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Abstract:

 Objective Bayesianism says that the strengths of one’s beliefs ought to be probabilities, calibrated to physical probabilities insofar as one has evidence of them, and otherwise sufficiently equivocal. These norms of belief are often explicated using the maximum entropy principle. In this paper we investigate the extent to which one can provide a unified justification of the objective Bayesian norms in the case in which the background language is a first-order predicate language, with a view to applying the resulting formalism to inductive logic. We show that the maximum entropy principle can be motivated largely in terms of minimising worst-case expected loss.
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1. Introduction

Objective Bayesianism holds that the strengths of one’s beliefs should satisfy three norms [1,2]:


	Probability. The strengths of one’s beliefs should satisfy the axioms of probability: if bel is one’s belief function, which assigns a degree of belief to each sentence of one’s language, then bel ∈ ℙ, the set of probability functions defined on the sentences of one’s language.


	Calibration. The strengths of one’s beliefs should fit one’s evidence: bel ∈ [image: there is no content], the set of belief functions compatible with one’s evidence. In particular, the strengths of one’s beliefs should be calibrated with physical probabilities, insofar as one has evidence as to what the physical probabilities are: if one’s evidence determines just that the physical probability function P* lies in some non-empty set ℙ* of probability functions, then bel ∈ [image: there is no content] = ⟨ℙ*⟩, where ⟨ℙ*⟩ is the convex hull of ℙ* [3].


	Equivocation. The strengths of one’s beliefs should otherwise equivocate sufficiently between the basic possibilities that one can express: bel is some function in E that is sufficiently equivocal. Note that entropy is often used as a measure of the extent to which a probability function equivocates.




These three norms are usually justified in rather different ways. The Probability norm is usually justified as being required if one is to avoid sure loss—the Dutch book argument. The Calibration norm needs to hold if one is to avoid loss in the long run when one repeatedly bets on similar events. It has also been argued that the Equivocation norm should hold if one is to minimise worst-case expected loss. See Williamson [1] (Chapter 3) for discussion of these justifications. Unfortunately, these justifications do not cohere particularly well, because the betting set-up and the notion of loss differ in each case—for the Probability norm, the notion of loss is sure single-case loss, where losses may be positive or negative; for the Calibration norm it is almost-sure (i.e., probability 1) long-run loss, positive or negative; for the Equivocation norm, it is worst-case expected loss, where the loss is positive and logarithmic. Furthermore, a justification for the order in which the norms are applied is missing. In particular, the justification of the Equivocation norm presumes that belief is probabilistic; for this justification to work, some argument is needed for the claim that avoiding sure loss should be prioritised over minimising worst-case expected loss; but there is as yet no such argument. The question thus arises as to whether a single, unified justification can be given for the three norms, in order to circumvent the above problems.

Landes and Williamson [4] provided a single, unified justification for the situation in which one’s beliefs are defined over propositions, construed as subsets of a finite set Ω of outcomes. It turns out that all three norms must hold if one is to minimise worst-case expected loss: one’s belief function should be a probability function in [image: there is no content] = ⟨ℙ*⟩ that has sufficiently high entropy. This line of argument will be described in Section 2. Landes and Williamson [4] went on to extend this unified justification to the situation in which beliefs are defined over sentences of a propositional language, formed by recursively applying the usual propositional connectives ¬, ˄, ˅, →, ↔ to a finite set of propositional variables.

In this paper we shall show that a similar justification goes through for the situation in which beliefs are defined over sentences of a first-order predicate language, with the use of predicate, constant and variable symbols as well as the quantifiers ∀, ∃. In Section 3 we shall formulate the norms of objective Bayesianism in the context of a predicate language. In Section 4 we shall provide a justification for maximising entropy when the language in question is a predicate language without quantifier symbols and when the evidence set is finitely generated. In Section 5, we shall extend this line of argument to predicate languages that contain quantifier symbols. In Section 6 we shall investigate the case of evidence which is not finitely generated. Key concepts and notation are collected in Appendix C for ease of reference.

The key technical results in this paper are Theorem 3, Theorem 6, Theorem 7, and Theorem 8. These results all suppose that the available evidence is finitely generated (in the sense of Definition 5). The first two jointly show that, on a quantifier-free predicate language, the belief function with the best loss profile is the calibrated probability function which has maximal entropy. Theorem 7 implies that adding new constant or predicate symbols to the language does not change the inferences one draws which are expressible in the original language. Theorem 8 extends Theorem 3 and Theorem 6 to predicate languages with quantifiers. En route to proving Theorem 8, we improve on Gaifman’s Unique Extension Theorem [5] (Theorem 1) in Proposition 24.

The case of evidence which cannot be finitely generated is more involved. We consider a case in which no belief function has an optimal loss profile in Proposition 28 and Proposition 30. While there are no functions with the best loss profile in that case, we show in Proposition 29 and Proposition 31 that probability functions in a neighbourhood of the calibrated function with maximal entropy have arbitrarily good loss profiles. We also discuss a case in which the belief function with best loss profile does indeed turn out to be the calibrated probability function which has maximal entropy, see Theorem 9.



2. Beliefs over Propositions

Here we will recap the relevant results of Landes and Williamson [4], to which the reader is referred for further details and motivation. In this section we will be concerned solely with a finite set Ω of possible outcomes. We shall suppose that each member ω of Ω is a state ±A1 ˄…˄ ±An of a finite propositional language L = {A1,∆, An}. A proposition F is a subset of Ω. Let Π be the set of all partitions of Ω. We take {∅, Ω}, {Ω} ∈ Π. In order to limit the proliferation of partitions, we suppose that the only partition in which ∅ occurs is {∅, Ω}.

Given a belief function bel : [image: there is no content]Ω→ℝ≥0 that is not zero everywhere, we normalise by dividing each degree of belief by maxπ∈Π∑F∈πbel(F) to form a belief function, B : [image: there is no content], with degrees of belief in the unit interval. The set of normalised belief functions is



[image: there is no content]:={B:[image: there is no content]Ω→[0,1]:∑F∈πB(F)≤1for allπ∈Πand∑F∈πB(F)=1for someπ}.








On the other hand, the set of probability functions is



[image: there is no content]:={B:[image: there is no content]Ω→[0,1]:∑F∈πB(F)=1for allπ∈Π}∪[image: there is no content],








where ⊂ denotes strict subset inclusion. The inclusion is strict since the following normalised belief function B is not in ℙ, B(∅) = 1 and B(F ) = 0 for all ∅ ⊂ F ⊆ Ω. Since {Ω} is a partition we have P (Ω) = 1 and since {Ω, ∅} is a partition it holds that P (∅) = 0 for all P ∈ ℙ.
Let L(F, B) be the loss incurred by adopting belief function B when proposition F turns out to be true. Arguably, in the absence of knowledge of the true loss function, the loss function L should be taken to be logarithmic, as we shall now see. Consider the following four conditions on a default loss function L:


	L1. L(F, B) = 0 if B(F ) = 1.


	L2. L(F, B) strictly increases as B(F) decreases from 1 towards 0.


	L3. L(F, B) depends only on B(F), not on B(F 0) for F 0 6= F.

To express the next condition we need some notation. Suppose [image: there is no content]: say that [image: there is no content]={A1,…,An},[image: there is no content]1={A1,…,Am},[image: there is no content]2={Am+1,…,An} for some 1 ≤ m < n. Then ω ∈ Ω takes the form ω1 ˄ ω2 where ω1 ∈ Ω1 is a state of [image: there is no content], and ω2 ∈ Ω2 is a state of [image: there is no content]. Given propositions F1 ⊆ Ω1 and F2 ⊆ Ω2 we can define F1× F2 := {ω = ω1 ˄ ω2 : ω1∈ F1, ω2∈ F2}, a proposition of [image: there is no content]. Given a fixed belief function B such that B(Ω) = 1, [image: there is no content] and [image: there is no content] are independent sublanguages, written [image: there is no content]1╨B[image: there is no content]2, if B(F1× F2) = B(F1) · B(F2) for all F1 ⊆ Ω1 and F2 ⊆ Ω2, where B(F1) := B(F1× Ω2) and B(F2) := B(Ω1× F2). The restriction B⇂[image: there is no content]1 of B to [image: there is no content] is a belief function on [image: there is no content] defined by B⇂[image: there is no content]1(F1)=B(F1)=B(F1×Ω2), and similarly for [image: there is no content].


	L4. Losses are additive when the language is composed of independent sublanguages: if [image: there is no content] for [image: there is no content]1╨B[image: there is no content]2, then L(F1×F2,B)=L1(F1,B⇂[image: there is no content]1)+L2(F2,B[image: there is no content]), where L1, L2 are loss functions defined on [image: there is no content], [image: there is no content] respectively.




Theorem 1. If a loss function L satisfies L1–4 then L(F, B) = −k log B(F) for some constant k > 0 that does not depend on[image: there is no content].

When we consider the notion of expected loss, we see that this concept depends on the weight given to the various partitions under consideration. Let g : Π → ℝ≥0 be a function that assigns a weight to each partition. Then the g-expected loss or g-score of a belief function [image: there is no content] with respect to a probability function P ∈ ℙ is defined by



[image: there is no content]








for any weighting function g that is inclusive in the sense that for any proposition F, some partition π containing F is given positive weight. We adopt the usual convention that 0 log 0 = 0. This ensures that [image: there is no content] is well-defined. Theorem 1 allows us to focus attention on logarithmic g-score,


[image: there is no content]



(1)




An important property of a scoring rule is that arginf[image: there is no content]SgL(P,B)={P} for all P ∈ ℙ. That is, for fixed P ∈ ℙ, [image: there is no content] is uniquely minimised by B = P. This property is known as strict propriety.

Proposition 1 (Strict Propriety). Sg is strictly proper.

By analogy with the generalised notion of scoring rule, we get a similar generalisation of entropy, g-entropy:



[image: there is no content]



(2)




The standard entropy function corresponds to the special case in which g = gΩ, the (non-inclusive) weighting function that gives weight 1 to the partition {{ω} : ω ∈ Ω} of states and weight 0 to all other partitions.

It turns out that, if there is such a function, the probability function that minimises worst-case g-score, where the worst case is taken over physical probability functions in the set [image: there is no content]=⟨[image: there is no content]*⟩, is the probability function in [image: there is no content] that has maximum g-entropy:

Theorem 2. As noted above, [image: there is no content]is taken to be convex and g inclusive. There is a unique member ofarg supP∈[image: there is no content]Hg(P), which we shall denote by[image: there is no content]. Furthermore,



argsupP∈[image: there is no content]Hg(P)=arginf[image: there is no content]supP∈[image: there is no content]Sg(P,B)={[image: there is no content]}.








Throughout this paper we use arg supP∈[image: there is no content] (and arg infP∈[image: there is no content]) to refer to the points in the closure [ [image: there is no content]] of [image: there is no content] that achieve the supremum (respectively infimum) whether or not these points are in[image: there is no content]. (This convention shall also apply mutatis mutandis to suprema and infima over sets of belief functions defined on predicate languages later in this paper.)

The above theorem concerns the minimisation of worst-case g-score. If one replaces the minimisation of worst-case g-score by a more fine-grained criterion (which breaks ties between belief functions with the same worst-case g-score), then an analogue of the above theorem holds: there exists a unique belief function which is best with respect to this criterion and this function is [image: there is no content], which maximises g-score in [ [image: there is no content]]. When we move to predicate languages we will consider such a refinement in Definition 21.



3. Beliefs over Sentences of a Predicate Language


3.1. Norms

In this section we introduce the norms of objective Bayesianism as they apply to strength of belief in sentences formulated in a predicate language. This framework is presented in more detail in Williamson [1] (Chapter 5). It is this set of norms that we seek to justify in terms of the loss that a belief function exposes one to.

We shall take [image: there is no content] to be a first-order predicate language with finitely many relation symbols U1, …, Us, countably many constant symbols t1, t2, …, but no function or equality symbols. We will consider languages with and without the existential quantifier symbol, using the notation [image: there is no content]∄ and [image: there is no content]∃ to disambiguate where needed. We shall assume, as is usual in this setting, that each individual in the domain of discourse is picked out by a some constant symbol. The sentences S[image: there is no content] of [image: there is no content] are formed by recursively applying the usual connectives and the existential quantifier, if present. In [image: there is no content]=[image: there is no content]∃, universally quantified sentences may be defined in terms of existentially quantified sentences as usual via ∀xθ(x) := ¬∃x¬θ(x). Note that S[image: there is no content]∄ coincides with the set of quantifier-free sentences of [image: there is no content]∃. We shall also be interested in the finite sublanguages [image: there is no content]n, for n≥1, which are identical to [image: there is no content] except that they have only finitely many constant symbols t1, …, tn.

We shall list the atomic sentences of [image: there is no content], i.e., sentences of the form Ut where U is a relation symbol and t is a tuple of constant symbols of the corresponding arity, as A1, A2, …, ordered in such a way that atomic sentences that can be expressed in [image: there is no content]n+1 but not in [image: there is no content]n occur after the atomic sentences A1, …, Arn of [image: there is no content]n, for each n. Ωn will denote the set of n-states, i.e., sentences of the form [image: there is no content]. We shall use Greek letters, such as θ, to denote sentences of [image: there is no content], and Roman letters, e.g., F, to denote propositions expressed by such sentences. We shall construe propositions as sets of n-states, F ⊆ Ωn for some n (see Section 2).

The norms of objective Bayesianism can then be explicated thus:

Probability. The strengths of one’s beliefs should be representable by a probability function, i.e., a function P:S[image: there is no content]→ℝ that satisfies the properties:


	P1. P (τ) = 1 for all tautologies τ.


	P2. If ⊨¬(φ ˄ ψ) then P (φ ˅ ψ) = P (φ) + P (ψ).


	P3.[image: there is no content].




(Clearly P3 is only applicable in the case [image: there is no content]=[image: there is no content]∃.)

Calibration. One’s degrees of belief should satisfy constraints imposed by one’s evidence. Assuming all evidence is evidence of physical probabilities, P should lie in the set [image: there is no content]L=⟨[image: there is no content]*⟩, the convex hull of the set of epistemically possible physical probability functions.

Equivocation. One’s degrees of belief should otherwise be sufficiently equivocal. Again, one can explicate this by saying that one’s belief function should have sufficiently high entropy. Here P has higher entropy than Q if there is some N such that for all n≥N, [image: there is no content], where [image: there is no content]is standard entropy on [image: there is no content]n, [image: there is no content].

The key question we attempt to answer here is: can these norms be given a unified justification in terms of avoiding avoidable loss?



3.2. Belief and Probability

A (non-normalised) belief function bel : S[image: there is no content]→ℝ≥0 is a function that maps any sentence of the language to a non-negative real number. For technical convenience we shall focus our attention on normalised belief functions, which are defined below.

A (countable) set of mutually exclusive sentences π⊂S[image: there is no content] is called exhaustive if, for all interpretations [image: there is no content] under which the constants exhaust the universe of [image: there is no content], there exists a sentence θ ∈ π such that [image: there is no content]⊨θ. This means that it is not possible for all θ ∈ π to be false at the same time. In order to control the number of partitions, we shall assume that the only partitions in which contradictions κ occur are the partitions of the form {τ, κ}, for some tautology τ. Let Π[image: there is no content] denote the set of partitions of [image: there is no content].

Example 1 (Infinite partitions). Even though[image: there is no content]∃does not contain a symbol for equality and every element of a partition is a sentence of[image: there is no content]∃, which is of finite length, infinite partitions such as the following do exist:



[image: there is no content]








(Here it is presupposed that[image: there is no content]∃contains a unary predicate symbol U1.) On the other hand, it turns out that there are no infinite partitions in[image: there is no content]∄ [6] (§2.5).

We take it that it is a matter of convention on which scale beliefs are measured. For convenience, we want to normalise this scale to the unit interval, [0, 1], so that all belief functions are considered on the same scale.

