRenyi025_BBI (p < 0.01) in SZ in comparison 

to CO, whereas with respect to RESP, SDRenyi025_RESP was highly significantly (p < 0.001) increased in 

SZ in comparison to CO (Table 3). These SD indices achieved values for sensitivity of up to 78.3% 

(SDRenyi025_RESP) with a maximum value of AUC at 84%, as well as values for specificity of up to 87.0% 

(SDRenyi025_BBI), with a maximum value of AUC at 73%. 

Compression entropy analyses showed only significantly (p < 0.001) reduced values for BBI (HCE_BBI) 

but not for RESP in SZ. The index HCE_BBI achieved a sensitivity of 69.6%, a specificity of 95.7% and 

AUC of 84%. 

The same characteristics were found for SampEn, whereby SampEn_BBI was highly significantly  

(p < 0.01) reduced in SZ in comparison to CO with a sensitivity value of 69.6%, a specificity value of 

73.9% and a AUC value of 75%. 
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Table 3. Univariate statistical analysis results of heart rate- and respiratory variability in the 

nonlinear complexity domain to discriminate between patients suffering from paranoid 

schizophrenia (SZ) and healthy subjects (CO). 

 
Index p 

CO SZ 
SENS SPEC AUC

mean ± std mean ± std 

S
D

 SDRenyi025_BBI [a.u.] ** 3.74 ± 0.37 3.47 ± 0.37 56.5 87.0 0.73 

SDRenyi025_RESP  [a.u.] *** 3.23 ± 0.15 3.47 ± 0.19 78.3 78.3 0.84 

H
C

E
 HCE_BBI  [a.u.] *** 0.82 ± 0.10 0.69 ± 0.10 69.6 95.7 0.84 

HCE_RESP  [a.u.] n.s. 0.59 ± 0.08 0.59 ± 0.12 56.5 43.5 0.45 

S
am

p
E

n
 

SampEn_BBI [bit] ** 2.29 ± 0.30 1.96 ± 0.47 69.6 73.9 0.75 

SampEn_RESP [bit] n.s. 1.32 ± 0.37 1.49 ± 0.50 56.5 78.3 0.62 

BBI—beat-to-beat intervals, RESP—time intervals between consecutive breathing cycles, SD—symbolic 

dynamics, HCE—compression entropy, SampEn—sample entropy, SENS—sensitivity, SPEC—specificity, 

AUC—area under the ROC curve, mean value ± standard deviation, p—univariate significance (* p < 0.05,  

** p < 0.01, *** p < 0.001, n.s.—not significant, a.u.—arbitrary units). 

3.1.3. Cardiorespiratory Coupling Analyses 

All cardiorespiratory coupling indices revealed highly significant differences between both groups 

(see Table 4). HRJSD analysis revealed that SZ were characterized by an increased Renyi entropy 

(HRJSDRenyi025) value (p < 0.001) when compared to CO. HRJSDRenyi025 achieved values for sensitivity 

of up to 91.3%, values for specificity = 91.3% and AUC = 95%. 

Table 4. Univariate statistical analysis results of cardiorespiratory coupling analyses to 

discriminate between patients suffering from paranoid schizophrenia (SZ) and healthy 

subjects (CO). 

 
Index p 

CO SZ 
SENS SPEC AUC

mean ± std mean ± std 

HRJSDRenyi025  [bit] *** 4.06 ± 0.11 4.37 ± 0.15 91.3 91.3 0.95 

N
S

T
P

D
C

 

NF [a.u.] *** -1.85 ± 0.17 -1.03 ± 0.80 87.0 87.0 0.91 
ABBI→RESP [a.u.] *** 0.05 ± 0.02 0.09 ± 0.04 91.3 65.2 0.83 

ARESP→BBI [a.u.] *** 0.47 ± 0.09 0.29 ± 0.12 91.3 65.2 0.88 

R
S

A
 RSAP2V [ms] *** 125.9 ± 74.2 36.5 ± 25.4 82.6 78.3 0.87 

ShannonRSA [bit] *** 2.41 ± 0.05 2.36 ± 0.04 87.0 65.2 0.82 

HFDRSA [a.u.] ** 1.14 ± 0.03 1.19 ± 0.05 60.9 82.6 0.75 

BBI—beat-to-beat intervals, RESP—time intervals between consecutive breathing cycles, HRJSD—high 

resolution joint symbolic dynamics, NSTPDC—normalized short time partial directed coherence,  

