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Abstract:

 In models with nuisance parameters, Bayesian procedures based on Markov Chain Monte Carlo (MCMC) methods have been developed to approximate the posterior distribution of the parameter of interest. Because these procedures require burdensome computations related to the use of MCMC, approximation and convergence in these procedures are important issues. In this paper, we explore Gibbs sensitivity by using an alternative to the full conditional distribution of the nuisance parameter. The approximate sensitivity of the posterior distribution of interest is studied in terms of an information measure, including Kullback–Leibler divergence. As an illustration, we then apply these results to simple spatial model settings.
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1. Introduction

Let d denote the data, which can be scalar- or vector-valued, and suppose that d ~ p(d|θ, β), where θ ∈ Θ is the parameter of interest and β ∈ B is a nuisance parameter. Realizations from the joint posterior distribution π(θ, β|d) can be produced by independent sampling based on π(θ, β|d) = π(θ|β, d) × π(β|d) or, if π(β|d) is intractable, by Gibbs sampling based on the full conditional distributions π(θ|β, d) and π(β|θ, d). Since β is a nuisance parameter, our primary interest is in the marginal posterior distribution π(θ|d) = ∫ π (θ, β|d)dβ. In general, it may often be feasible to integrate out some nuisance parameters either analytically or numerically Missing data problems are brought into this framework by augmenting the observed data d with latent data β.

The latent variable/nuisance parameter scenario is a commonly studied one in the literature. One issue in nuisance parameter problems is the relationship between π(β|d) and π(θ|d). Our main interest lies in the impacts on the sensitivity of inferences based on the target marginal posterior distribution π(θ|d) compared with an approximation based on choosing π*(β|d), an alternative to the posterior distribution of the nuisance parameter, instead of π(β|d). The point is that π*(β|d) is a flexible and manageable approximation to an unmanageable π(β|d). For application to simple spatial model settings, we can consider the Gaussian approximation or the Laplace approximation to π(β|d). For example, we can use



π∗(β|d)∝π(θ,β|d)[image: there is no content]|θ=[image: there is no content](β),








where [image: there is no content] is the Gaussian approximation to π(θ|β, d). Under “standard conditions,” the Laplace approximation of a marginal posterior density has the error rate O(n−1) [1].
State-of-the-art Markov Chain Monte Carlo (MCMC) approaches to posterior inference typically revolve around reparameterizations. Yu and Meng introduce an alternative strategy for boosting MCMC efficiency by simply interweaving—but not alternating—two parameterizations, namely the centered parameterization and the non-centered parameterization, to ensure effective MCMC implementation [2]. Filippone and Girolamipresent a pseudo-marginal MCMC approach to account for uncertainty in the model parameters when making model-based predictions on out-of-sample data [3]. Attias presents the Variational Bayes framework, which provides a solution for the structure of models with latent variables [4]. Here, Kullback–Leibler divergence is minimized between the posterior and a typically exponential family approximation [4]. Expectation propagation is similar in nature [5]. The integrated nested Laplace approximation is considered for the approximate Bayesian inference in latent Gaussian models [6].

In this paper, we explore Gibbs sensitivity by using an alternative to the full conditional distribution of the nuisance parameter. The approximate sensitivity of the posterior distribution of interest is studied in terms of an information measure including Kullback–Leibler divergence. As an illustration, we apply the proposed approach to PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects; http://prudence.dmi.dk/) ensemble of regional climate models over Central Europe (about 8000 grid points), which involves the analysis of large quantities of data. Furrer and Sain combine two techniques, namely tapering and backfitting, to model and analyze these spatial datasets [7]. Kim and Kimpropose an approximate likelihood function of the spatial correlation parameter based on PRUDENCE data [8]. This paper thus provides some information analysis for their approaches.

The rest of the paper is organized as follows. In Section 2, we describe the approximation setting in the Bayesian computation and discuss some of its sensitivity issues. Various theoretical results on the information analysis are provided in the subsequent section. As an illustration, the results from Section 3 are applied to simple spatial model settings in Section 4, and Section 5 concludes the study.