Definition 1 (Normalised belief function). LetM:=supπ∈Π[image: there is no content]∑φ∈πbel(φ). Then define the normalisation of bel as[image: there is no content], if M > 0. For a function f assigning everyφ∈S[image: there is no content]the same value v ∈ ℝ≥0we write f ≡ v. We shall consider bel ≡ 0 as normalised. The set of normalized belief functions onS[image: there is no content]then is



B[image: there is no content]:={B:S[image: there is no content]→[0,1]:}∑φ∈πB(φ)≤1forallπ∈Π[image: there is no content]and∑φ∈πB(φ)=1forsomeπ∈Π[image: there is no content]}∪{B≡0}.








For the normalisation of bel, B, it holds that B ≡ 0, if and only if M = +∞ or bel ≡ 0.

We will be particularly interested in the following subset of functions:



[image: there is no content][image: there is no content]:={P:S[image: there is no content]→[0,1]:∑φ∈πP(φ)=1for allπ∈Π[image: there is no content]}.








These are the probability functions:

Proposition 2.P∈[image: there is no content][image: there is no content], if and only ifP:S[image: there is no content]→[0,1]satisfies the axioms of probability:


	P1. P (τ) = 1 for all tautologiesτ∈S[image: there is no content].


	P2. If ⊨ ¬(φ ˄ ψ) then P (φ ˅ ψ) = P (φ) + P (ψ).


	P3.[image: there is no content].




Proof. First we shall see that P∈[image: there is no content][image: there is no content] satisfies the axioms of probability.


	P1. For any tautology τ ∈ SL it holds that P (τ) = 1 because {τ} is a partition in ΠL. P (κ) = 0 for all contradictions κ because {τ, κ} is a partition in ΠL and P (τ) = 1.


	P2. Suppose that φ, ψ∈S[image: there is no content] are such that ⊨ ¬(φ ˄ ψ). We shall proceed by cases to show that P (φ ˅ ψ) = P (φ) + P (ψ). In the first three cases one of the sentences is a contradiction, in the last two cases there are no contradictions.


	φ and ⊨ ¬ψ, then ⊨ φ ˅ ψ. Thus by the above P (φ) = 1 and P (ψ) = 0 and hence P (φ ˅ ψ) = 1 = P (φ) + P (ψ).


	⊨ ¬φ and ⊨ ¬ψ, then ⊨ ¬φ ˄ ¬ψ. Thus P (φ ˅ ψ) = 0 = P (φ) + P (ψ).


	⊭ ¬φ, ⊭ φ, and ⊨ ¬ψ, then {φ ˅ ψ, ¬φ ˅ ψ} and {φ, ¬φ ˅ ψ} are both partitions in Π[image: there is no content]. Thus P (φ ˅ ψ) + P (¬φ ˅ ψ) = 1 = P (φ) + P (¬φ ˅ ψ). Putting these observations together we now find P (φ ˅ ψ) = P (φ) = P (φ) + P (ψ).


	⊭ ¬φ, ⊭ ¬ψ and ⊨ φ ↔ ¬ψ, then {φ, ψ} is a partition and φ ˅ ψ is a tautology. Hence, P (φ) + P (ψ) = 1 and P (φ ˅ ψ) = 1. This now yields P (φ) + P (ψ) = P (φ ˅ ψ).


	⊭ ¬φ, ⊭ ¬ψ and ⊭ φ ↔ ¬ψ, then none of the following sentences is a tautology or a contradiction φ, ψ, φ˅ψ, ¬(φ˅ψ). Since {φ, ψ, ¬(φ˅ψ)} and {φ˅ψ, ¬(φ˅ψ)} are both partitions in ΠL we obtain P (φ) + P (ψ) = 1 − P (¬(φ ˅ ψ)) = P (φ ˅ ψ). So P (φ) + P (ψ) = P (φ ˅ ψ).





	P3. For the rest of this proof we only have to consider [image: there is no content]=[image: there is no content]∃.




If ⊨ ∃xθ(x), then P (∃xθ(x)) = 1.

Furthermore, the set {θn : n ∈ ℕ} with [image: there is no content] is exhaustive. Note that [image: there is no content]. P1 and P2 are well-known to imply that logically equivalent sentences are assigned the same probability; see [7] (Proposition 2.1.c). Hence, [image: there is no content].

The θi are mutually exclusive. We obtain from P2 that [image: there is no content]. Next, define a set Θ := {θn : θn satisfiable} which consists of exhaustive, satisfiable and mutually exclusive sentences. Hence Θ is a partition in Π[image: there is no content]. We finally obtain



[image: there is no content]








P1 and P2 are also well-known to imply that if ⊨ χ → ψ then P (χ) ≤ P (ψ), see [7] (Proposition 2.1.c). Since [image: there is no content] we obtain [image: there is no content]. [image: there is no content] is a (not necessarily strictly) increasing sequence. Then



[image: there is no content]



(3)




The second equality holds also when [image: there is no content].

If neither ⊨ ∃xθ(x) nor ⊨ ¬∃xθ(x), then {∀x¬θ(x),∃xθ(x)} is a partition. We consider two cases.

In the first case the set [image: there is no content] is not a partition.

For example, this set fails to be a partition for θ(x) = ¬Ut2 ˄ Ux: the sentence θ(t2) ˄ ¬θ(t1) = ¬Ut2˄Ut2˄¬(¬Ut2˄Ut1) is a contradiction and hence it cannot be contained in a partition π consisting of infinitely many sentences.

[image: there is no content] cannot be a contradiction since ¬∃θ(x) is satisfiable and [image: there is no content]. If [image: there is no content] is a tautology, then all θn with n ≤ m are contradictions. Hence, for all m ∈ ℕ the set {¬∨i=1mθ(ti)},∪{θn:n≤mandθnis satisfiable} is a partition, as is [image: there is no content]. Furthermore, {∀x¬θ(x)} ∪ {θn : θn is satisfiable} is a partition.

Recalling that P(κ) = 0 for all contradictions κ we obtain [image: there is no content] and



[image: there is no content]








It remains to show that



[image: there is no content]








This follows as we saw above in (3).

In the second case the set {∀x¬θ(x), θ(t1), θ(t2) ˄ ¬θ(t1), …, θ(tk) ˄ ¬[image: there is no content]θ(tj),…} is a partition. Recall that {∀x¬θ(x), ∃xθ(x)} is also a partition. We obtain as in the first case that



[image: there is no content]








For the converse, note that P1–3 imply that P is a probability measure on S[image: there is no content], and so additive over countable partitions (§2 in [8]; §2.5 in [6]). Hence P∈[image: there is no content][image: there is no content]. □

Another key feature of probability functions is that they respect logical equivalence:

Definition 2 (Respecting logical equivalence). For a sublanguage[image: there is no content]′of[image: there is no content]we say that a function f : S[image: there is no content]→[0,1] respects logical equivalence on [image: there is no content]′, if and only if for all φ, ψ∈S[image: there is no content]′with φ ↔ ψ it holds that f(φ) = f(ψ). For[image: there is no content]′=[image: there is no content]we simply say that f respects logical equivalence.

Proposition 3. The probability functionsP∈[image: there is no content][image: there is no content]respect logical equivalence.

Proof. Suppose P∈[image: there is no content][image: there is no content] and assume that φ, ψ∈S[image: there is no content]′ are logically equivalent. Observe that {φ, ¬φ} and {ψ, ¬φ} are partitions in Π[image: there is no content]. Hence,



[image: there is no content]








But then P (φ) = P (ψ).

Thus, the P∈[image: there is no content][image: there is no content] assign logically equivalent sentences the same probability. □

If a belief function B:S[image: there is no content]→[0,1] respects logical equivalence, it gives sentences which express the same proposition the same degree of belief. Hence, for any n ∈ ℕ, B induces a function °B defined over the propositions F ⊆ Ωn (c.f., Section 2). °B is defined by:



[image: there is no content]








We will use the notation °nB to avoid ambiguity in cases where n varies.

The notion of a dominated belief function will prove useful in what follows:

Definition 3 (Dominated belief function).B∈[image: there is no content][image: there is no content]\[image: there is no content][image: there is no content]is dominated by a probability functionP∈[image: there is no content][image: there is no content], if and only if for allφ∈S[image: there is no content]it holds that B(φ) ≤ P (φ).

Note that if B is dominated by P, then B ≠ P, and thus B(φ) < P (φ) has to hold at least for one sentence φ.

Proposition 4. There existB∈[image: there is no content][image: there is no content]\[image: there is no content][image: there is no content]which are not dominated.

Proof. Let U be a relation symbol in [image: there is no content] of arity a ≥ 1, say. Let Ut1t be a well-formed formula of [image: there is no content], i.e., t is a a − 1 tuple with consisting only of t1 and t2. Let O4 := {Ut1t ˄ Ut2t, Ut1t ˄ ¬Ut2t, ¬Ut1t ˄ Ut2t, ¬Ut1t ˄ ¬Ut2t}.

Let B:S[image: there is no content]→[0,1] be such that



[image: there is no content]








Clearly, B∈[image: there is no content][image: there is no content]. We now that there does not exist a P∈[image: there is no content][image: there is no content] such that B(φ) ≤ P (φ) for all show φ ∈ SL.

Note that



[image: there is no content]








and that for all P∈[image: there is no content][image: there is no content] it holds that


[image: there is no content]



(4)




Note for later reference that for all n ≥ 3 and ω ∈ O4, {¬ω} ∪ {ν ∈ Ωn : ν⊨ ω} is a partition. So, [image: there is no content] has to hold. Hence, [image: there is no content].

Thus far we have considered partitions of sentences. We shall also need to consider partitions of propositions:

Definition 4 (Partitions of propositions). Let Πn be the set of partitions on Ωn. As in Section 2, we take {Ωn} and {Ωn, ∅} to be partitions and we suppose that there is no further partition containing ∅.

We then define the set of partitions:[image: there is no content].

We use πn to denote the partition of n-states {{ω} : ω ∈ Ωn}.

Note that F1 := {ω ∈ Ω1 : ω ⊨U1t1} and F2 := {ω ∈ Ω2 : ω U1t1} are different propositions, where U1 is a unary predicate symbol. F1 is a member of {F1, [image: there is no content]} ∈ Π1 and F2 is a member of {F2, [image: there is no content]} ∈ Π2, but not vice versa. So {F1, [image: there is no content]} and {F2, [image: there is no content]} are different partitions, even if these partitions are intuitively equivalent.



3.3. Application to Inductive Logic

We shall be particularly interested in the use of objective Bayesianism over predicate languages to provide semantics for inductive logic.

Inductive logic typically seeks to answer questions of following form [9] (§1.1):



[image: there is no content]








This asks, if premiss sentences φ1, …, φk of [image: there is no content] have probabilities in sets X1, …, Xk ⊆ [0, 1] respectively, which probability or set of probabilities should attach to the conclusion sentence ψ?

The answer to this question will depend on the semantics given to the inductive entailment relation |≈ [9] (Part I). One natural option is to give the entailment relation objective Bayesian semantics, denoted by|≈°. Here the premisses are construed as statements about chance, i.e., P*(φ1) ∈ X1, …, P*(φk) ∈ Xk, and the question concerns rational belief: if one’s total evidence is captured by the premisses, to what extent should one believe the conclusion sentence ψ? Applying the norms of objective Bayesianism,



[image: there is no content]








holds just in case P (ψ) ∈ Y for every P∈[image: there is no content][image: there is no content] that has maximal entropy, where


[image: there is no content]=⟨φ1X1,…,φkXk⟩:=⟨{P*∈[image: there is no content][image: there is no content]:P*(φ1)ϵX1,…,P*(φk)ϵXk}⟩.








This application of objective Bayesian epistemology to inductive logic is an example in which [image: there is no content][image: there is no content] is generated by constraints involving only sentences of some finite sublanguage [image: there is no content]n. We will be particularly interested in the case where φ1, …, φk are quantifier-free sentences, i.e., sentences of [image: there is no content]n∄ for some n.

Let [image: there is no content][image: there is no content]n∄ be the set of probability functions on [image: there is no content]n∄, and let



[image: there is no content]n:={Pn∈[image: there is no content][image: there is no content]n∄:Pn=P⇂n,P∈[image: there is no content][image: there is no content]}








where P⇂n is the restriction of P to S[image: there is no content]n∄. Note that,


[image: there is no content]








for all θ∈S[image: there is no content]n∄.
To ease the reading we also let [image: there is no content]n:={Pn∈[image: there is no content][image: there is no content]n∄}.

Definition 5 (Finitely generated evidence set).[image: there is no content][image: there is no content]is finitely generated if it takes the form[image: there is no content][image: there is no content]={P∈[image: there is no content][image: there is no content]:P⇂n∈[image: there is no content]n}for some n ∈ ℕ, where[image: there is no content]n⊆[image: there is no content][image: there is no content]n∄. Thus, [image: there is no content][image: there is no content]is generated by constraints involving only someφ1,φ2,…ϵS[image: there is no content]n∄and no other sentences.

From now on, for finitely generated [image: there is no content][image: there is no content], the letter K is used to denote the smallest number n such that [image: there is no content][image: there is no content] is generated by constraints on [image: there is no content]n∄.

Note that an evidence set [image: there is no content][image: there is no content] which is not finitely generated may not be recapturable from {[image: there is no content]1,[image: there is no content]2,…}. For instance, for



[image: there is no content][image: there is no content]={P∈[image: there is no content][image: there is no content]:limn→∞P(∧i=1nUti)=0}








the following two facts hold simultaneously:

	[image: there is no content][image: there is no content]⊂[image: there is no content][image: there is no content]


	[image: there is no content]n⊂[image: there is no content]n for all n ∈ N.







4. Quantifier-Free Languages

We would like to develop an analogue of Theorem 2 for beliefs defined over the sentences of a predicate language: we would like to show that belief functions which minimise worst-case expected loss are probability functions in E that maximise entropy. The main difficulty in moving from the finite domain of propositions to countably many sentences of a predicate language is to ensure that worst-case expected loss is finite where possible, so that these losses can be compared and a belief function can be chosen that minimises worst-case expected loss. For this reason we proceed in two steps. First, in this section, we shall consider the case in which the predicate language has no quantifier symbol, i.e., [image: there is no content]=[image: there is no content]∄; comparing worst-case expected loss is more straightforward in this case. Then, in Section 5, we shall examine how far our approach can be extended to handle predicate languages with quantifiers.

First, in Section 4.1 we define the notion of a weighting function. This allows us to define and analyse the concept of entropy of a probability function on [image: there is no content]=[image: there is no content]∄ in Section 4.2. In Section 4.3 we introduce the idea of the loss profile of a belief function. Finally in Section 4.4 we show that, in various natural scenarios, the belief function that has the best loss profile is the probability function, from all those calibrated with evidence, that has maximal standard entropy.


4.1. Weighting Functions

Definition 6 (Weighting function). A weighting function on [image: there is no content]n, gn : Πn → ℝ≥0, maps partitions π ∈ Πn to non-negative real numbers. A weighting function on [image: there is no content], g[image: there is no content] : Π → ℝ≥0, is defined over partitions of propositions of all finite sublanguages. A weighting function on[image: there is no content]can be thought of as a family of weighting functions gn on[image: there is no content]n, where n ranges over the natural numbers. Given a fixed weighting functiong[image: there is no content]on[image: there is no content], we shall takegn[image: there is no content]:=g⇂Πnfor each n ∈ ℕ. A (general) weighting function g is taken to be defined over each predicate language[image: there is no content]=[image: there is no content]∄. Different languages[image: there is no content]=[image: there is no content]∄, [image: there is no content]′=[image: there is no content]′∄have different sets of relation symbols.

A weighting function g is atomic if for each [image: there is no content] and each n, gn depends only on the number of atomic propositions in [image: there is no content]n, not on the structure of those atomic propositions. Thus if [image: there is no content] and [image: there is no content]′ are such that [image: there is no content]n and [image: there is no content]′m have the same number of atomic propositions, then gm[image: there is no content]=gm[image: there is no content]′. In this paper we shall suppose that all weighting functions are atomic; hence there will be no need to superscript a weighting function on [image: there is no content] or [image: there is no content]n by the particular language [image: there is no content].