NF—normalization factor; Shannon—Shannon entropy, A—Area from NSTPDC for identifying the coupling 

strength, RSA—respiratory sinus arrhythmia, P2V—peak-to-valley, HFD - Higuchi fractal dimension, 

SENS—sensitivity, SPEC—specificity, AUC—area under the ROC curve, mean value ± standard deviation, 

p—univariate significance (* p < 0.05, ** p < 0.01, *** p < 0.001, n.s.—not significant, a.u.—arbitrary units). 
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Results of NSTPDC found a highly significant NF (CO: NF = −1.85 ± 0.17; SZ: NF = −1.03 ± 0.80) 

between both groups. With regard to CO, the NF was nearly −2, indicating a strong unidirectional 

coupling from RESP → BBI. The NF was nearly −1 for SZ, pointing to a bidirectional coupling with 

the determination of driver-responder relationship from RESP → BBI. All NSTPDC area indices 

(ABBI→RESP, ARESP→BBI), functioning as markers for coupling strength, were significantly different (p < 

0.001) between SZ and CO. When BBI influenced RESP (ABBI→RESP), SZ revealed an increased value 

for coupling strength, which was in contrast to CO. On the other hand, when RESP influenced BBI 

(ARESP→BBI) (RSA mechanisms) SZ revealed a reduced value in comparison to CO (see Figure 3). Using 

indices from NSTPDC analyses, sensitivity values of 87%, specificity values of 87% and AUC values 

of 91% could be achieved (NF). 

 

Figure 3. NSTPDC plots for cardiorespiratory coupling analyses for schizophrenic patients 

(right) and healthy subjects (left). Arrows indicating the causal coupling direction from one 

time series to another time series, e.g., BBI ← RESP, indicating the causal link from RESP 

to BBI. Coupling strength ranges from blue (no coupling, 0) to red (maximum coupling, 1) 

where BBI: beat-to-beat intervals, RESP: time intervals between consecutive breathing cycles. 

RSA analyses revealed highly significantly decreased RSA (RSAP2V) for SZ when compared to CO. 

Furthermore, SZ revealed significantly decreased Shannon entropy (ShannonRSA) values and 

significantly increased fractal characteristics, expressed by the Higuchi fractal dimension (HFDRSA) 

within the RSA time series. The univariate RSA index RSAP2V reached values of 82.6% for sensitivity, 

78.3% for specificity and 87% for AUC. 
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3.2. Multivariate Analyses of Heart Rate Variability, Respiratory Variability and Cardiorespiratory 

Coupling Analyses 

According to the multivariate discrimination between SZ patients and CO, sets were determined based 

on univariate indices from HRV, RESPV and CRC analysis which consist of two or three indices each. 

3.2.1. Multivariate Discriminant Analysis—Sets of Two Indices 

The two optimal sets consisting of two indices were: 

− meanNN_BBI, SDRenyi025_RESP: sensitivity = 91.3%, specificity = 95.7%, AUC = 97%; 

− HRJSDRenyi025, meanNN_BBI: sensitivity = 91.3%, specificity = 95.7%, AUC = 96%; 

The sets consisting of two indices led to an increase in specificity (+4.3%) and to an increase in AUC 

(+2%) when compared to the univariate discriminant analysis (best index: HRJSDRenyi025). Sensitivity 

was not improved. 

3.2.2. Multivariate Discriminant Analysis—Sets of Three Indices 

The two optimal sets consisting of three indices were: 

− HRenyi025_BBI, HCE_BBI, ABBI→RESP: sensitivity = 91.3%, specificity = 95.7%, AUC = 98%; 

− tin, tex, HRJSDRenyi025: sensitivity = 95.7%, specificity = 91.3%, AUC = 97%; 

The sets consisting of three indices led only to an increase in sensitivity and specificity (+4.3%) and 

to an increase in AUC (+3%), in comparison to the single univariate indices (best index: HRJSDRenyi025). 