2. Sensitivity Issues

Let π(θ|β, d) and π(β|θ, d) be the full conditional distributions for the joint posterior distribution π(θ, β|d), which can be expressed in terms of these full conditional distributions. The consistency conditions on the full conditional distributions are required to reconstruct the joint posterior distribution (e.g., see the Hammersley-Clifford Theorem in [9]). Let π*(β|θ, d) be an approximated full conditional distribution of π(β|θ, d). Under the regulation condition with reference points β0 and θ0, the joint posterior distributions can be written in the form



[image: there is no content]








and


[image: there is no content]








where


g(β)=π(β|θ=θ0,d)π(θ=θ0|β,d)andg*(β)=π*(β|θ=θ0,d)π(θ=θ0|β,d)⋅








Therefore,



π(β|d)=Cg(β)andπ*(β|d)=C*g*(β),








where C and C* are normalizing constants, that is,


C=[∫g(β)dβ]−1andC*=[∫g*(β)dβ]−1.








Note that C and C* can be explicated by



C=π(β=β0,θ=θ0|d)π(β=β0|θ=θ0,d)andC*=π*(β=β0,θ=θ0|d)π*(β=β0|θ=θ0,d),








where π(β = β0, θ = θ0|d) and π*(β = β0, θ = θ0|d) can be obtained from a Monte Carlo computation.
Using an approximating density π*(β|d) instead of the true density π(β|d) leads to an approximate joint posterior distribution, π*(θ, β|d) = π(θ|β, d)π*(β|d). Define a simple pointwise difference measure between the corresponding marginal posterior densities π(θ|d) and π*(θ|d) as



[image: there is no content]








where π(θ|d) = ∫ π(θ, β|d)dβ and π*(θ|d) = ∫ π*(θ, β|d)dβ.
Alternatively, the bounds for the (log) ratio of π(θ|d) and π*(θ|d) can be obtained in terms of the full conditional distribution of the nuisance parameter π(β|θ, d) (see [10]).

Theorem 1. Suppose that for some set B0 ⊆ B and α ϵ ℜ, [image: there is no content]for all β ∈ B0. Then, for all θ ∈ Θ,



[image: there is no content]








where P and P* are the probability measures for the conditional distributions of β given θ and d, based on π(β|d) and π*(β|d), respectively.
Proof. Since



π(θ|d)≥∫B0π(θ|β,d)π(β|d)dβ≥∫B0π(θ|β,d)π*(β|d)dβ=π*(θ|d)P*(β∈B0|θ,d),








and


π*(θ|d)≥∫B0π(θ|β,d)π*(β|d)dβ≥11+α∫B0π(θ|β,d)π(β|d)dβ=P(β∈B0|θ,d)1+απ(θ|d),








thus,


P*(β∈B0|θ,d)≤π(θ|d)π*(θ|d)andπ(θ|d)π*(θ|d)≤1+αP(β∈B0|θ,d)⋅








Suppose that there exists γ ϵ ℜ such that [image: there is no content] for all β ∈ B. Then, for all β ∈ B,



[image: there is no content]








and


[image: there is no content]








□
This result can be extended to the Kullback–Leibler divergence of π*(θ|d) from π(θ|d).

In practice, the marginal posterior distribution of the parameter of interest is hard to calculate analytically. Suppose π(θ|β, d) is a smooth (positive) function of β. By using Laplace’s method, π(θ|d) is approximated as



π(θ|d)=∫π(θ|β,d)exp[−nh(β)]dβ,whereh(β)=−1nlogπ(β|d).








Assume [image: there is no content] maximizes logπ(β|d), and define ∑=(−∂2∂β2h(β))β=[image: there is no content]−1. Then, π(θ|d) can be well approximated by Laplace’s method. That is,



π(θ|d)≈π(θ|[image: there is no content],d)π([image: there is no content]|d)(2πn)m/2|∑|1/2(1+∂2∂β2π(θ|β,d)2π(θ|β,d)∑n)β=[image: there is no content],








where m is the dimension of β. More generally, we have


π(θ|d)=π^(θ|d)[1+Oθ(1n)],whereπ^(θ|d)=π(θ|[image: there is no content],d)π([image: there is no content]|d)(2πn)m/2|∑|1/2.