We call g inclusive, if and only if it attaches positive weight to each proposition, i.e., if and only if for all n and all F ⊆ Ωn it holds that



[image: there is no content]








As in Section 2, g is symmetric if for each n it is invariant under permutations of the states of [image: there is no content]n. It is refined if for each n it gives no less weight to a refinement π′ ∈ Πn of a partition π ∈ Πn than to π itself. For example, the partition weighting gΠ gives weight 1 to each partition, gΠ(π) = 1 for all π ∈ Π. The proposition weightingg[image: there is no content]Ω gives weight 1 to each partition of size 2 and weight 0 to all other partitions; this amounts to giving weight 1 to each proposition. The standard weighting gΩ gives weight 1 to the partition πn of n-states, for each n, and weight 0 to all other partitions. These weighting functions are all symmetric. The partition and proposition weightings are inclusive, but the standard weighting is not. The partition and standard weightings are refined, but the proposition weighting is not.

Definition 7 (Strongly refined weighting function). g is strongly refined if and only if it satisfies the following properties:


	g is refined: in each finite sublanguage, if partition π′ is a refinement of partition π, then g(π′) ≥ g(π).


	Each finite sublanguage receives the same total weight: for all n, [image: there is no content]is constant.


	A state partition on a richer language should not receive less weight than one one a less rich language: if m < n then g(πm) ≤ g(πn)


	Non-state-partitions receive finite total weight: the following limit exists (i.e., is finite),






[image: there is no content]








Throughout this paper we will be particularly interested in the following weighting functions:

Definition 8 (Regular weighting function). g is regular if it is atomic, inclusive, symmetric and strongly refined.



4.2. Entropy

Definition 9 (n-entropy). Given a weighting function g and n ∈ ℕ, we define the n-entropy Hgn:[image: there is no content][image: there is no content]→[0,∞]by:



[image: there is no content]



(5)




Recall that, for a probability function P (or indeed any belief function that respects logical equivalence) defined on sentences, °P is the function induced by P over the domain of propositions. Note that by our convention, −0 log 0 = 0 = −1 log 1. Thus, for all n ∈ ℕ,



[image: there is no content]








In calculating n-entropy we may thus ignore all partitions which contain Ωn.

Definition 10 (Standard entropy). For the standard weighting gΩwe denote the corresponding n-entropy by[image: there is no content]. We refer to[image: there is no content]as standard entropy (on Ln).[image: there is no content]is the well-known Shannon Entropy of the n-states of P :



[image: there is no content]








For a fixed weighting function g, we say that P∈[image: there is no content][image: there is no content] has greater entropy than Q∈[image: there is no content][image: there is no content], written P ≫ Q, if the n-entropy of P eventually dominates that of Q, i.e., if there is some N ∈ ℕ such that for all n ≥ N, [image: there is no content].

This relation ≫ for comparing entropy is preferable to an alternative notion posed in terms of the limiting behaviour of the n-entropy of P and Q, which says that P has greater entropy than Q just when [image: there is no content]. This is because the limiting behaviour is not fine-grained enough to distinguish greater from lesser entropy: n-entropy will often tend to infinity for both P and Q, and, even where the limiting n-entropy of P and Q are both finite, these limits may be equal even though the entropy of P is intuitively greater than that of Q, insofar as the n-entropy of P eventually dominates that of Q. See Williamson [1] (§5.5) for further discussion of these comparative notions of entropy.

We will be particularly interested in the probability functions in [ [image: there is no content][image: there is no content]] with maximal entropy:



maxent[image: there is no content][image: there is no content]:={P∈[[image: there is no content][image: there is no content]]:there is noQ∈[[image: there is no content][image: there is no content]]such thatQ≫P}.








We shall also consider entropy maximisers on finite sublanguages. We shall use the notation:



[image: there is no content]n†:=argsupP∈[image: there is no content]nHgn(P).








(The members of this set are defined only on the sentences of [image: there is no content]n, not on the sentences of the language [image: there is no content] as a whole.) Note that for convex [image: there is no content][image: there is no content], [image: there is no content]n is convex for all n ∈ ℕ and that [image: there is no content] is a strictly concave function on [image: there is no content]n for inclusive g. If g is inclusive, then [image: there is no content] is strictly concave on [image: there is no content]. Hence [image: there is no content] contains a unique element, which we will denote by [image: there is no content].

Let us consider the set of limit points of the entropy maximisers on finite sublanguages:

Definition 11 (Entropy limit). A probability function is a limit point of the entropy maximisers on finite sublanguages if it is arbitrarily close to infinitely many such maximisers. We denote the set of such limit points by:



[image: there is no content]†:={P∈[image: there is no content][image: there is no content]:∀ϵ>0,∃infiniteI⊆[image: there is no content],∀n∈I,∀φ∈S[image: there is no content]n,|P(φ)−Pn†(φ)|<ϵ}.








Whenever ℙ† consists only of a single function we shall denote that function by ℙ† and refer to ℙ† as the entropy limit.

One important desideratum for a procedure for choosing a rational belief function, particularly in the context of inductive logic, is language invariance. We shall consider two notions of language invariance: the following notion defined in terms of finite sublanguages, and a second form of language invariance, introduced in Definition 23, which we term infinite-language invariance.

Definition 12 (Finite-language invariant weighting function). A weighting function g : Π → ℝ≥0is finite-language invariant, if and only if the following holds: for all[image: there is no content][image: there is no content]finitely generated by constraints on[image: there is no content]K, if[image: there is no content]nand[image: there is no content]mare such that[image: there is no content]K⊆[image: there is no content]n⊆[image: there is no content]m, then for allQ∈arg supP∈[image: there is no content][image: there is no content]Hgn(P)there exists someR∈argsupP∈[image: there is no content][image: there is no content]Hgm(P)such that Q⇂n =R⇂n


4.2.1. The Standard Entropy Limit

Standard entropy, i.e., entropy with respect to the standard weighting gΩ, is the subject of a substantial literature. We here collect the features of standard entropy most relevant for our purposes.

Firstly, gΩ is finite-language invariant; see, e.g., [7]. If [image: there is no content][image: there is no content] is finitely generated and g = gΩ, then [image: there is no content] contains a unique element. Furthermore, there exists a unique function P ∈ [ [image: there is no content][image: there is no content]] such that for all n ≥ K P⇂n ∈ [image: there is no content] holds. This function P is the entropy limit with respect to the standard weighting gΩ; it will be called the standard entropy limit and denoted by [image: there is no content]. Henceforth we use [image: there is no content] to denote the standard entropy limit on [image: there is no content], rather than on Ω as in Section 2.

Definition 13 (Open-minded belief function). We say that a belief functionB∈[image: there is no content][image: there is no content]is open-minded on [image: there is no content]′⊆[image: there is no content], if and only if for allφ∈S[image: there is no content]′for which there exists someP∈[[image: there is no content][image: there is no content]]such that P (φ) > 0 it holds that B(φ) > 0. For[image: there is no content]′=[image: there is no content]we say that the belief functionB∈[image: there is no content][image: there is no content]is open-minded.

The following proposition lists further important properties of [image: there is no content] which we shall make frequent use of in the following two properties—see [7] (p. 95) for a proof of the first property.

Proposition 5.[image: there is no content]satisfies the following properties:


	[image: there is no content]is open-minded.


	For a finitely generated[image: there is no content][image: there is no content], for all n ≥ K and all ν ∈ Ωn, ω ∈ ΩK with ν ω it holds that[image: there is no content].




The second property will follow from Proposition 9 and from the fact that gΩ is language invariant. Let ν be a consistent conjunction of pairwise different literals such that ν ⊨ ω for some n-state ω with n ≥ K. Denoting by |ν|, |ω| the number of literals in ν, respectively, ω, it follows from the second property in Proposition 5 that [image: there is no content].



4.2.2. General Entropies

The question remains as to how the functions on [image: there is no content] with maximal entropy, i.e., the members of maxent [image: there is no content][image: there is no content], relate to the entropy maximisers [image: there is no content] on the finite sublanguages [image: there is no content]n. We shall explore this question here.

Proposition 6.[image: there is no content]†⊆[[image: there is no content][image: there is no content]].

Proof. Let P † ∈ ℙ†. Thus, for all sentences φ∈S[image: there is no content], P†(φ) is the limit of a sequence ([image: there is no content])n∈I such that Pn†∈[[image: there is no content]n] and I ⊆ ℕ is infinite. Since [ [image: there is no content][image: there is no content]] and all the [ [image: there is no content]n] are closed, P † ∈ [ [image: there is no content][image: there is no content]].

Of particular interest is the most equivocal probability function of [image: there is no content][image: there is no content], which is called the equivocator and denoted by P=. P= is uniquely defined by the requirement that for all n ∈ ℕ it assigns all n-states ω ∈ Ωn the same probability, [image: there is no content] The restriction of P= to ℙn is denoted by P= ⇂n.

In certain cases ℙ† will only contain a single limit point ℙ†.

Definition 14. [4] (Definition 16, p. 3573.) A weighting function gn on[image: there is no content]nis called equivocator-preserving, if and only if



[image: there is no content]n†={Q⇂n:Q∈argsupP∈[image: there is no content][image: there is no content]Hgn(P)}={P=⇂n}.








g is called equivocator-preserving, if and only if gn is equivocator-preserving for all n ∈ ℕ.
Proposition 7. If P= ∈ [ [image: there is no content][image: there is no content]] and if g is symmetric and inclusive, then ℙ† = {P=}.

Proof. By Landes and Williamson [4] (Corollary 6, p. 3574) we have



argsupP∈[image: there is no content][image: there is no content]Hgn(P)={P∈[image: there is no content][image: there is no content]:P⇂n=P=⇂n}.








It follows that



limn→∞argsupP∈[image: there is no content][image: there is no content]Hgn(P)={P=}








and hence ℙ† = {P=}. □
So, if g is symmetric and inclusive, then g is equivocator-preserving. In Appendix B we shall show that there exist non-symmetric g which are equivocator-preserving.

Definition 15 (State-inclusive weighting function). Given[image: there is no content], we call a weighting function g : Π → [0, 1] state-inclusive on [image: there is no content]n, if and only if for each state ω ∈ Ωn there exists a π ∈ Πn such that {ω} ∈ π and g(π) > 0. A weighting function g : Π → [0, 1] is state-inclusive, if and only if it is state-inclusive on each[image: there is no content]n. It is eventually state-inclusive, if and only if there exists a J ∈ ℕ such that for all n ≥ J, g is state-inclusive on[image: there is no content]n.

For example, if g(πn) > 0 for all n ∈ ℕ, then g is state-inclusive. Moreover, inclusive implies state-inclusive.

Lemma 1. If g is state-inclusive on[image: there is no content]n, then[image: there is no content]is strictly concave on ℙn.

Proof. Let P, Q ∈ ℙn be different and λ ∈ (0, 1). Since for all π ∈ Πn we have [image: there is no content] we find using the strict concavity of −x · log x on [0, 1]



Hgn(λP+(1−λ)Q)=∑π∈Πn−g(π)∑F∈π(λ°P(F)+(1−λ)°Q(F))⋅log(λ°P(F)+(1−λ)°Q(F))≥∑π∈Πn−g(π)∑F∈π(λ°P(F)log(λ°P(F)))+((1−λ)°Q(F)log((1−λ)°Q(F)))=Hgn(λP)+Hgn((1−λ)Q).








The inequality is strict, if and only if there exists some π ∈ Πn with g(π) > 0 such that there is some F ∈ π with °P (F ) ≠ °Q(F). Since P, Q are different probability functions, there exists some ω ∈ Ωn such that P (ω) ≠ Q(ω). Since g is state-inclusive, g(π) > 0 for some π ∈ Πn with {ω} ∈ π. Hence, the inequality is strict. □

Proposition 8. If[image: there is no content][image: there is no content]is finitely generated, and g is eventually state-inclusive and language invariant, then ℙ† consists of a single probability function ℙ† and for allφ∈S[image: there is no content]it holds thatlimn→∞Pn†(φ)=P†(φ).

Proof. Recall that [image: there is no content][image: there is no content] is expressible by constraints in [image: there is no content]K and let J as in Definition 15. Let n ≥ max{J, K}.

By the above Lemma 1, [image: there is no content] is strictly concave on ℙn. Since [image: there is no content]n is convex, [image: there is no content] contains a single element. Hence, Q, R ∈ argsupP∈[image: there is no content][image: there is no content]Hgn(P) agree on S[image: there is no content]n.

Since g is language invariant, we have argsupP∈[image: there is no content][image: there is no content]Hgm(P)⊆argsupP∈[image: there is no content][image: there is no content]Hgl(P) for all n ≤ l ≤ m.

For all φ∈S[image: there is no content], there exists an s ∈ ℕ such that φ∈S[image: there is no content]s. Hence, for l, m ≥ max{J, K,s} it holds that for RargsupP∈[image: there is no content][image: there is no content]Hgm(P) and Q∈argsupP∈[image: there is no content][image: there is no content]Hgl(P) that R(φ) = Q(φ). □

For instance, standard entropy [4] (Equation 80), the substate weighting and other examples generated by Landes and Williamson [4] (Lemma 8) are eventually state-inclusive and language invariant. Note that these weighting functions are not inclusive.

Definition 16. We say that Hg is strictly concave, if and only if for all n ∈ ℕ, [image: there is no content]is strictly concave on ℙn.

Proposition 9 (Equivocation beyond[image: there is no content]n). Let[image: there is no content][image: there is no content]be finitely generated and let g be symmetric. If Hg is strictly concave, then for all n ≥ K and all ν, μ ∈ Ωn such that there exists an ω ∈ ΩK with ν ⊨ ω and μ ⊨ ω it holds that



[image: there is no content]








for all[image: there is no content].
We call such ν, μ ∈ Ωn extensions of ω ∈ ΩK and say that [image: there is no content]equivocates beyond[image: there is no content]K. In particular, [image: there is no content] equivocates beyond [image: there is no content]Kup to [image: there is no content]n.

Proof. Let n > K and let P ∈ [ [image: there is no content][image: there is no content]] be such that there exist ν, μ ∈ Ωn with P (ν) ≠ P(μ) such that there exists an ω ∈ ΩK with ν ⊨ ω and μ ⊨ ω. Assume for contradiction that P∈argsupR∈[image: there is no content][image: there is no content]Hgn(R).

Now define a probability function Q∈[image: there is no content][image: there is no content] by first specifying Q on the n-states. Let



[image: there is no content]








For a λ ∈ Ωr with r ≥ n we let [image: there is no content] where ξ ∈ Ωr is the unique r-state such that λ ⊨ ξ.

By construction, Q and P agree on S[image: there is no content]K. Since [image: there is no content][image: there is no content] is finitely generated, it follows that Q ∈ [ [image: there is no content][image: there is no content]]. Furthermore, Q⇂n can be obtained from P⇂n by a renaming of n-states and it holds that Q⇂n ≠ P⇂n. Since gn is symmetric it holds that [image: there is no content]. Since [ [image: there is no content][image: there is no content]] is convex and [image: there is no content] is strictly concave, neither P⇂n nor Q⇂n can maximise [image: there is no content] over [ [image: there is no content]n].

This contradicts P maximising [image: there is no content] over [ [image: there is no content]n].

Corollary 1. Let[image: there is no content][image: there is no content]be finitely generated. If[image: there is no content]is strictly concave on ℙn for n ≥ K and if g is symmetric, then for n ≥ K the following maximisation problem



maximise:[image: there is no content]subjectto:P∈[[image: there is no content][image: there is no content]]








can be understood as an optimisation problem in the variables P (ω) with ω ∈ ΩK. In particular, the number of variables does not grow as n tends to infinity.
Proof. Follows immediately from the above proposition by noting that Pn†∈argsupP∈[image: there is no content][image: there is no content]Hgn(P) equivocates beyond [image: there is no content]K up to [image: there is no content]n.