In general, multivariate discriminant analysis only marginally contributed to an enhanced 

differentiation between SZ and CO regarding sensitivity and specificity. 

4. Discussion and Conclusions 

In our study, we found a significantly increased heart rate, reduced heart rate variability, increased 

breathing rates and impaired cardiorespiratory coupling in patients with schizophrenia when compared 

to healthy subjects. In particular, we could demonstrate the following results using various univariate 

and bivariate entropy-based measures: heart rate variability was characterized by a reduced complexity 

level, respiratory variability was characterized by an increased complexity, and cardiorespiratory 

coupling was reduced in schizophrenic patients. 

Our findings are in accordance with other studies that have revealed an altered autonomic tone in 

schizophrenic patients [6,38]. These results suggest a parasympathetic withdrawal and an ongoing 

sympathetic predominant activation in cardiac autonomic regulation, highlighted by decreased 

parasympathetic indices from HRV such as sdNN_BBI, HFn_BBI. Furthermore, it seems that the 

predominant sympathetic activation (LFn_BBI, LF/HF_BBI) is accompanied by a loss of complexity, as 

shown by reduced entropy based indices as SDRenyi025_BBI, HCE_BBI and SampEn_BBI. Comparing SampEn 

with HCE, both have in common that they can be used to determine the complexity of a time series and 

that they are looking for similar pattern within the time series. However, there are some differences 

between both methods. Regarding the pattern length for SampEn the length is fixed (m), whereby for 
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HCE the pattern length is flexible according to the look-ahead buffer (b). Moreover, the SampEn 

algorithm allows a certain tolerance level (r) for pattern matches, whereas HCE looks only for exact 

pattern matches within the time series. When considering univariate discriminant analysis classification 

results (see Tables 2 and 3) it could be shown that HRV indices revealed sensitivity of up to 91.3% 

(meanNN_BBI) with AUC = 89% as well as values for specificity of up to 95.7%, as shown by the 

complexity indices (HCE_BBI) with a maximum AUC of 84%. One can conclude that basic heart rate and 

complexity-based HRV indices alone are quite able to differentiate non-medicated schizophrenic 

patients from healthy subjects. 

Porta et al. [39] applied HRV complexity indices (ApEn, SampEn, corrected conditional entropy 

(CCE)) during a graded head-up tilt test known to produce a gradual shift of the sympathovagal balance 

toward sympathetic activation and vagal withdrawal in healthy subjects. They found that all indices 

which measured complexity based on entropy rates (corrected ApEn, SampEn, CCE) revealed a progressive 

decrease in complexity as a function of the tilt table inclination. This indicates that complexity is under 

control of the autonomic nervous system. These authors suggested that these indices appear to be suitable 

global noninvasive indices that indicate a relative balance between parasympathetic and sympathetic 

modulations. Bär et al. [6] suggested that the reduction in heart rate complexity indicates that heart rate 

cannot adapt to different requirements arising from posture or exertion, and that the heart is at higher 

risk of developing arrhythmias in schizophrenic patients. Therefore, it could be assumed that acute 

psychosis is characterized by a limited capacity to respond to external demands on the autonomic 

nervous system level. In general, the reduction in cardiac complexity supports the thesis of a changed 

sympathetic/parasympathetic heart rate control in schizophrenic patients [40]. A reduction of cardiac 

complexity (i.e., an increase in cardiac regularity) is considered to act as a pathology marker. 

Considering respiration and respiratory variability, as well as their complexity, we found, in accordance 

to previous findings [11,14,15], significantly increased breathing rates and reduced inspiration and 

expiration times in SZ. Univariate discriminant analysis classification results (see Tables 2 and 3) 

demonstrate that RESPV indices revealed a sensitivity of up to 78.3% (SDRenyi025_RESP) with AUC = 84% 

as well values for specificity of up to 100% (tex). A maximum AUC value of 83% is able to differentiate 

non-medicated schizophrenic patients from healthy subjects. 