Laplace’s method requires three conditions, referred to as Laplace regularity: (1) the integrals in the equation must exist and be finite; (2) the determinant of the Hessians must be bounded away from zero at the optimizers; and (3) the log-likelihood must be differentiable on the parameters and all the partial derivatives be bounded in the neighborhood of the optimizers. These conditions imply, under mild assumptions, the asymptotic normality of the posterior.

Based on the above results, the bounds for the differences between the marginal posterior distributions can be approximated. Suppose that |π(β|d) − π*(β|d)| has a unique maximum at [image: there is no content]. Then,



∫|π(θ|d)−π*(θ|d)|dθ≤(2πn)m/2|∑˜|1/2|π([image: there is no content]|d)−π*([image: there is no content]|d)|[1+O(1n)],








where O(n−1) does not depend on θ.


3. Information Analysis


3.1. Approximation to Kullback–Leibler Divergence

Kullback–Leibler divergence, or relative entropy, is a quantity that measures the difference between two probability distributions [11]. The Kullback–Leibler divergence between π(θ, β|d) and π*(θ, β|d) is the same as that between π(β|d) and π*(β|d). Theorem 1 provides the upper bound for the Kullback–Leibler divergence between π(θ|d) and π*(θ|d), denoted by I(π(θ|d), π*(θ|d)):



[image: there is no content]








For sufficiently large P(β ∈ B0|θ, d) and small α,


[image: there is no content]








Thus, the upper bound can be approximated by [image: there is no content]. However, the analytic calculation of the Kullback–Leibler divergence between π(θ|d) and π*(θ|d) is usually difficult. Here, we introduce an approximation to Kullback–Leibler divergence based on Laplace’s method along with its convergence properties.

Theorem 2. Suppose that[image: there is no content]and[image: there is no content]*maximize π(β|d) and π*(β|d), respectively. Then, we have



[image: there is no content]








where


I^1(π,π*)=∫(2πn)m/2|∑|1/2π(θ|[image: there is no content],d)π([image: there is no content]|d)log|∑|1/2π(θ|[image: there is no content],d)π([image: there is no content]|d)|∑*|1/2π(θ|[image: there is no content]*,d)π*([image: there is no content]*|d)dθ








and


∑=∂2∂β21nlogπ(β|d)|β=[image: there is no content]and∑*=∂2∂β21nlogπ*(β|d)|β=[image: there is no content]*.








It is noted that[image: there is no content]when |Σ| ≥ |Σ*|. Furthermore, if[image: there is no content]=[image: there is no content]*and |Σ|1/2 = |Σ*|1/2, then



I^1(π,π*)=(2πn)m\2|∑|1\2π([image: there is no content]|d)logπ([image: there is no content]|d)π*([image: there is no content]|d)≥0.








Proof. Since



I(π,π*)≡∫π(θ|d)logπ(θ|d)π*(θ|d)dθ=∫π^(θ|d)[1+Oθ(1n)]logπ^(θ|d)[1+Oθ(1n)]π^*(θ|d)[1+Oθ(1n)]dθ=∫π^(θ|d)logπ^(θ|d)π^*(θ|d)[1+Oθ(1n)]dθ=∫π^(θ|d)logπ^(θ|d)π^*(θ|d)dθ[1+O(1n)]








and


∫π^(θ|d)logπ^(θ|d)π^*(θ|d)dθ=∫π^(θ|[image: there is no content],d)π([image: there is no content]|d)(2πn)m/2|∑|1/2×logπ(θ|[image: there is no content],d)π([image: there is no content]|d)(2πn)m/2|∑|1/2π(θ|[image: there is no content]*,d)π*([image: there is no content]*|d)(2πn)m/2|∑*|1/2dθ,