This corollary shows that in order to compute [image: there is no content] for n ≥ K one needs to solve an optimisation problem on ΩK. If g is not language invariant, then, in general, the objective function of the optimisation problem changes as n changes. So, in general, ( [image: there is no content])⇂K varies with n.

Corollary 2. Under the assumptions of Proposition 9 it holds that for F ⊆ Ωn and ν, μ ∈ Ωn, °[image: there is no content](F) =°[image: there is no content](Fν,μ), where Fν,μ is the result we obtain by replacing ν by μ and vice versa in F.

Proof. For an η ∈ Ωn denote by ωη ∈ ΩK the unique K-state such that η ⊨ ωη. Now simply note that by Proposition 9



[image: there is no content]








Corollary 3. Let[image: there is no content][image: there is no content]be finitely generated. For all n ≥ K and allP∈[image: there is no content][image: there is no content]equivocating beyond[image: there is no content]Kup to[image: there is no content]nit holds for all K ≤ k ≤ n − 1 that



[image: there is no content]








If g is symmetric and Hg is strictly concave, then



[image: there is no content]








Proof. For ν ∈ Ωk+1 let ων ∈ Ωk be the unique k state such that ν ⊨ ων. For K ≤ k ≤ n − 1 we now find for a P∈[image: there is no content][image: there is no content] equivocating beyond [image: there is no content]K up to [image: there is no content]n



HΩk+1(P)=−∑ν∈Ωk+1P(ν)logP(ν)=−∑ν∈Ωk+1P(ν)log(P(ων)⋅|Ωk||Ωk+1|)=−log|Ωk||Ωk+1|−∑ν∈Ωk+1P(ν)logP(ων)=−log|Ωk||Ωk+1|−∑ν∈Ωk+1∑ν∈Ωk+1ν⊨ωP(ν)logP(ων)=−log|Ωk||Ωk+1|−∑ω∈ΩklogP(ω)⋅(∑ν∈Ωk+1ν⊨ωP(ν))=−log|Ωk||Ωk+1|−∑ω∈ΩkP(ω)logP(ω)⋅=−log|Ωk||Ωk+1|+HΩk(P).








The second part of the proof follows directly by observing that [image: there is no content] and [image: there is no content] equivocate beyond [image: there is no content]K up to [image: there is no content]n by Proposition 9. □

Corollary 4. Let[image: there is no content][image: there is no content]be finitely generated. For all n ≥ K and allP∈[image: there is no content][image: there is no content]not equivocating beyond[image: there is no content]Kup to[image: there is no content]nit holds that[image: there is no content].

Proof. There has to exist at least one ξ ∈ ΩK such that there exist ν, λ ∈ Ωn with ν ⊨ ξ and λ ⊨ ξ such that P (ν) ≠ P (λ). Since P is a probability function it holds that [image: there is no content]. We thus find sing the log-sum inequality (see, e.g., Theorem 2.7.1 in [10])



−P(ξ)log(|ΩK||Ωn|)−P(ξ)logP(ξ)=−P(ξ)log(|ΩK||Ωn|P(ξ))=−∑ν∈Ωnν⊨ξ(|ΩK||Ωn|P(ξ))log(|ΩK||Ωn|P(ξ))>−∑ν∈Ωnν⊨ξP(ν)logP(ν).








If ξ ∈ ΩK is such that for all ν, λ ∈ Ωn with ν⊨ ξ and λ⊨ ξ it holds that P (ν) = P (λ), then the above calculation holds with the exception that the inequality is in fact an equality.

We hence find by summing over all ω ∈ ΩK



HΩK(P)−log(|ΩK||Ωn|)=∑ω∈ΩK−P(ω)(log(|ΩK||Ωn|)+logP(ω))>−∑ω∈ΩK∑ν∈Ωnν⊨ξ−P(ν)logP(ν)=∑ν∈Ωnν⊨ξ−P(ν)logP(ν).=HΩn(P).








Corollary 5. Let EL be finitely generated. If g is symmetric and if for all n ≥ K[image: there is no content]is strictly concave on ℙn, then



[image: there is no content]








Proof. By Corollary 1, Pn†∈[[image: there is no content]n] is uniquely determined by [image: there is no content] for ω ∈ ΩK. That is, we can understand ([image: there is no content])[image: there is no content] as sequence taking values in [0,1]|ΩK|⊂ℝ|ΩK| and [0,1]|ΩK| is compact. Hence, the sequence (([image: there is no content])⇂K)[image: there is no content] has point of accumulation, Q, with Q ∈ [ [image: there is no content][image: there is no content]]. Let I ⊆ ℕ be infinite such that limi∈I,i→∞Pni†(ω)=Q(ω) for all ω ∈ ΩK.

Recall that for n > K that [image: there is no content] equivocates under [image: there is no content]K up to [image: there is no content]n. We now extend Q to a probability function in [ [image: there is no content][image: there is no content]] by defining it on the n-states ν ∈ Ωn for n > K as follows: [image: there is no content]. Hence, Q equivocates beyond [image: there is no content]K.

Consider some φ∈S[image: there is no content]. It follows that there is some r ≥ K such that φ∈S[image: there is no content]r. For ν ∈ Ωr denote by ων the unique element of ΩK such that ν ⊨ ων.

We thus find



limi→∞i∈IPni†(φ)=limi→∞i∈I∑ν∈Ωrν⊨φPni†(ν)=∑ν∈Ωrν⊨φlimi→∞i∈IPni†(ν)=∑ν∈Ωrν⊨φ|ΩK||Ωn|⋅limi→∞i∈IPni†(ων)=∑ν∈Ωrν⊨φ|ΩK||Ωn|⋅Q(ων)=∑ν∈Ωrν⊨φQ(ν)=Q(φ).








We now turn our attention to the calibrated functions with maximal entropy, maxent [image: there is no content][image: there is no content]. Our aim is to show that maxent [image: there is no content][image: there is no content]=[image: there is no content]†={PΩ†} holds for regular g.

Lemma 2. If g is regular, then



[image: there is no content]








Proof. Since g is total it is in particular g defined for the language [image: there is no content]U which only contains a single relation symbol which is unary. When needed, we shall add a superscript U express that we consider [image: there is no content]U.

Now define a sequence (an)n∈ℕ by



[image: there is no content]








By the Cauchy condensation test [11] (p. 61, Theorem 3.27) for (not necessarily strictly) decreasing sequences we have that



[image: there is no content]



(6)




Since the series on the left converges by the assumption on finite weights, so does the right, and that implies that [image: there is no content].

For n ∈ ℕ let k ∈ ℕ be such that 2k ≤ n < 2k+1. Since an is (not necessarily strictly) decreasing [image: there is no content]. Hence,



[image: there is no content]








The right hand side converges to 0 by Cauchy’s condensation test (6). Thus,



0=limn→∞n⋅an=limn→∞n⋅log2(2)⋅an=limn→∞n⋅log2(2)⋅an=limn→∞log2(|ΩnU|)⋅an=limn→∞log(|ΩnU|)⋅an=limn→∞log(|ΩnU|)⋅∑π∈ΠnU\{πn}g(π)








Now if [image: there is no content] is some other language in our sense different from [image: there is no content]U, then for all n ∈ ℕ there exists an mn > n such that [image: there is no content]. This in turn implies the existence of a canonical bijections fn identifying Πn with [image: there is no content] which respect the structure of partitions.

Because g is atomic it follows that for all π ∈ Πn that g(π) = g(fn(π)) holds. Thus,



[image: there is no content]








We then observe that the sequence [image: there is no content] is a subsequence of [image: there is no content] Hence,



0=limn→∞log(|ΩmnU|)⋅∑π∈ΠmnU\{πmn}g(π)=limn→∞log(|Ωn|)⋅∑π∈Πn\{πn}g(π).








Lemma 3. If g is strongly refined and state-inclusive, then there exist 0 < a ≤ b < +∞ such that for all n ∈ ℕ, g(πn) ∈ [a, b].

Proof. For every ω ∈ Ω1 there exists some π ∈ Π1 which contains {ω} with g(π) > 0. π1 refines all these partitions (or π1 is that partition). Hence, g(π1) > 0.

Since state partitions on richer languages are assigned more weight it follows that g(πn) ≥ g(π1) > 0 for all n ∈ ℕ.

Trivially, [image: there is no content]. The latter is constant for all n. Hence, the sequence g(πn) is bounded from above by [image: there is no content].

We can thus choose a, b as follows a := g(π1) and [image: there is no content].

Following [4] (p. 3556) we define:

Definition 17 (Spectrum of π). The spectrum of a partition π is defined as the multi-set of sizes of the members of π. We write σ(π) to denote the spectrum of π.

In other words, if π′ can be obtained from π by permuting the states in the members of π, then σ(π) = σ(π′). If g is symmetric, then g(π) only depends on the spectrum of π.

Lemma 4. If g is symmetric, then for all n and all spectra s



P=∈argsupP∈[image: there is no content][image: there is no content]∑π∈Πnσ(π)=s−g(π)∑F∈π°P(F)log°P(F).








Proof. First note that [image: there is no content] is a concave function, since −x log x is concave function for x ∈ [0, 1].

If P, P′ ∈ [image: there is no content][image: there is no content] are such that one can be obtained from the other by a permutation of n-states, then for all spectra s



[image: there is no content]








Hence, for all fixed spectra s P= ⇂n lies inside the contour lines of the function [image: there is no content] in ℙn. It follows that



P=∈argsupP∈[image: there is no content][image: there is no content]∑π∈Πnσ(π)=s−g(π)∑F∈π°P(F)log°P(F).








Corollary 6. If g is symmetric and such that



[image: there is no content]








then for all P ∈ PL


[image: there is no content]








Proof. For a fixed spectrum s we have



supP∈[image: there is no content][image: there is no content]∑π∈Πnσ(π)=s−g(π)∑F∈π°P(F)log°P(F)=∑π∈Πnσ(π)=s−g(π)∑F∈π°P=(F)log°P=(F)=∑π∈Πnσ(π)=s−g(π)∑F∈π|F||Ωn|⋅log|F||Ωn|=∑π∈Πnσ(π)=s−g(π)|Ωn|∑F∈π|F|⋅(log|F|−log|Ωn|).








Thus,



|supP∈[image: there is no content][image: there is no content]∑σ(π)=sπ∈Πn−g(π)∑F∈π°P(F)log°P(F)|≤∑σ(π)=sπ∈Πng(π)|Ωn|∑F∈π|F|⋅log|Ωn|=∑σ(π)=sπ∈Πng(π)⋅log|Ωn|.








Summing over all spectra now yields for all P∈[image: there is no content][image: there is no content]



∑π≠πnπ∈Πn−g(π)∑F∈π°P(F)log°P(F)≤log|Ωn|∑π≠πnπ∈Πng(π).








The claimed result follows.

In particular, if g is regular then the above Corollary applies, by Lemma 2.

Let us consider the application of objective Bayesianism to inductive logic (Section 3.3). It turns out that if g is regular and [image: there is no content][image: there is no content] is finitely generated then the functions in [[image: there is no content][image: there is no content]] with maximal entropy coincide with the entropy limits (Definition 11), and moreover there is a unique such function, the standard entropy limit:

Theorem 3. Let g be symmetric, atomic, state-inclusive and strongly refined, and[image: there is no content][image: there is no content]be finitely generated. Then



maxent[image: there is no content][image: there is no content]=[image: there is no content]†={PΩ†}.



(7)




Note that if g is also inclusive, then g is regular.

Proof. By Lemma 3 there exist 0 < a ≤ b < +∞ such that g(πn) ∈ [a, b] for all n ∈ N and by Corollary 6 the combined weight given to all other partitions on Πn tends to zero, as n increases, fast enough that, for all P∈[image: there is no content][image: there is no content],



limn→∞∑π≠πnπ∈Πn−g(π)∑F∈π°P(F)log°P(F)=0.








For Q∈[[image: there is no content][image: there is no content]]\{PΩ†}there exists a minimal [image: there is no content]with n ≥ K such that ([image: there is no content])⇂n≠Q⇂n. Since [image: there is no content] is strictly convex on [image: there is no content]n and [image: there is no content] maximises [image: there is no content] over [[image: there is no content]n] it holds that HΩn([image: there is no content])>HΩn(Q). Using Corollary 3 and Corollary 4 we obtain HΩr([image: there is no content])−HΩr(Q)≥HΩk([image: there is no content])−HΩk(Q) for r ≥ n. Thus,



HΩr([image: there is no content])−HΩr(Q)=−g(πr)HΩk([image: there is no content])+∑π≠πnπ∈Πn−g(π)∑F∈π°PΩ†(F)log°PΩ†(F)+g(πr)HΩk(Q)+∑π≠πnπ∈Πn−g(π)∑F∈π°Q(F)log°Q(F)≥−g(πr)(HΩr([image: there is no content])−HΩr(Q))+∑π≠πnπ∈Πn−g(π)∑F∈π°PΩ†(F)log°PΩ†(F)+∑π≠πnπ∈Πng(π)∑F∈π°Q(F)log°Q(F).








For large enough r the sums over the π ≠ πr become negligible. Since g(πr) is bounded there has to exist some R ∈ ℕ with R ≥ max{K, n} such that for all r ≥ R it holds that



[image: there is no content]








Hence, for all large enough r it holds that [image: there is no content].

Thus, maxent E[image: there is no content]={PΩ†}.

For the second part of the proof we show that for all r ∈ N and all F ⊆ Ωr it holds that



[image: there is no content]



(8)




Observe that for all n ∈ ℕ



[image: there is no content]








The first sum tends to zero as n goes to infinity by our assumptions on g.

For the second sum observe that for all ϵ > 0 there exists an N ∈ ℕ such that for all n ≥ max{N, K} and all P ∈ [ E[image: there is no content]] it holds that [image: there is no content]< ϵ. Hence, ϵ > |supP∈[image: there is no content][image: there is no content]1g(πn)Hgn(P)−supP∈[image: there is no content][image: there is no content]HΩn(P)|=|1g(πn)Hgn(Pn†)−HΩn(PΩ†)|. So,



[image: there is no content]








For all n ≥ K, [image: there is no content] and [image: there is no content] equivocate under [image: there is no content]K up to [image: there is no content]n (Proposition 9). Hence, it holds that [image: there is no content] (Corollary 3). So,



[image: there is no content]








[image: there is no content]is a strictly concave and continuous function on ℙK. Hence, limn→∞[image: there is no content](ω) = [image: there is no content](ω) for all ω ∈ ΩK. So, limn→( [image: there is no content])⇂K = ( [image: there is no content])⇂K.

For an arbitrary n ≥ K and an F ⊆ Ωn we find using that [image: there is no content] equivocates beyond [image: there is no content]K



limn→∞°Pk†(F)=limn→∞∑v∈Ωnv∈FPk†(v)=limn→∞∑v∈Ωnv∈F|ΩK||Ωn|⋅Pk†(ωv)=∑v∈Ωnv∈F|ΩK||Ωn|⋅limn→∞Pk†(ωv)=∑v∈Ωnv∈F|ΩK||Ωn|⋅PΩ†(ωv)=∑v∈Ωnv∈FPΩ†(ωv)=°PΩ†(F).








The result for F ⊆ Ωr with r < K follows similarly. □




4.3. Loss and Expected Loss

We shall now analyse the notion of the loss incurred by an agent with belief function B ∈ [image: there is no content][image: there is no content]. In Section Section 5 we shall be interested how degrees of beliefs in quantified sentences affect losses. The following definition, axioms L1–4, Theorem 4 and Proposition 12 apply within our current, quantifier-free framework, i.e., [image: there is no content] = [image: there is no content]∄but they also apply to quantified sentences, i.e., [image: there is no content] = [image: there is no content]∃.