Homma et al. [41] stated that the final respiratory output involves a complex interaction between the 

brainstem and higher centers, including the limbic system and cortical structures. Respiration is primarily 

regulated for metabolic and homeostatic purposes in the brainstem. It also varies in speed in response to 

changes in emotions, such as happiness, sadness, anxiety or fear. Boiten et al. [42] found that respiration 

patterns reflect the general dimensions of emotional responses that are linked to the response 

requirements of emotional situations. The found RESPV alterations can likely be explained in the way 

that a dysregulation of arousal, as found in paranoid schizophrenia patients’ amygdalae prefrontal 

circuits, may enhance the correlation of psychopathology and breathing alterations [11]. In contrast to 

HRV, respiration was characterized by increased entropy indices (SDRenyi025_RESP, SampEn_RESP), 

describing the complexity and randomness of the respiratory time series. These findings point to an 

increased respiration irregularity. In this context, Costa et al. [43] showed that pathological dynamics 

which are associated with an either increased regularity/decreased variability or an increased variability 

are both characterized by a reduction in complexity due to the loss of correlation properties. It could be 

shown in any disorder that a small change in respiratory functioning may lead to background symptoms 
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of panic and anxiety. This connection is a result of the link between the central nervous system and the 

aspect of respiration [44]. It is well proven that schizophrenia is related to panic attacks [45,46], which 

further supports the altered CRC in SZ. The altered CRC might be at least partly related to panic attacks 

in the acute psychotic state. 

In addition to HRV and RESPV analyses, we could clearly identify a significantly altered 

cardiorespiratory coupling in patients with schizophrenia (see Table 4). Univariate discriminant analysis 

classification results demonstrated that CRC indices revealed sensitivity = 91.3% (HRJSDRenyi025) and 

specificity = 91.3%, with AUC = 95%. These values underscore the ability to differentiate non-

medicated schizophrenic patients from healthy subjects.  

Furthermore, we found a restricted RSA representing the influence which the respiratory system has 

on HR regulation, and acting as a measure of impaired cardiac vagal activity. This finding is in 

accordance with Bär et al. [11], who found impaired cardiorespiratory coupling and reduced RSA in 

schizophrenia patients. These authors also speculated that decreased vagal activity within the brainstem 

or vagal activity suppression in higher regulatory centers might account for their findings. The RSA time 

series were further analyzed by applying the Higuchi fractal dimension (HFDRSA) and the Shannon 

entropy (ShannonRSA). During this process we found that fractal characteristics (morphological 

structure) of the RSA signal were increased in schizophrenia. This finding indicates that the underlying 

rhythm of the RSA signal more randomly fluctuates. This indiscriminately wavering of the RSA time 

series supports the assumption that the heart rate fluctuations are less in phase with inspiration and 

expiration in SZ providing the explanation for the lower RSA value (RSAP2V) in SZ in comparison to 

CO. On the other side, the decreased Shannon entropy (ShannonRSA) value for SZ, pointing toward a 

lower complexity in the underlying rhythm of the filtered RSA time series. Considering the complexity 

of CRC we found an increased CRC complexity in the HRJSD results. These findings were characterized 

by increased Renyi (HRJSDRenyi025) entropy, describing the complexity and randomness of single word 

types and the deterministic regulatory coupling pattern (HRJSD) occurrences in SZ when compared to 

CO. In these applications, the Renyi entropy represents a measure of the complexity of a distribution 

pattern. If in the pattern distribution specific patterns were more frequently presented, or if specific 

patterns were missing or less frequently presented, a decrease in Renyi entropy with respect to its 

maximum value, provided by a flat distribution, could be determined [22]. This means that the higher 

complexity of CRC in schizophrenic patients as compared to healthy subjects is a result of less frequent 

or missing patterns in bivariate word types and/or coupling patterns. Regarding the results of causal 

coupling analyses (NSTPDC), we could for the first time demonstrate a different coupling strength and 

direction for schizophrenic patients in comparison to healthy subjects. We found a NF of approximately 

−1 in SZ, pointing to a bidirectional coupling, with a driver-responder relationship from RESP → BBI 

additionally confirming the results of a restricted RSA modulation in schizophrenia. For healthy subjects, 

we found a NF of approximately −2, indicating a strong unidirectional coupling from RESP → BBI 

(driver: RESP). This confirms well-working and strongly working RSA mechanisms. When considering 

coupling strength, SZ reveal a significantly reduced value with regard to coupling direction RESP → BBI 