where


∑=(−∂2∂β21nlogπ(β|d))β=[image: there is no content]−1and∑*=(−∂2∂β21nlogπ*(β|d))β=[image: there is no content]*−1,








we have


[image: there is no content]








where


I^1(π,π*)=∫(2πn)m/2|∑|1/2π(θ|[image: there is no content],d)π([image: there is no content]|d)log|∑|1/2π([image: there is no content]|d)|∑*|1/2π*([image: there is no content]|d)dθ=(2πn)m/2|∑|1/2π([image: there is no content]|d)log|∑|1/2π([image: there is no content]|d)|∑*|1/2π*([image: there is no content]|d).








□

Under the weak conditions allowing the exchange of integral and limit, it can be shown that [image: there is no content] converges to I(π, π*). Suppose that both π(β|d) and π*(β|d) are maximized at [image: there is no content], a posterior mode. Then,



|I^1(π,π*)−I(π,π*)|→0asn→∞.








Since [image: there is no content] and [image: there is no content] as n → ∞, continuity implies that



|∫π^(θ|d)logπ^(θ|d)π^*(θ|d)dθ−∫π(θ|d)logπ(θ|d)π*(θ|d)dθ|≤∫|π^(θ|d)logπ^(θ|d)π^*(θ|d)−(θ|d)logπ(θ|d)π*(θ|d)|dθ→0asn→∞.








Therefore,



|(2πn)m/2|∑|1/2π([image: there is no content]|d)log|∑|1/2π([image: there is no content]|d)|∑*|1/2π*([image: there is no content]|d)−I(π,π*)|→0asn→∞.








Note that the first-order approximation [image: there is no content] depends only on the marginal posterior distribution of the nuisance parameters π(β|d) and π*(β|d) but not the full conditional distribution of the parameter of interest π(θ|β, d). Based on the asymptotic properties of the posterior distributions (which can be achieved easily under fairly general conditions when the true value of the parameter is in the support of the prior), a Gaussian distribution with mean [image: there is no content], the generalized MLE of β, and variance (−∂2∂β2logπ(β|d))β=[image: there is no content]−1 can be considered as π*(β|d). That is,



π*(β|d)∝exp(−12(β−[image: there is no content])′Hβ(β−[image: there is no content])),whereHβ≡∂2∂β2logπ(β|d).








For a sufficiently large n, π*(β|d) is maximized at [image: there is no content], the posterior mode of π(β|d), and ∂2∂β2logπ(β|d)|β=[image: there is no content]≈∂2∂β2logπ*(β|d)|β=[image: there is no content].



3.2. Higher-Order Approximations to Kullback–Leibler Divergence

To improve accuracy, second-order approximations can be considered in Laplace’s method [1]. Let [image: there is no content]1, [image: there is no content]*1, [image: there is no content], and [image: there is no content] be defined as above in the case of the first-order approximations. Let [image: there is no content]2 and [image: there is no content]*2 maximize log[π(θ|β, d)π(β|d)] and log[π(θ|β, d)π* (β|d)], respectively While the second-order approximations to π(θ|d) and π(θ|d)* are more accurate, the second-order approximation to I(π,π*) is quite difficult to calculate since both [image: there is no content]2 and [image: there is no content]*2 are functions of θ, that is, [image: there is no content]2=[image: there is no content]2(θ) and [image: there is no content]*2=[image: there is no content]*2(θ).