Definition 18 (Independent Sublanguages). Let B ∈ [image: there is no content][image: there is no content]be a fixed belief function such that B(τ) = 1 for any tautology τ, and [image: there is no content] = [image: there is no content]1 ∪ [image: there is no content]2where [image: there is no content]1and [image: there is no content]2are disjoint: [image: there is no content]1and [image: there is no content]2contain the same constants, they do not have a relation symbol in common and the union of the relation symbols in [image: there is no content]1and [image: there is no content]2equals {U1,…, Us}, the set of relation symbols in [image: there is no content]. We say that [image: there is no content]1and [image: there is no content]2are independent sublanguages, written [image: there is no content]1⫫B[image: there is no content]2, if and only if B(ϕ1 ˄ ϕ2) = B(ϕ1) · B(ϕ2) for all ϕ1 ∈ S[image: there is no content]1and ϕ2 ∈ S[image: there is no content]2. Let B⇂[image: there is no content]1(ϕ1) := B(ϕ1), B⇂[image: there is no content]2 (ϕ2) := B(ϕ2).

By analogy with the line of argument of Section 2, we shall suppose that a default loss function L : S[image: there is no content]×[image: there is no content][image: there is no content]→ (− ∞, ∞] satisfies the following requirements. Here L(φ, B) is to be interpreted as the loss specific to φ turning out to be true, when one adopts belief function B:


	L1. L(φ, B) = 0, if B(φ) = 1.


	L2. L(φ, B) strictly increases as B(φ) decreases from 1 towards 0.


	L3. L(φ, B) only depends on B(φ).


	L4. Losses are additive when the language is composed of independent sublanguages: if [image: there is no content] = [image: there is no content]1 ∪ [image: there is no content]2 for [image: there is no content]1⫫B[image: there is no content]2, then L(ϕ1 ˄ ϕ2, B) = L1(ϕ1, B⇂[image: there is no content]1) + L2(ϕ2, B⇂[image: there is no content]2), where L1, L2 are loss functions defined on [image: there is no content]1, [image: there is no content]2 respectively.




Theorem 4. If a loss function L on S[image: there is no content]×[image: there is no content][image: there is no content]satisfies L1–4, then L(φ, B) = −k log B(φ), where the constant k > 0 does not depend on the language [image: there is no content].

Proof. The proof is exactly analogous to that of Landes and Williamson [4] (Theorem 4), which gives the result in the case in which [image: there is no content] is a finite propositional language. □

Since multiplication by a constant is equivalent to change of base, we can take log to be the natural logarithm. Since we will be interested in the belief functions that minimise loss, rather than in the absolute value of any particular losses, we can take k = 1 without loss of generality. Theorem 4 thus allows us to focus on the logarithmic loss function:



[image: there is no content]








Next we define our notion of expected loss. The expectation is taken with respect to a probability function P, and we consider the expectation taken over each partition of propositions. Each partition is weighted by the given weighting function g. Attention is restricted to inclusive weighting functions, so that each belief is evaluated; if the weighting function were not inclusive then degrees of belief in some propositions would fail to contribute to the expectation.

Definition 19 (n-representation). A sentence θ ∈ S[image: there is no content]n n-represents a proposition F ⊆ Ωn, if and only if F = {ω ∈ Ωn: ω ⊨ θ}. Let [image: there is no content] ⊆ [image: there is no content]Ωn be a set of pairwise distinct propositions. We say that Θ ⊆ S[image: there is no content]n is a set of n-representatives of [image: there is no content], if and only if each sentence θ ∈ Θ n-represents a unique proposition in [image: there is no content]and each proposition in [image: there is no content]is n-represented by a unique sentence θ ∈ Θ.

A set ρ of n-representatives of[image: there is no content]Ωn will be called an n-representation. We shall use ρF to denote the sentence in ρ which n-represents F. We denote by ϱn the set of all n-representations.

Note that if belief function B respects logical equivalence, then for all n ∈ ℕ, all F ⊆ Ωn and all l-representations ρ with l ≥ n it holds that B(ρF ) = °B(F ). Otherwise there exist an n ∈ ℕ a proposition F ⊆ Ωn and n-representations ρ, ρ′, such that B(ρF) ≠ B(ρ′F).

Definition 20 (n-score). Given a loss function L, an inclusive weighting function g: Π → ℝ≥0, n ∈ ℕ, and an n-representation ρ ∈ ϱn we define the representation-relative n-score [image: there is no content]: ℙ[image: there is no content]×[image: there is no content][image: there is no content] → [−∞, ∞] by:



[image: there is no content]








Define the (representation-independent) n-score SgL,n:[image: there is no content][image: there is no content]×[image: there is no content][image: there is no content]→[−∞,∞]by



[image: there is no content]








(As a technical convenience, we shall consider loss functions and n-scores to be defined more generally, taking arguments P, B: S[image: there is no content] → [0, 1], although we will primarily be concerned with the case above where P is a probability function and B is a belief function.)

In the light of Theorem 4, we will focus exclusively on the logarithmic loss function in this paper:



[image: there is no content]








For P ∈ ℙ[image: there is no content] we have that P (ρF) = P (ρ′F ) for all ρ, ρ′ ∈ ϱn, since P respects logical equivalence. Hence for P, Q ∈ ℙ[image: there is no content] we have



Sgn(P,Q)=supρ∈ϱnSg,ρn(P,Q)=−∑π∈∏ng(π)∑F∈π°P(F)log°Q(F)=Sg(°P,°Q),








where Sg is the propositional scoring rule introduced in Section 2, in the case Ω = Ωn. There are also connections with g-entropy [image: there is no content], defined in (5), and the propositional notion of entropy Hg, defined in Section 2:


[image: there is no content]








If g = gΩ, we call the resulting function the standard logarithmic n-score:



SΩn(P,B)=supρ∈ϱn−∑ω∈ΩnP(ρ{ω})logB(ρ{ω})=−∑ω∈ΩnP(ω)P{ω}logB(ω),








where the latter equality applies if B respects logical equivalence.
The question arises as to how [image: there is no content], the notion of expected loss defined on a finite sublanguage [image: there is no content]n, relates to loss on [image: there is no content], the language as a whole. One particularly natural suggestion is that B has a better overall loss profile than B′ if the latter’s n-scores eventually dominate those of B or if the worst-case n-score incurred by B′ is eventually greater than that of B:


	If B has lower worst-case expected loss than B′ for all sufficiently large n, then B has a better loss profile than B′.


	If for all P ∈ ℙ[image: there is no content], B has an expected loss which is less than or equal than that of B′, and if for some P ∈ [ [image: there is no content][image: there is no content]], B has strictly lower expected loss than B′ for sufficiently large n, then B has a better loss profile than B′.




We make this precise as follows:

Definition 21 (Better loss profile). B has a better loss profile than B′ if and only if:


	There exists some N ∈ ℕ such that for all n ≥ N, supP∈[image: there is no content][image: there is no content]Sgn (P, B) < supP∈[image: there is no content][image: there is no content]Sgn (P, B′), or


	[image: there is no content] (P, B) ≤ [image: there is no content] (P, B′) < +∞ for all P ∈ ℙ[image: there is no content]and all n ∈ ℕ, and there exist at least one function Q ∈ [ [image: there is no content][image: there is no content]] and some NQ ∈ ℕ such that[image: there is no content] (Q, B) < [image: there is no content] (Q, B′) for all n ≥ NQ.




We write B ≺ B′ to denote that B has better loss profile than B′. We will be interested in those belief functions that have the best loss profile, i.e., the minimal elements of ≺, and define:



minloss[image: there is no content][image: there is no content]:={B∈[image: there is no content][image: there is no content]:thereisnoB′∈[image: there is no content][image: there is no content]suchthatB′≺B}.



(9)




Proposition 10 (Properties of ≺). The binary relation ≺ is asymmetric, partial, irreflexive and transitive.

Proof. Note that if for all P ∈ ℙ[image: there is no content] and all n ∈ ℕ it holds that [image: there is no content] (P, B) ≤ [image: there is no content] (P, B′), then supP∈[image: there is no content][image: there is no content]Sgn (P, B) ≤ supP∈[image: there is no content][image: there is no content]Sgn (P, B′) follows trivially. Hence, conditions 1 and 2 of Definition 21 are consistent, in the sense that the induced relation ≺ is asymmetric.

There exist different B, B′ ∈ [image: there is no content][image: there is no content] which are not open-minded on [image: there is no content]1 and thus have infinite loss on [image: there is no content]n for all n ≥ 1 (cf., Proposition 13). For example, if B(τ′) = B′(τ′) = 0 where τ′ is a tautology in S[image: there is no content]1, then B and B′ have infinite expected loss for all n ∈ ℕ and all P ∈ ℙ[image: there is no content]. Thus, ≺ is only partial.

That ≺ is irreflexive follows directly from the definition.

Now consider B1, B2, B3 ∈ [image: there is no content][image: there is no content] such that B1 ≺ B2 ≺ B3. We will consider cases to prove that B1 ≺ B3.

If there exist N1,2, N2,3 such that



supP∈[image: there is no content][image: there is no content]Sgn(P,B1)<supP∈[image: there is no content][image: there is no content]Sgn(P,B2)foralln≥N1,2supP∈[image: there is no content][image: there is no content]Sgn(P,B2)<supP∈[image: there is no content][image: there is no content]Sgn(P,B3)foralln≥N2,3,








then


supP∈[image: there is no content][image: there is no content]Sgn(P,B1)<supP∈[image: there is no content][image: there is no content]Sgn(P,B3)foralln≥max{N1,2,N2,3}.








Thus, B1 ≺ B3.

Now assume that there exists a number N1,2 such that supP∈[image: there is no content][image: there is no content]Sgn (P, B1) < supP∈[image: there is no content][image: there is no content]Sgn (P, B2) for all n ≥ N1,2 and assume that the pair (B2, B3) satisfies the second condition of Definition 21. Then, supP∈[image: there is no content][image: there is no content]Sgn (P, B1) < supP∈[image: there is no content][image: there is no content]Sgn (P, B3) for all n ≥ N1,2. Thus, B1 ≺ B3.

The same argument shows that if the pair (B1, B2) satisfies the second condition of Definition 21 and the pair (B2, B3) satisfies the first condition, then B1 ≺ B3.

Finally, suppose that the pairs (B1, B2) and (B2, B3) both satisfy the second condition of Definition 21. Then for all P ∈ ℙ[image: there is no content] and all n ∈ ℕ it holds that [image: there is no content] (P, B1) ≤ [image: there is no content] (P, B3). Furthermore, there has to exist a Q ∈ [ [image: there is no content][image: there is no content]] and an NQ ∈ ℕ such that for all n ≥ NQ it holds that [image: there is no content] (Q, B1) < [image: there is no content] (Q, B2). But then [image: there is no content] (Q, B1) < [image: there is no content] (Q, B3) for all n ≥ NQ. Thus, B1 ≺ B3.

Since ≺ is irreflexive and transitive it cannot contain a cycle.

One main theme of the rest of this paper will be the search for belief functions with the best loss profile. Since the loss function L we are interested in is − log B(φ), and these values monotonically decrease as B(φ) increases from 0 to 1, it follows that, ceteris paribus, the belief functions with better loss profiles assign greater degrees of belief to sentences.

It might appear then that the normalisation (see Definition 1) would directly imply that no B ∈ [image: there is no content][image: there is no content]\ℙ[image: there is no content] could have the best loss profile. Intuitively, this might be thought to hold since the belief functions B ∈ [image: there is no content][image: there is no content]\ℙ[image: there is no content] assign smaller degrees of belief than the probability functions P ∈ ℙ[image: there is no content]. However, Equation (4) shows that some B ∈ [image: there is no content][image: there is no content]\ℙ[image: there is no content] assign greater degrees of belief than a probability function P ∈ ℙ[image: there is no content] to certain sentences in the following sense: there exists a set of sentences Φ ⊂ S[image: there is no content] such that for all P ∈ ℙ[image: there is no content] it holds that ∑φ∈ΦB(φ)> ∑φ∈ΦP(φ).

While Condition 1 of Definition 21 deals with worst-case expected loss, Condition 2 deals with dominance of expected loss. Now, dominance is often used on its own to justify the Probability norm; see, e.g., de Finetti [12] (Chapter 3) and more recently by Joyce [13,14]. So, one might think that Condition 2 is strong enough on its own to imply the probability norm. However this is not the case:

Proposition 11. For[image: there is no content][image: there is no content] = ℙ[image: there is no content]there exist a weighting function g and a non-probabilistic belief function B ∈ [image: there is no content][image: there is no content]\ℙ[image: there is no content]such that no probability function P ∈ ℙ[image: there is no content]has a loss which dominates that of B in the sense of Condition 2.

Proof. It suffices to show that there exist a weighting g and a B ∈ [image: there is no content][image: there is no content]\ℙ[image: there is no content] such that for all Q ∈ ℙ[image: there is no content] there exist a P ∈ ℙ[image: there is no content] and infinitely many n ∈ ℕ such that [image: there is no content] (P, B) < [image: there is no content] (P, Q).

Consider a B ∈ [image: there is no content][image: there is no content]\ℙ[image: there is no content] from Proposition 4 and consider an arbitrary Q ∈ ℙ[image: there is no content]. Then there has to exist an ν ∈ O4 such that Q(ν) ≠ B(ν). Next note that Q(¬ν) ≠ B(¬ν) follows. Then, − [image: there is no content] log [image: there is no content]log [image: there is no content] log Q(ν) − [image: there is no content] log Q(ν) since the logarithmic scoring rule is strictly proper.

So, for P ∈ ℙ[image: there is no content] with P (ν) = [image: there is no content] and g({ν, ¬ν}) > 0 it holds that



[image: there is no content]








Next let ν1 := ¬Ut1t ˄ ¬Ut2t, ν2 := Ut1t ˄ ¬Ut2t, ν3 := ¬Ut1t ˄ Ut2t, and ν4 := Ut1t ˄ Ut2t. For n ≥ 4 let [image: there is no content] ⊂ Ωn be the unique proposition which is equivalent to νi, [image: there is no content] = {ω ∈ Ωn : ω ⊨ νi}.

Now define gn for n ≥ 4 as follows:



gn({Fni,F¯ni}):=1,ifn≡imod4gn(π):=0,else.








So, for this B and this g we have found that for all Q ∈ ℙ[image: there is no content] there exist a P ∈ ℙ[image: there is no content] and infinitely many n ∈ ℕ (every fourth n) such that



Sgn(P,B)=−1100log1100−99100log99100<−1100loglogQ(v)−99100logQ(v)=Sgn(P,Q).








□

In general, determining the functions comprising minloss [image: there is no content][image: there is no content] is a challenging problem, which we shall tackle in due course. However, there is one general property we can prove directly: assigning zero degree of belief to an epistemically possible sentence is irrational, in the sense that it exposes one to avoidable losses. To see this, first note that:

Proposition 12. For any[image: there is no content][image: there is no content], there exists a probability function P ∈ [image: there is no content][image: there is no content]which is open-minded.

Proof. The set of consistent sentences in [image: there is no content] is countable. The set



ϕ:={φ∈S[image: there is no content]:thereexistsaP∈[image: there is no content][image: there is no content]withP(ψ)>0}








is a subset of the set of consistent sentences and is thus countable, too. We can hence enumerate Φ by some countable index set, I, say. Note that |I| ≥ 2 since P (τ) = 1 for all P ∈ ℙ[image: there is no content] and all tautologies τ.
For all φ ∈ Φ choose some Pφ ∈ [image: there is no content][image: there is no content] such that Pφ(φ) > 0. Next, for all i ∈ I pick an αi ∈ (0, 1) ⊂ ℝ such that ∑i∈I αi = 1. Since |I| ≥ 2 such αi exist.

We shall now define an open-minded function P ∈ [image: there is no content][image: there is no content] by putting



[image: there is no content]








Note that P is in [image: there is no content][image: there is no content] since it is a convex combination of probability functions in the convex set [image: there is no content][image: there is no content].

We next show that P is indeed open-minded. Let φ ∈ Φ be at the j-th position in the enumeration I of Φ. We now obtain P (φ) ≥ αjPφ(φ) > 0. So, P (φ) > 0 for all φ ∈ Φ. □

Proposition 13. B ∈ minloss [image: there is no content][image: there is no content]implies that B is open-minded.