(ARESP→BBI) and a significantly increased value with regard to coupling direction BBI → RESP 

(ABBI→RESP) in comparison to CO. The assumed higher sympathetic drive in SZ were confirmed by 

findings of Porta et al. [47], who found a reduced cardiopulmonary coupling in healthy subjects that was 

linked to the degree of sympathetic activation and to a reduction of RSA during a graded head-up tilt 
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protocol. This fact further supports our assumption about a loss of CRC in SZ. The causal coupling from 

RESP to BBI quantifies the strength of respiratory influences affecting heart rate, independent of arterial 

pressure changes. Due to this fact, this coupling can be understood as an indication of the central effects 

of the respiratory drive on the cardiac vagal motor neurons. This reflects a central mechanism underlying 

respiratory related fluctuations in heart rate [48]. For SZ it means that central respiratory driving 

mechanisms are diminished with respect to heart rate changes. In contrast to Faes et al. [48] however, 

we found a significant causal coupling direction BBI → RESP. This characteristic of CRC was also cited 

by Dick et al. [49], who proposed the reciprocal component of CRC as a bio-marker that complements 

RSA. This reciprocal interaction between the respiratory and autonomic control systems is manifested 

by the functioning of gas exchange. This means that, besides the well-recognized respiratory influence 

on autonomic activity, the autonomic system has an influence on respiratory pattern formation. Whereas 

the respiratory influence on autonomic activity is breath to breath, the autonomic influence on respiration 

can be considered in terms of beat to beat [49]. We believe that the manifested alterations in CRC may 

reflect arousal and a permanent stress situation in acute SZ patients. Riedl et al. [50] could show 

increased spontaneous cardiorespiratory coordination, the mutual influence of the cardiac and respiratory 

oscillations on their respective onsets, in epochs of high autonomic stress during sleep apnea. 

When considering the multivariate classification results from the discriminant analysis, it could be 

shown that the optimal set consisting of three indices revealed a slightly higher classification power 

(AUC = 98%) when compared to the optimal set containing two indices (AUC = 97%) or the univariate 

indices (AUC = 95%). Based on these results, a clear differentiation between schizophrenic patients and 

control subjects is possible, particularly due to noninvasive complexity indices of heart rate, respiration 

and cardiorespiratory coupling. In general, we could successfully demonstrate that a SZ classification is 

possible based on standard heart rate and respiratory indices (meanNN_BBI: SENS = 91.3%, SPEC = 73.9%, 

AUC = 89%; tin: SENS = 78.3%, SPEC = 91.3%, AUC = 89%). If CRC complexity indices were used, 

the classification results could be improved (HRJSDRenyi025: SENS = 91.3%, SPEC = 91.3%, AUC = 95%). 

This improvement was more obvious when using multivariate discriminant analyses (three indices), 

which led to an improvement in maximum SENS = 95.7% and maximum SPEC = 95.7% with AUC 

being 98%. Interestingly, discriminant analyses results revealed a higher influence of respiration (tin, tex) 

in classifying schizophrenic patients (sensitivity = 95.7%) as opposed to a higher influence of heart rate 

(HRenyi025_BBI, HCE_BBI) in classifying healthy subjects (specificity = 95.7%). It seems that the classical 

time- and frequency domain indices, with the exception of meanNN_BBI, played only a minor role in 

multivariate discriminant analyses sets. 

The remaining open questions are: (1) How will antipsychotic medication influence these results;  

(2) How will psychopathology influence these results; and (3) Which of these schizophrenic patients are 

at lower or higher risk for cardiovascular disease as their disease progresses? 

To conclude, the results of this study lead to the assumption that SZ should indeed be considered as 

a high risk group for CVD. Entropy based measures from HRV, RESPV and CRC analyses could soon 

identify those patients who are at a higher risk of developing CVD. Therefore, a regular monitoring of 

the cardiorespiratory status of SZ is highly recommended to identify a possible impairment of the 

autonomic regulation process early on, and to develop timely and effective treatment and intervention 

strategies. At this time, we are just beginning to understand the interrelationship between the 
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cardiorespiratory system in psychotic states and the related brainstem neural networks and control 

mechanisms. 
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