Assume that both [image: there is no content] and [image: there is no content]* maximize π(θ|β, d)π(β|d) and π(θ|β, d)π*(β|d), respectively, regardless of θ. Then, it can be shown that



[image: there is no content]








Or


|I^2(π,π*)−I(π,π*)|→0asn→∞,








where


I^2(π,π*)≡∫|∑2|1/2|[image: there is no content]|1/2π(θ|[image: there is no content]2,d)π([image: there is no content]2|d)π([image: there is no content]1|d)log|∑2|1/2|[image: there is no content]|1/2π(θ|[image: there is no content]2,d)π([image: there is no content]2|d)π([image: there is no content]1|d)|∑2*|1/2|[image: there is no content]|1/2π(θ|[image: there is no content]2*,d)π*([image: there is no content]2*|d)π*([image: there is no content]1*|d)dθ,∑2=(−∂2∂β21nlog[π(θ|β,d)π(β|d)])β=[image: there is no content]2−1,








and


∑2*=(−∂2∂β21nlog[π(θ|β,d)π*(β|d)])β=[image: there is no content]2*−1.








If both log[π(θ|β, d)π(β|d)] and log[π(θ|β, d)π*(β|d)] are maximized at [image: there is no content]2, then the second-order approximation to I (π, π*) can be simplified to



I^2(π,π*)=|∑2|1/2|[image: there is no content]|1/2π([image: there is no content]2|d)π([image: there is no content]1|d)log|∑2|1/2|[image: there is no content]|1/2π([image: there is no content]2|d)π([image: there is no content]1|d)|∑2*|1/2|[image: there is no content]|1/2π*([image: there is no content]2*|d)π*([image: there is no content]1*|d).








[image: there is no content] when |∑2||[image: there is no content]|≥|∑2*||[image: there is no content]| and π([image: there is no content]1|d)≥π*([image: there is no content]1*|d).


3.3. Approximation to Other Information Measures

Instead of Kullback–Leibler divergence, other useful information measures based on uncertainty functions or the entropy function can be used. One information measure based on uncertainty functions [12] is



I=EVar(β|d)−EVar*(β|d)orElogVar(β|d)Var*(β|d).








Another information measure is based on Renyi’s entropy function [13]:



[image: there is no content]








Theorem 3. Suppose that[image: there is no content]maximizes both π(β|d) and π*(β|d). Then,



[image: there is no content]








where


J≡(2πn)m/2|∑|1/2[π([image: there is no content]|d)]α[π*([image: there is no content]|d]1−α.








Proof. Let



[image: there is no content]








Then, it suffices to show that



δα(π(θ|d),π*(θ|d))=∫[π(θ|d)]α[π*(θ|d)]1−αdθ=∫[∫π(θ|β,d)π(β|d)dβ]α[∫π(θ|β,d)π*(β|d)dβ]1−αdθ=∫π(θ|[image: there is no content],d)(2πn)m/2|∑|1/2(1+Oθ(1n))[π([image: there is no content]|d)]α[π*([image: there is no content]|d)]1−αdθ,=(2πn)m/2|∑|1/2[π([image: there is no content]|d)]α[π*([image: there is no content]|d)]1−α(1+O(1n)).








□

Under similar conditions to those in Theorem 2, it can be shown that



|11−αlogJ−Ia(π(θ|d),π∗(θ|d))|→0asn→∞.











4. Illustrative Example

We consider an approach to approximating the likelihood function of the spatial correlation parameters in the Gaussian random field. Consider the simple Gaussian random field Z ~ MVN(0, Σ(θ)), where Σ(θ) is parameterized by a variance term and a correlation function. That is, Σ(θ) = σ2R(θ). Then, the likelihood function of (σ2, θ) is



[image: there is no content]



(1)




Note that in the problem with a large spatial domain, it is not computationally feasible to compute the likelihood function of the spatial correlation parameters because of R−1.

The proposed approaches are also illustrated in regional climate models, which are used to model the evolution of a climate system over a limited area. These models address smaller spatial regions than global climate models. However, the higher resolution of regional climate models better captures the impact of local features such as lakes and mountains as well as the subgrid-scale atmospheric process. The PRUDENCE project involves regional models over Europe from various climate research centers ( http://prudence.dmi.dk/) and employs a major archive of data of a 25-km resolution covering the 1951–2100 transient periods. In the analysis, spatial parameters are estimated based on the approximated likelihood approach using PRUDENCE data (about 8000 grid points). Here, the mean trend in the surface temperature change is modeled as follows:



[image: there is no content]



(2)




where Iland/sea(s) is an indicator function for the sea and land, P(s) is the amount of seasonal precipitation, lon(s) is the longitude, lat(s) is the latitude, and elev(s) is the elevation in location s. For the detrended surface temperature field, we consider a stationary Gaussian spatial process with an exponential covariance function, [image: there is no content]. For simplicity, we also assume that σ2 is known and θ = 2ξ2.
Now we consider an approximated likelihood function for θ. Considering a log transformation for the correlation function ρ leads to



[image: there is no content]



(3)




where [image: there is no content] is the MLE of the spatial parameter θ,


[image: there is no content]=−∑d∈Dd2σd2∑d∈Ddσdlogρ(d).



(4)




Note that the model coefficients (β0, β1, β2, β3, β4) are the parameters of interest and that the correlation parameter θ is the nuisance parameter in this example. Here, the full conditional distribution of the parameter of interest, π(β0, β1, β2, β3, β4|θ, d), can be obtained based on the model of the mean trend in the surface temperature change, while the true marginal density of the nuisance parameter, π(β|d), and approximate marginal density of the nuisance parameter, π*(β|d), can be computed by using likelihood functions (1) and (3), respectively. Therefore, the full conditional distribution of the parameter of interest, (β0, β1, β2, β3, β4), can be expressed as



[image: there is no content]



(5)




where D = {d(1), d(2),…, d(n)} is the observation vector and T = {T(1), T(2),…, T(n)} is the mean trend vector in (2). The approximated full conditional distribution of the correlation parameter θ is of the form


[θ|D,β0,β1,β2,β3,β4]∝exp(−12([image: there is no content]−θ)2θ4∑d∈Dd2σd2),



(6)




where as the exact full conditional distribution is quite similar to (5). Further, [image: there is no content] is the MLE of the spatial parameter θ in (4). The reference points for (β0, β1, β2, β3, β4) and θ are randomly chosen in the neighborhood of the MLEs of the parameters. For more details, see [8].
In the next step, various grid points (n = 400, 900,1600) are randomly chosen and then eliminated as in the simulation study Table 1 provides the first-order-approximated Kullback–Leibler divergence along with the exact Kullback–Leibler divergence under various settings. The estimated information measures are quite efficient and competitive because the seasonal mean surface temperature fields from the global climate model are already smoothed. Further, the approximated likelihood function of the correlation parameter is not well estimated, particularly when the number of observations is less than 100.

Table 1. First-order-approximated Kullback–Leibler divergence and the exact Kullback–Leibler divergence under the various settings of the grid points.


	Sampled Grid Size
	First-Order-Approximated Kullback–Leibler Distance
	Exact Kullback–Leibler Distance





	400
	0.482
	0.425



	900
	0.279
	0.251



	1600
	0.121
	0.108










5. Summary

We introduced various ways of checking the sensitive effects on the target posterior distribution of the parameter of interest by using an alternative to the full conditional distribution of the nuisance parameter. By using Laplace’s method, approximated Kullback–Leibler divergence between π(θ|d) and π*(θ|d) was also calculated in terms of the entropy of π(β|d) and π*(β|d) at the generalized MLE [image: there is no content]. Other information measures provided similar results. However, it is still difficult to check analytically the robustness of the marginal posterior distribution of interest, π(θ|d), according to the choice of the full conditional distribution of the nuisance parameter, π(β|θ, d). Nonetheless, for the general class of available marginal posterior distributions of the nuisance parameters, the sensitivity and robustness to the marginal posterior distribution of the parameters of interest can be checked approximately. In addition, we can find a reasonable and flexible substitute for the complicated full conditional distribution of the nuisance parameter under the sensitivity and robustness criteria to the target distribution and then perform inference based on this substitute. Our approach can be applied to future sensitivity analysis on the posterior predictive distribution by using an approximated posterior distribution, Bayes factor or marginal density by using the choice of prior distribution, and expected loss or utility by using an approximated posterior distribution.
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