Proof. If B is not open-minded, then there exists a k ∈ ℕ and a φ ∈ S[image: there is no content]k such that B(φ) = 0 and there exists a P ∈ [ [image: there is no content][image: there is no content]] such that P (φ) > 0. Since φ ∈ S[image: there is no content]r for all r ≥ k, it holds for all r ≥ k that supP∈[image: there is no content][image: there is no content]Sgr(P,B)=+∞.

By Proposition 12 there exists an open-minded Q ∈ [ [image: there is no content][image: there is no content]]. Thus, supP∈[image: there is no content][image: there is no content]Sgr (P, Q) < ∞ for all r. □

Note that the above proposition does not imply that minloss [image: there is no content][image: there is no content] is non-empty.



4.4. Minimax Theorems

In this section we shall relate the belief functions that have best loss profile to the probability functions that have maximal g-entropy.

It turns out that an improvement in loss profile is not necessarily accompanied by an increase in entropy (Appendix A). Nevertheless, we shall see that given appropriate conditions on g, there is a close relationship between the belief function that has the best loss profile and the probability function which has maximum entropy. On a finite sublanguage, the unique belief function with minimum worst-case expected loss is the probability function with maximum entropy (Section 4.4.1). Moreover, on the language [image: there is no content] as whole, if the evidence set [image: there is no content][image: there is no content] is finitely generated then the unique belief function with the best lost profile (i.e., the belief function that is minimal with respect to ≺) is the probability function in EL with maximal entropy (Section 4.4.2). However, this is not necessarily so when [image: there is no content][image: there is no content] is not finitely generated (Section 6.1).


4.4.1. Minimax on Finite Sublanguages

Lemma 5. For all n ∈ ℕ, all P ∈ ℙ[image: there is no content]and all B ∈ [image: there is no content][image: there is no content]respecting logical equivalence on [image: there is no content]n it holds that[image: there is no content] (P, B) = [image: there is no content] (P, B) for all ρ ∈ ϱn.

Proof. Simply note that [image: there is no content] (P, B) = −[image: there is no content]log B(ρF) does not depend on ρ ∈ ϱn. □

Lemma 6. For all inclusive g, for all n ∈ ℕ and each belief function



B†∈arginfB∈[image: there is no content][image: there is no content]supP∈[image: there is no content][image: there is no content]supρ∈ϱnSg,ρn(P,B),








B† respects logical equivalence on [image: there is no content]n. Furthermore, for all such B† there exists a partition π ∈ Πn such that ∑F∈πB†(ρF)=1 for all ρ ∈ϱn.

Proof. Firstly, B† cannot assign all φ ∈ S[image: there is no content]n degree of belief 0, since this would an incur an infinite worst-case expected loss; and as we saw in Proposition 13, there are functions which have finite worst-case expected loss.

Assume for contradiction that a B† ∈ [image: there is no content][image: there is no content] does not respect logical equivalence on [image: there is no content]n. Then define a function Binf : S[image: there is no content] → [0, 1] which respects logical equivalence on [image: there is no content]n by



Binf(φ):={infψ∈S[image: there is no content]n⊨φ↔ψB†(ψ),ifφ∈S[image: there is no content]nB(φ)otherwise.








The next step in this proof is to show that



supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,Binf)=supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,B†).








In the second part of the proof we shall see that there is a belief function which has a strictly better worst case expected loss than Binf. This then contradicts the assumption that the belief function B† has best worst case expected loss, i.e., B† ∈ arg infB∈[image: there is no content][image: there is no content]supP∈[image: there is no content][image: there is no content][image: there is no content][image: there is no content].

Since B† does not respect logical equivalence on [image: there is no content]n, there are logical equivalent φ, ψ ∈ S[image: there is no content]n such that B†(φ) ≠ B†(ψ). Thus, Binf(φ) < max{B†(φ), B†(ψ)} and hence Binf(φ) + Binf(¬φ) < max{B†(φ), B†(ψ)} + B†(¬φ) ≤ 1. The last inequality holds since B† ∈ [image: there is no content][image: there is no content]. So, Binf⇂n∉[image: there is no content]n.

Recall that we extended the definition of scoring rules allowing the belief function to be any function defined on S[image: there is no content] taking values in [0, 1]. We shall be careful not to appeal to results that assume a normalised belief function in this situation.

We now find for P ∈ [image: there is no content][image: there is no content]



S[image: there is no content]n(P,B†)=supρ∈ϱnS[image: there is no content],ρnn(P,B†)=supρ∈ϱn−∑π∈Πn[image: there is no content](π)∑F∈πP(ρF)logB†(ρF)=−∑π∈Πn[image: there is no content](π)∑F∈π°P(F)infρ∈ϱnlogB†(ρF)=−∑π∈Πn[image: there is no content](π)∑F∈πP(ρF)logBinf(ρF)forallρ∈ϱn=S[image: there is no content],ρn(P,Binf)forallρ∈ϱn=supρ∈ϱnS[image: there is no content],ρn(P,Binf)=S[image: there is no content]n(P,Binf).








Hence supp∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,B†)=supp∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,Binf), as claimed above.

Let us now consider cases to derive a contradiciton.

Case i There exists a π ∈ [image: there is no content] such that ∑F∈πBinf(ρF)=1.

Since Binf respects logical equivalence this fact is independent of the particular ρ ∈ ϱn. Recall that we use the notation °Binf = °nBinf to denote the function that Binf induces over propositions in Ωn, defined by °Binf(F) = Binf(∨F).

With this convention we then note that °Binf ∈ [image: there is no content]\[image: there is no content]. Let [image: there is no content] be the set of probability functions on Ωn which are in the canonical one-to-one correspondence with the probability functions on [image: there is no content]n, i.e., [image: there is no content]:={°P:P∈[image: there is no content][image: there is no content]}. We thus find, using Theorem 2 to obtain the strict inequality, that:



supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,B†)=supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,Binf)=supP∈[image: there is no content]S[image: there is no content](°P,°Binf)=supP∈[image: there is no content]−∑π∈∏n[image: there is no content](π)∑F∈π°P(F)log°Binf(F)>supP∈[image: there is no content]−∑π∈∏n[image: there is no content](π)∑F∈π°P(F)log°Pn†(F)=supP∈[image: there is no content]S[image: there is no content](°P,°Pn†)=supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,Pn†).








Case ii For all π ∈ Πn and all ρ ∈ ϱn it holds that ∑F∈π Binf(ρF) < 1.

Since Binf respects logical equivalence on [image: there is no content]n we may consider the induced function °Binf defined over propositions of Ωn. Since Πn is finite, so is the set {∑F∈π °Binf(F)}. Thus, supπ∈Πn ∑F∈π °Binf (F) = 1 − ϵ for some ϵ ∈ (0, 1].

Let us now define a function B′:S[image: there is no content]→[0,1]. Denote by μ ∈ (0, 1] the unique number such that for all π ∈ Πn and all ρ ∈ ϱn it holds that ∑F∈π μ+Binf (ρF) = ∑F∈π μ + °Binf(F) ≤ 1 and for at least one π ∈ Πn and one ρ ∈ ϱn we have ∑F∈π μ + Binf (ρF) = ∑F∈π μ + °Binf(F) = 1

Put B′(φ) := μ + Binf(φ) > Binf(φ) for all φ ∈ S[image: there is no content]n and B′(φ) := 0 otherwise. Observe that B′ ∈ [image: there is no content][image: there is no content] and that B′(¬τ) ≥ μ > 0 for the tautologies τ of [image: there is no content]n. But then °B′ ∈ [image: there is no content]\[image: there is no content]. Then for all π ∈ Πn and all P ∈ [[image: there is no content]n] we have −∑ F∈π P (ρF) log B′ (ρF) < −∑ F∈π P(ρF) log Binf (ρF). We now apply Theorem 2 to find the strict inequality below



supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,B†)=supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,Binf)≥supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,B′)=supP∈[image: there is no content]S[image: there is no content](°P,°B′)>Sg(°P,°Pn†)=supP∈[image: there is no content]S[image: there is no content](°P,°Pn†)=supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,Pn†).








So, in Case i and in Case ii we have found that [image: there is no content] has strictly better worst-case expected loss than B† contradicting B† ∈ arg infB∈[image: there is no content][image: there is no content]supP∈[image: there is no content][image: there is no content][image: there is no content][image: there is no content].

Finally, we need to show that for all such belief functions B† there exists a π ∈ Πn such that ∑F∈π °B†(F) = 1. Suppose for contradiction that is not the case. Note that B† respects logical equivalence on [image: there is no content]n. Hence, we can define a belief function B′ ∈ [image: there is no content][image: there is no content] by adding a strictly positive number μ as in Case ii. B′ has a worst-case expected loss that is less or equal to the worst-case expected loss of B†. Again, we find that °B′ ∈ [image: there is no content]\[image: there is no content] and hence B′ does not have minimal worst-case expected loss. Clearly then, B† cannot have minimal worst-case expected loss. Contradiction. □

Theorem 5 (Finite sublanguage minimax). For all inclusive[image: there is no content], all n ∈ [image: there is no content], all C ∈ arg infB∈[image: there is no content][image: there is no content]supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,B)and all Q ∈ arg supP∈[image: there is no content][image: there is no content]H[image: there is no content]n(P)it holds that



[image: there is no content]








Proof. From Lemma 6 we know that for every C ∈ arg infB∈[image: there is no content][image: there is no content]supP∈[image: there is no content][image: there is no content][image: there is no content] it holds that C⇂n respects logical equivalence on [image: there is no content]n and that °C := °nC ∈ [image: there is no content] (since C is normalised). Every probability function in P ∈ [image: there is no content][image: there is no content] respects logical equivalence (Proposition 3).

Thus, S[image: there is no content]n(P,C) and S[image: there is no content]n(P,P) collapse to S[image: there is no content](°P,°C), respectively S[image: there is no content](°P,°P), the logarithmic scoring rule for propositions (1).

However, for the propositional case we know from Theorem 2 that the unique [image: there is no content]-entropy maximiser on [image: there is no content] is the unique worst-case expected loss minimiser on [image: there is no content], P[image: there is no content]†=°Pn†. arg inf[image: there is no content]supP∈[image: there is no content]S[image: there is no content](P,B)=argsupP∈[image: there is no content]H[image: there is no content](P)={P[image: there is no content]†}.

Thus, for all F ⊆ Ωn it holds that C(ρF)=P[image: there is no content]†(F) for all ρ ∈ ϱn. Hence, [image: there is no content]. □



4.4.2. Minimax for Inductive Logic

We shall now consider the language [image: there is no content] as a whole. We shall assume in this section that EL is finitely generated by constraints on [image: there is no content]K. As noted in Section 3.3, this is the scenario that is of key relevance to inductive logic. Our goal is to justify the norms of objective Bayesianism by showing that the belief functions with the best loss profile are the probability functions in [image: there is no content][image: there is no content] with maximum entropy.

First we shall see that this is the case if [image: there is no content] is language invariant:

Proposition 14 (Language invariance minimax). If[image: there is no content]is inclusive and language invariant and if[image: there is no content][image: there is no content]is finitely generated, then



minloss[image: there is no content][image: there is no content]=maxent[image: there is no content][image: there is no content]=[image: there is no content]†={P†}.








Proof. Note that we have [image: there is no content]†={P†} from Proposition 8, in particular [image: there is no content] for all n ≥ K.

Since [image: there is no content] is inclusive, H[image: there is no content]n is strictly concave on [image: there is no content] (Lemma 1). Hence, [image: there is no content] is uniquely determined. By language invariance we obtain P† ∈ arg supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,P) for all n ≥ K. Thus, P† ∈ maxent [image: there is no content][image: there is no content].

For Q ∈ [[image: there is no content][image: there is no content]]\ {P†} there has to exist some N ∈ [image: there is no content] such than Q⇂n ≠ P†⇂n for all n ≥ N. Since H[image: there is no content]n is a strictly concave function on [image: there is no content] and since P† maximises H[image: there is no content]n for all n ≥ K it follows that H[image: there is no content]n(P†)>H[image: there is no content]n(Q) for all n ≥ max{K, N}. Thus, Q ∉ maxent [image: there is no content][image: there is no content].

From Theorem 5 we have that [image: there is no content] ∈ arg infB∈[image: there is no content][image: there is no content]supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,B) for all n ≥ K. Since [image: there is no content][image: there is no content] is finitely generated and g is language invariant we have that P† ∈ arg infB∈[image: there is no content][image: there is no content]supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,B) for all n ≥ K. Thus, P† ∈ minloss [image: there is no content][image: there is no content].

For every C ∈ [image: there is no content][image: there is no content]\{P†} there has to exist an N ∈ [image: there is no content] such that for all n ≥ N it holds that [image: there is no content] For all n ≥ max{K, N} we now apply Theorem 5 to obtain supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,C)>supP∈[image: there is no content][image: there is no content]S[image: there is no content]n(P,P†). Hence, C ∉ minloss [image: there is no content][image: there is no content]. □

This result is not entirely satisfactory, because we cannot say anything yet about whether such weighting functions exist. Indeed, it was conjectured in Landes and Williamson [4] (p. 3564) that no inclusive, symmetric and refined weighting function [image: there is no content] is language invariant. This conjecture remains open.

Our next result says that, for the standard weighting [image: there is no content]Ω, the probability function with the best loss profile is the standard entropy maximiser:

Proposition 15 (Standard entropy minimax). If[image: there is no content][image: there is no content]is finitely generated and[image: there is no content]=[image: there is no content]Ω, then



minloss[image: there is no content][image: there is no content]=maxent[image: there is no content][image: there is no content]={PΩ†}.








Proof.{PΩ†}=maxent[image: there is no content][image: there is no content] follows directly, since [image: there is no content]Ω is language-invariant and state-inclusive, Proposition 8.

It is well-known that



arginfQ∈[image: there is no content]nsupP∈[image: there is no content]nS[image: there is no content]Ω(P,Q)=argsupP∈[image: there is no content]nS[image: there is no content]Ω(P,P)={P[image: there is no content]Ω†},








see for instance [15]. Hence,


minloss[image: there is no content][image: there is no content]=maxent[image: there is no content][image: there is no content]={PΩ†}.








□

Because it only identifies probability functions with the best loss profile, rather than normalised belief functions with the best loss profile, Proposition 15 provides a justification for only two norms of objective Bayesianism, the Calibration Norm and the Equivocation Norm, under the supposition that [image: there is no content]=[image: there is no content]Ω. This is a useful result if there is some independent reason—such as the Dutch book argument—for taking belief functions to be probability functions. But our goal in this paper is to investigate the extent to which the notion of loss profile developed above can be used to justify all three norms at once.

We know that there are weighting functions that are regular, i.e., which are atomic, inclusive, symmetric and strongly refined. The plan of the rest this section is to prove the following analogous minimax theorem for regular weighting functions. This says that, for any regular weighting function, the belief function with the best loss profile is the probability function in [image: there is no content][image: there is no content] which has maximal standard entropy. This theorem thus justifies all three norms at once.

Theorem 6 (Regularity minimax). If[image: there is no content]is regular and[image: there is no content][image: there is no content]is finitely generated, then



minloss[image: there is no content][image: there is no content]=maxent[image: there is no content][image: there is no content]=[image: there is no content]†={PΩ†}.








In order to prove this theorem we give a number of lemmata. We shall state these lemmata under more minimal conditions on [image: there is no content]. The reader not interested in the details might always replace the stated conditions on [image: there is no content] by: “ [image: there is no content] is regular”.

To begin with, we shall consider only belief functions B which respect logical equivalence. (Later we shall relax this restriction.) Hence, [image: there is no content] does not depend on ρ and we can ignore the particular representation ρ. This will allow us to focus on propositions.

Lemma 7. If n ≥ K, Q ∈ [image: there is no content][image: there is no content]and ifsupP∈[image: there is no content][image: there is no content][image: there is no content]is finite, then it holds that



supP∈[image: there is no content][image: there is no content]SΩn+1(P,Q)≥supP∈[image: there is no content][image: there is no content]SΩn(P,Q)+log|Ωn+1||Ωn|.








Proof. Let P′ ∈ arg supP∈[image: there is no content]ℓSΩn(P,Q). Then define P″ on Ωn+1 by [image: there is no content] for all ν ∈ Ωn+1 and ων ∈ Ωn with [image: there is no content]. Now extend P″ arbitrarily to a function in [[image: there is no content][image: there is no content]]. Note that P″⇂n+1∈[[image: there is no content]n+1] since [image: there is no content][image: there is no content] is finitely generated and n ≥ K.

Since − log(x) is a strictly convex function on (0, 1] and since [image: there is no content] for all ω ∈ Ωn it holds for all fixed ω ∈ Ωn that [image: there is no content]. We now find



supP∈[image: there is no content][image: there is no content]SΩn+1(P,Q)≥SΩn+1(P″,Q)=−∑ν∈Ωn+1P″(ν)logQ(ν)=−∑ν∈Ωn+1P′(ων)|Ωn|Ωn+1logQ(ν)≥−∑w∈ΩnP′(ω)·log|Ωn|·Q(ω)|Ωn+1|=−log|Ωn||Ωn+1|−∑ω∈ΩnP′(ω)·logQ(ω)=log|Ωn+1||Ωn|+supP∈[image: there is no content][image: there is no content]SΩn(P,Q).








Definition 22 (γ-weighting). To simplify notation we define for n ∈ N and F ⊆ Ωn



[image: there is no content]








If g is symmetric, then γn(F ) only depends on |F | := |{ω ∈ Ωn : ω ∈ F }| and we write γn(|F |).

In particular, since the belief function B is assumed to respect logical equivalence, we can write



Sgn(P,B)=supρ∈ϱn∑F⊆Ωn−γn(F)P(ρF)logB(ρF)=∑F⊆Ωn−γn(F)∘P(ρF)log∘B(ρF).








Furthermore, we can easily characterise the set of inclusive g. g is inclusive, if and only if for all [image: there is no content] and all F ⊆ Ωn γn(F) > 0.

Lemma 8. Let g be inclusive and such that there exist 0 < a ≤ b < +∞ such that g(πn) ∈ [a, b] for all[image: there is no content]and such that



[image: there is no content]








Then



Restn:=supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)−g(πn)SΩn(PΩ†,PΩ†)→0asn→∞.








Proof. Let us thus first note that



[image: there is no content]



(10)




Recall that [image: there is no content] is open-minded (Proposition 5). Thus, P∈[[image: there is no content][image: there is no content]], F ⊆ Ωn and [image: there is no content] imply [image: there is no content]. Let



[image: there is no content]








Then, for F ⊆ Ωn such that [image: there is no content] it holds that



[image: there is no content]








since [image: there is no content] equivocates beyond [image: there is no content]K.
Hence, P∈[[image: there is no content][image: there is no content]], F ⊆ Ωn and [image: there is no content] imply that [image: there is no content]. Since [image: there is no content] we now find



0≤supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)−g(πn)SΩn(PΩ†,PΩ†)≤supP∈[image: there is no content][image: there is no content]g(πn)SΩn(P,PΩ†)+supP∈[image: there is no content][image: there is no content]∑π∈∏n\{πn}−g(π)∑F∈π°P(F)log°PΩ†(F)supP∈[image: there is no content][image: there is no content]g(πn)SΩn(P,PΩ†)≤supP∈[image: there is no content][image: there is no content]∑π∈∏n\{πn}−g(π)∑F∈π°P(F)log°m|Ωn|=logm|Ωn|∑π∈∏n\{πn}−g(π)=(log(|Ωn|)−log(m))·∑π∈∏n\{πn}g(π)








To complete the proof, it suffices to note that this sums is eventually positive and converges in [image: there is no content] to zero by our assumption on g and the fact that m is constant.

Proposition 16. Let g be inclusive and such that there exist 0 < a ≤ b < +∞ such that g(πn) ∈ [a, b] for all[image: there is no content]and such that



[image: there is no content]








Then for allB∈[image: there is no content][image: there is no content]\{PΩ†}that respect logical equivalence, [image: there is no content].

Proof. We shall proceed by considering cases.\

Case 1B∈[image: there is no content][image: there is no content]\{PΩ†}.

There exists an N ≥ K such that for all n ≥ N it holds that [image: there is no content]. It is well-known that for all P∈[image: there is no content]



arginfQ∈[image: there is no content]−∑ω∈ΩP(ω)logQ(ω)={P}.



(11)




That is, the usual logarithmic scoring rule, when applied to probability functions P∈[image: there is no content] and Q∈[image: there is no content], is strictly proper. Savage [16] showed that this scoring rule is not only strictly proper but also unique under the further assumption of locality, which is requirement L3 in our framework. Thus, [image: there is no content].

We then find by the first part of Corollary 3 and Lemma 7 for all n ≥ N that



supP∈[image: there is no content][image: there is no content]Sgn(P,B)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)=supP∈[image: there is no content][image: there is no content]Sgn(P,B)−g(πn)SΩn(PΩ†,PΩ†)−Restn≥g(πn)supP∈[image: there is no content][image: there is no content]SΩn(P,B)−g(πn)SΩn(PΩ†,PΩ†)−Restn=g(πn)supP∈[image: there is no content][image: there is no content]SΩn(P,B)−g(πn)(SΩN(PΩ†,PΩ†)+log|Ωn||Ωn|)−Restn≥g(πn)(supP∈[image: there is no content][image: there is no content]SΩN(P,B)+log|Ωn||Ωn|)−g(πn)(SΩn(PΩ†,PΩ†)+log|Ωn||Ωn|)−Restn≥−g(πn)(SΩn(PΩ†,B)−SΩN(PΩ†,PΩ†))−Restn








Recall from Lemma 8 that Restn converges to zero. Furthermore, the sequence (g(πn))n∈[image: there is no content] is bounded in [a, b] with a > 0. Thus, for all large enough n ∈ N it holds that



supP∈[image: there is no content][image: there is no content]Sgn(P,B)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)≥g(πn)(SΩN(PΩ†,B)−(SΩN(PΩ†,PΩ†))−Restn>0.








Case 2B∈[image: there is no content][image: there is no content]\[image: there is no content][image: there is no content].

Case 2A There exists a PB∈[image: there is no content][image: there is no content] such that for all [image: there is no content] and all F ⊆ Ωn it holds that [image: there is no content], i.e., PB dominates B.

Case 2Ai[image: there is no content] and no other P∈[image: there is no content][image: there is no content] is such that [image: there is no content] for all n and all F ⊆ Ωn. Then for all P∈[image: there is no content][image: there is no content] and all propositions F it holds that



[image: there is no content]








Thus, for all P∈[image: there is no content][image: there is no content] and [image: there is no content] it holds that [image: there is no content].

Since [image: there is no content] there exists some N∈[image: there is no content] and a ∅ ⊂ F ⊆ ΩN such that [image: there is no content]. For n > N let ∅ ⊂ Fn ⊆ Ωn be such that Fn = {ω ∈ Ωn : ω ∈ F }. Hence, for all n > N it holds that [image: there is no content]. Thus, [image: there is no content]. Since g is inclusive (γn(F ) > 0 for all [image: there is no content] and all F ⊆ Ωn) it holds that [image: there is no content] for all n ≥ N.

Applying the second condition of Definition 21 yields [image: there is no content].

Case 2Aii There exists a PB∈[image: there is no content][image: there is no content] dominating B such that [image: there is no content].

Then for all n ≥ K and all P∈[image: there is no content][image: there is no content] it holds that [image: there is no content]. For all large enough [image: there is no content] it holds by Case 1 that supP∈[image: there is no content][image: there is no content]Sgn(P,PB)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)>0. Thus, we find for all large enough n



supP∈[image: there is no content][image: there is no content]Sgn(P,B)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)≥supP∈[image: there is no content][image: there is no content]Sgn(P,PB)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)>0.








Cas 2B There does not exist a PB∈[image: there is no content][image: there is no content] such that for all [image: there is no content] and all F ⊆ Ωn it holds that [image: there is no content].

For example, the belief functions constructed in Proposition 4 are of this form, i.e., not dominated by a probability function.

Let us assume for contradiction that there exists an infinite set J:={j1,j2,…}⊆[image: there is no content] such that [image: there is no content]. Now define a function Q on S[image: there is no content] by requiring that Q respects logical equivalence and that



[image: there is no content]








Next we show Q∈[image: there is no content][image: there is no content] and [image: there is no content] for all F which will allow us to derive the required contradiction.

First note that for all [image: there is no content] it holds that



∑ν∈ΩnQ(ν)=limi→∞∑ν∈Ωn∑ω∈Ωjiω|=νB(ω)=limi→∞∑ω∈Ωjiω|=νB(ω)=1.








Furthermore, we have for all [image: there is no content] and all F ⊆ Ωn



°Q(F)=limi→∞∑ω∈Ωjiω∈FB(ω)=limi→∞∑ν∈Ωnν∈F∑ω∈Ωjiω|=νB(ω)=∑ν∈Ωnν∈Flimi→∞∑ω∈Ωjiω|=νB(ω)








So, Q∈[image: there is no content][image: there is no content].

Now assume that there exists a proposition F ⊆ Ωn such that [image: there is no content]. Since Q∈[image: there is no content][image: there is no content] it holds that [image: there is no content]. Note that



[image: there is no content]








is a partition in [image: there is no content]. Since we assumed that B respects logical equivalence it holds that B(∨ω∈Ωii:ω∈Fω). Thus,


[image: there is no content]








has to hold for all large i. We now obtain the required contradiction as follows:


1≥limi→∞(°B(F)+∑ω∈Ωjiω∈F¯B(ω))=°B(F)+°Q(F¯)>°Q(F)+°Q(F¯)=1








Thus, there has to exist an α > 0 and an N∈[image: there is no content] with N ≥ K such that for all n ≥ N it holds that [image: there is no content]. We have for n ≥ N that



supP∈[image: there is no content][image: there is no content]Sgn(P,PB)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)=supP∈[image: there is no content][image: there is no content]Sgn(P,B)−g(πn)Sgn(PΩ†,PΩ†)−Restn≥g(πn)(supP∈[image: there is no content][image: there is no content]SΩn(P,B)−SΩn(PΩ†,PΩ†))−Restn≥g(πn)(SΩn(PΩ†,B)−SΩn(PΩ†,PΩ†))−Restn








To complete the proof we will now show that there exists some β > 0, which depends on [image: there is no content][image: there is no content] and g but does not depend on the particular n ≥ N, such that [image: there is no content]. Since g(πn) is bounded, we then obtain that supP∈[image: there is no content][image: there is no content]Sgn(P,B)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)>0 for all large enough n.

We need to show that for all large enough n,



[image: there is no content]








for all functions f : Ωn → [0, 1] such that [image: there is no content].
Suppose [image: there is no content]. If [image: there is no content] and f′(ω) = 0, then [image: there is no content]. Hence, the minimum cannot obtain for such an f′. On the other hand, if f′(ω) > 0 and [image: there is no content], then there has to exist a μ ∈ Ωn \ {ω} such that [image: there is no content]. Then define a function f″ such that f″ (ω) := 0, f″ (μ) := f′ (μ) + f′ (ω) > f′ (μ) and f″ (λ) := f′ (λ) for all λ ∈ Ωn \ {ω, μ}. Then [image: there is no content]. Again, the minimum cannot obtain for such an f′.

We may thus assume in the following that any f′ minimising the above sum satisfies: [image: there is no content], if and only if f′(ω) > 0. In particular, the function f′(ω) = 0 for all ω ∈ Ωn cannot be optimal.

Let [image: there is no content]. Then



[image: there is no content]








By definition, [image: there is no content]. The sum in the above equation is thus standard logarithmic scoring rule on [image: there is no content]n, [image: there is no content]. For fixed P ∈ ℙ[image: there is no content] the minimum under this scoring rule obtains for a function which agrees with P on the states ω ∈ Ωn.

Thus, for fixed af the function f minimising [image: there is no content] is the af multiple of [image: there is no content]. In order to minimize [image: there is no content], −log af has to be minimal. This minimum obtains for af = 1 − α. We hence find the value of the minimum as



f:Ωn→[0.1]∑ω∈Ωnf(ν)≤1−αinf−∑ω∈ΩnPΩ†(ω)logf(ω)=−log(1−α)−SΩn(PΩ†,PΩ†).








β may thus be chosen as β = − log(1 − α) > 0. □

We now drop the assumption that belief functions respect logical equivalence.

Proposition 17. If g is inclusive and such that there exist 0 < a ≤ b < +∞ such that g(πn) ∈ [a, b] for all n ∈ ℕ and such that



limn→∞log|Ωn|∑π∈Πn\{πn}g(π)=0,








then


minloss[image: there is no content][image: there is no content]={PΩ†}.



(12)




Proof. We shall consider cases for B∈[image: there is no content][image: there is no content]\{[image: there is no content]}. We will show that [image: there is no content] holds for all cases. Then minloss [image: there is no content][image: there is no content]={[image: there is no content]} follows.

Case 1 B respects logical equivalence.

By Proposition 16 we obtain [image: there is no content].

Case 2 B does not respect logical equivalence.

Since B does not respect logical equivalence, there exists a minimal N ∈ ℕ such that two different logically equivalent sentences φ, ψ ∈ S[image: there is no content]N are assigned different degrees of belief, i.e., B(φ) ≠ B(ψ).

We now inductively define functions Bn : S[image: there is no content]→ [0, 1] for n ≥ N. First, let



BN(χ):={inf{B(θ):θ∈S[image: there is no content]N&⊨χ↔θ}ifχ∈S[image: there is no content]NB(χ)ifχ∈S[image: there is no content]\S[image: there is no content]N.








Now assume n > N. For all χ ∈ S[image: there is no content]n such that no θ ∈ S[image: there is no content]n−1 is logically equivalent to χ let



Bn(χ):=inf{B(θ):θ∈S[image: there is no content]n&⊨χ↔θ}








and otherwise let


Bn(χ):={Bn−1(θ)ifχ∈S[image: there is no content]nand there exists aθ∈S[image: there is no content]n−1with⊨χ↔θB(χ)ifχ∈S[image: there is no content]\S[image: there is no content]n.








Note that Bn is well-defined, Bn−1 respects logical equivalence on [image: there is no content]n−1 and thus Bn−1(θ) does not depend on the particular sentence θ ∈ S [image: there is no content]n−1 which is logically equivalent to χ.

By construction, Bn+1 agrees with Bn on S [image: there is no content]n.

Finally, let BI(χ) := limn→∞ Bn(χ). Trivially, BI⇂N = BN⇂N.

Since for all n ≥ N the Bn respect logical equivalence on [image: there is no content]n, BI respects logical equivalence on [image: there is no content].

Furthermore, BI agrees with Bn on the sentences of [image: there is no content]n.

Now consider a χ ∈ S[image: there is no content] and let k ∈ ℕ be minimal such that χ ∈ S[image: there is no content]k and consider the corresponding proposition F ⊆ Ωk. For all n ≥ max{N, k} we shall show that



[image: there is no content]








If k ≤ N, then for all n ≥ N it holds that Bn(χ) = inf{B(θ) : θ ∈ S[image: there is no content]N & ⊨χ ↔ θ} = BN(χ). Hence, BI(χ) = BN(χ). For n ≥ N there exist ρ ∈ ϱn such that ρF = χ. Thus, [image: there is no content].

If k ≥ N, then there are two cases. If no θ ∈ S[image: there is no content]k−1 is logically equivalent to χ, then Bk(χ) = inf{B(θ) : θ ∈ S[image: there is no content]k \ S[image: there is no content]k−1 & ⊨ χ ↔ θ}. In which case, we find for all n ≥ k > N



infρ∈ϱnB(ρF)≤infρ∈ϱkB(ρF)=inf{B(θ):θ∈S[image: there is no content]k\S[image: there is no content]k−1&⊨χ↔θ}=BI(χ).








In the other case there does exist some θ ∈ S[image: there is no content]k−1 which is logically equivalent to χ. Then Bn(χ) = Bk−1(θ) for all n ≥ k. So BI(χ) = Bk−1(θ). Thus, for all n ≥ max{N, k} ≥ k − 1 it is true that



infρ∈ϱnB(ρF)≤infρ∈ϱkB(ρF)≤infρ∈ϱmax{N,k}B(ρF)=inf{B(θ):θ∈S[image: there is no content]k−1&⊨χ↔θ}=BI(χ).








It thus follows for all P ∈ ℙ[image: there is no content] and all n ≥ N that



Sgn(P,B)=supρ∈ϱnSg,ρn(P,B)=−∑F⊆Ωnγn(F)°P(F)infρ∈ϱnlogB(ρF)≥−∑F⊆Ωnγn(F)°P(F)logBI(ρF)for allρ∈ϱn=Sgn(P,BI).



(13)




Let us now note that BI(φ) < max{B(φ), B(ψ)}. Thus, BI(φ) + BI(¬φ) < max{B(φ), B(ψ)} + BI(¬φ). Also observe that BI(χ) ≤ B(χ) for all χ ∈ S[image: there is no content]N. Thus, BI(¬φ) ≤ B(¬φ). Hence,



BI(φ)+BI(¬φ)<max{B(φ),B(ψ)}+BI(¬φ)≤max{B(φ),B(ψ)}+B(¬φ)≤1.








We infer BI(φ) + BI(¬φ) < 1 and thus BI ∉ ℙ[image: there is no content].

Case 2ABI∈[image: there is no content][image: there is no content]\[image: there is no content][image: there is no content].

Since BI respects logical equivalence, we obtain by Proposition 16 that [image: there is no content]. Applying (13) we obtain [image: there is no content].

Case 2BBI∉[image: there is no content][image: there is no content].

We shall now define a function BJ assigning every proposition a value in [0, 1] as follows. Let τ ∈ S[image: there is no content] be some tautology. {τ} is a partition. Since BI∉[image: there is no content][image: there is no content] it follows that BI(τ) < 1. Now put BJ(κ) := 1 − BI(τ) for all contradictions κ ∈ S[image: there is no content]. Clearly, BJ(κ) > 0. For all satisfiable χ ∈ S[image: there is no content] let BJ (χ) := BI(χ).

Note that BJ∉[image: there is no content][image: there is no content] and since BJ(¬τ) > 0 it follows that BJ∈[image: there is no content][image: there is no content]\[image: there is no content][image: there is no content]. Also note that for all n ∈ ℕ and all P ∈ ℙ[image: there is no content] it holds that [image: there is no content] and so



[image: there is no content]








Since BJ respects logical equivalence we can apply Case 2A to obtain [image: there is no content]. But then [image: there is no content]. □

Our main minimax theorem (already stated above on Page 2492) then follows immediately from Proposition 17 by applying Lemma 2 and Theorem 3:

Theorem 6 (Regularity minimax). If g is regular and[image: there is no content][image: there is no content]is finitely generated, then



minloss[image: there is no content][image: there is no content]=maxent[image: there is no content][image: there is no content]=[image: there is no content]†={PΩ†}.








If [image: there is no content][image: there is no content]=[image: there is no content][image: there is no content], then the unique function with greatest entropy is the equivocator (Proposition 7). Thus by Theorem 6,



minloss[image: there is no content][image: there is no content]=maxent[image: there is no content][image: there is no content]={PΩ†}={P=}.








Recall that P= assigns all n-states ω ∈ Ωn the same probability, [image: there is no content]. So, if the agent does not possess any evidence then all n-states ω ∈ Ωn are all believed to the same degree. Absence of evidence entails symmetric degrees of belief. In other words, the three norms of objective Bayesianism entail an instance of the Principle of Indifference.

Surprisingly, perhaps, symmetry of the weighting function is not necessary to guarantee this instance of the Principle of Indifference on finite sublanguages—see Appendix B.




4.5. Infinite-Language Invariance

So far, we have been working over a fixed predicate language [image: there is no content] (without quantifiers). One might wonder what would have happened if one had started out with a different such language.

We will investigate this question by considering predicate languages which contain finitely many further relation symbols and/or finitely many further constant symbols than does [image: there is no content].

For all languages we consider here, we shall suppose that the ways the constant symbols are ordered are consistent. Furthermore, we suppose that the order types of the constant symbols are ω, the first infinite ordinal. That is, for [image: there is no content] ⊂ [image: there is no content]1 let t1, t2, … be the constant symbols in [image: there is no content] and let [image: there is no content] be the set of constant symbols in [image: there is no content]1 which are not in [image: there is no content]. Then we require that the constant symbols of [image: there is no content]1 are ordered such that


	for all n ∈ ℕ, tn appears before tn+1 (consistency),


	for all t ∈ T new there exists some n ∈ ℕ such that t appears before tn (order type ω).




The way the constant symbols of [image: there is no content]1 are ordered can be thought of as inserting the t ∈ Tnew into the ordering of the constant symbols of [image: there is no content].

From now on, superscripts are used to refer to such predicate languages, while subscripts continue to refer to their respective finite sublanguages. For example, [image: there is no content]n1 is the finite sublanguage of [image: there is no content]1 which contains only the first n constants of [image: there is no content]1. For [image: there is no content] ⊂ [image: there is no content]1, in general, the set of the first n constants of [image: there is no content] may be different from the set of the first n constants of [image: there is no content]1.

Definition 23 (Infinite-Language Invariance). A weighting function g is infinite-language invariant, if and only if the following holds: for all [image: there is no content]and for all[image: there is no content][image: there is no content]finitely generated by constraints on the finite sublanguage [image: there is no content]K of [image: there is no content], if [image: there is no content]1and [image: there is no content]2are such that [image: there is no content] ⊆ [image: there is no content]1 ⊆ [image: there is no content]2, then for all B ∈ minloss [image: there is no content][image: there is no content]1there exists a C ∈ minloss [image: there is no content][image: there is no content]2such thatC⇂[image: there is no content]1=B.

Infinite-language invariance is motivated by the thought that simply adding new constant or predicate symbols to the language [image: there is no content] should not change the inferences which are expressible in the original language [image: there is no content]. Note the following qualification: since each element of the domain is picked out by some member of [image: there is no content], one can infer that in [image: there is no content]′ formed by adding constants to [image: there is no content], there must be some constants which name the same individual.

We shall now proceed to show that the weighting functions which we focus on in this paper—the regular weighting functions—are infinite-language invariant.

Lemma 9. If ε, ε′ are non-empty and convex sets of the following form



ε⊆{(x1,…xn)ϵℝn:∑i=1nxi=1&xi≥0}ε′⊆{(y1,z1,y2,z2,…,yn,zn)ϵℝ2n:yi,zi≥0&(y1+z1,…,yn+zn)ϵε},








then for


{(x1†,…,xn†)}=argsup(x1,…,xn)ϵε′−∑i=1nxilogxi{(y1†,z1†,…,yn†,zn†)}=argsup(y1,z1,…,yn,zn)ϵε′−∑i=1nyilogyi+zilogzi








it holds that[image: there is no content]for all 1 ≤ i ≤ n.
Proof. That the suprema are unique follows from the convexity of the sets ε, ε′ and the fact that [image: there is no content] are strictly concave functions on ℙn, respectively, ℙ2n.

Recall that [image: there is no content]U is the language introduced in Lemma 2. [image: there is no content] is a direct consequence of [image: there is no content] equivocating beyond [image: there is no content]kU (Proposition 9). □

Theorem 7. If g is regular, then g is infinite-language invariant.

Proof. Let [image: there is no content][image: there is no content] be finitely generated by constraints expressible in [image: there is no content]K. Let [image: there is no content] ⊆ [image: there is no content]1 ⊆ [image: there is no content]2. By Theorem 6 we obtain minloss [image: there is no content][image: there is no content]1=maxent[image: there is no content][image: there is no content]1={PΩ†1} and minloss [image: there is no content][image: there is no content]2=maxent[image: there is no content][image: there is no content]2={PΩ†2}, where [image: there is no content] and [image: there is no content] are the standard entropy limits on [image: there is no content]1, respectively, [image: there is no content]2.

Let K2 ∈ ℕ be minimal such that [image: there is no content]K⊆[image: there is no content]K22, i.e., the set of the first K2 constant symbols of [image: there is no content]2 contains the constant symbols {t1, …, tK} of [image: there is no content]. It suffices to show that for all n ≥ K2 and all [image: there is no content] it holds that [image: there is no content], where [image: there is no content] is the set of n-states of [image: there is no content]1. Note that the constants in t1, …, tK are in [image: there is no content]K21.

Since the standard entropy limits is finite-language invariant (Section 4.2.1) it follows for n ≥ K2 that [image: there is no content], where {PΩn†1}=argsupP∈[image: there is no content]n1SΩn(P), and [image: there is no content], where {PΩn†2}=argsupP∈[image: there is no content]n2SΩn(P).

We now obtain from Lemma 9 and Proposition 5 that



[image: there is no content]








where ων is the unique maximal state of [image: there is no content] such that ν ⊨ ων. Thus, [image: there is no content]. □
So, neither adding new redundant names for individuals in the domain to [image: there is no content] nor adding relation symbols which are not constrained by the agent’s evidence on [image: there is no content] changes one’s rational beliefs in the sentences φ ∈ S[image: there is no content].

Language invariance is an important desideratum for reasoning under uncertainty. We have seen that focussing on regular weighting functions ensures language invariance. We conjecture that, if one imposes the desiderata that g be atomic, inclusive, symmetric, refined and infinite-language invariant, then the standard entropy maximiser will be the belief function with the best loss profile. If this is the case then our results for regular weighting functions, which are strongly refined, are symptomatic of a more general phenomenon.




5. Handling Quantifiers

Thus far, we have shown that, on a language [image: there is no content]∄ without quantifiers, if the evidence is finitely generated and the weighting function is regular, then the belief function that has the best lost profile is the probability function in [[image: there is no content][image: there is no content]] that maximises standard entropy. This provides a justification for all the norms of objective Bayesianism on a language without quantifiers.

As we shall see in Section 5.1, that the language is quantifier free was key here: on a language [image: there is no content]∄ with quantifiers, the n-scores become infinite, which makes the comparison of loss profiles impossible. That the evidence is finitely generated is also key: we shall see in Section 6.1 that the minimax result need not hold true if the evidence is not finitely generated.

While the use of scoring rules cannot be readily adapted to a quantified language [image: there is no content]∄, we shall see in Section 5.2 that we can nevertheless justify the norms of objective Bayesianism on [image: there is no content]∄ if we extend our notion of loss profile and add two further desiderata motivated by the application of objective Bayesianism to inductive logic: that inferences should be language invariant, and that, ceteris paribus, universal hypotheses should be afforded substantial credence.


5.1. Limits to the Minimax Approach

Here we explain why the minimax analysis adopted in Section 4 cannot be applied to the case of a language with quantifier symbols. The problem is that n-score becomes infinite, making it impossible to compare the scores of different belief functions.

There are two ways in which n-score becomes infinite. The first is through a failure of super-regularity. A probability function is super-regular, if it gives every contingent sentence positive probability. Now, many probability functions that seem eminently rational are not super-regular. For example, if one has no evidence, [image: there is no content][image: there is no content]=[image: there is no content][image: there is no content], then it is plausible that one is rationally entitled (even if not rationally compelled) to adopt the equivocator function P=, which gives each n-state the same probability, as one’s belief function. However, this probability function will give zero probability to a universally quantified sentence such as ∀xUx. More generally, if evidence is finitely generated then no inclusive, symmetric entropy maximiser will be super-regular:

Proposition 18. Let[image: there is no content][image: there is no content]be finitely generated and let g be symmetric and inclusive. If the sequence(Pn†)[image: there is no content]has a point of accumulation Q ∈ ℙ[image: there is no content], then Q is not super-regular.

Proof. Let U be a relation symbol in [image: there is no content] of arity r, say. For all n ∈ ℕ let



φn:=∨ω⊨∧i=1nUtiω∈Ωnω,








where ti denotes the tuple of r repetitions of ti.
If [image: there is no content], then by the open-mindedness of entropy maximisers [image: there is no content] for all n ≥ K. Thus, for all points of accumulation Q ∈ ℙ[image: there is no content] it holds that Q(φK) = 0. Hence, Q is not super-regular.

If [image: there is no content], then we apply Proposition 9 to find that for all l ≥ n



Pl†(φn)=Pl†(φK)|ΩKU||ΩnU|≤Pl†(φK)2K−n≤2K−n,








Let Q be a point of accumulation of (Pn†)[image: there is no content] and let [image: there is no content] be a subsequence which converges to Q. Since K is fixed we now find



0≤Q(∀xUx)P3¯¯limj→∞Q(∧i=1njUti)=limj→∞limm→∞Pnm†(∧i=1njUti)=limj→∞limm→∞Pnm†(φnj)≤limj→∞2K−j=0.








Q is not super-regular. □

Now, a failure of super-regularity is not normally problematic—it is simply a well accepted fact that probability theory forces probability 0 (respectively 1) on many sentences which might be true (respectively false). For example, the strong law of large numbers and the various zero-one laws force extreme probabilities. Moreover, the issue of super-regularity did not arise on [image: there is no content]∄, where no contingent sentences are given probability 0 by the entropy maximisers considered above. However, a problem does emerge if we try to apply the scoring rule approach to [image: there is no content]∄, where super-regularity becomes pertinent. If θ is possible yet is given zero belief by belief function B then the logarithmic loss, −log B(θ), is infinite if θ turns out to be true. Hence, as long as some epistemically possible physical probability function gives positive probability to θ, belief function B will have infinite score. When scores become infinite, they cannot be readily used to compare belief functions. It is clear, for example, that some non-super-regular belief functions will have better loss profiles than others, but this will not be apparent if we define loss profiles in terms of scores. This problem appears to limit the scope of scoring rules to languages without quantifiers.

One might suggest here that the fact that non-super-regular functions lead to infinite scores merely serves to show that one should adopt a super-regular function as one’s belief function. However, there are good grounds for questioning such a conclusion. In particular, consider again the case of a total absence of evidence. As mentioned above, imposing super-regularity rules out the equivocation function P= as a viable belief function. This means that any super-regular function must, in the total absence of evidence, force a skewed distribution on the n-states, for some n. Thus, one is forced to believe some states to a greater degree than others, despite the fact that one has no evidence to distinguish any such state from any other. So super-regularity leads to very counter-intuitive consequences and the infinite score problem suggests that the scoring rule approach breaks down on languages with quantifiers.

There is a second way in which the scores become infinite when quantifiers are admitted into the language. When one admits quantifiers into the language, one introduces the possibility of infinite partitions (Example 1) and it is natural, when defining a scoring rule on such a language, to consider scores on these infinite partitions. If a weighting function is inclusive then for any sentence θ∈S[image: there is no content]∃, some partition containing θ will be given positive weight. If it is refined, then any partition that refines this partition will be given positive weight, including any infinite partition which refines this partition. The problem is that, even in the total absence of evidence, every belief function has infinite worst-case expected loss over such a partition:

Proposition 19. If there exists a partitionπ∞∈∏[image: there is no content]consisting of infinitely many sentences such that g(π∞) > 0, then for allB∈[image: there is no content][image: there is no content]it holds that



supP∈[image: there is no content][image: there is no content]−∑φ∈πg(π∞)P(φ)logB(φ)=+∞.








Proof. Let π∞ = {φ1, φ2, … }. Let B∈[image: there is no content][image: there is no content] be arbitrary but fixed.

If there exists a φ ∈ π∞ such that B(φ) = 0, then any P∈[image: there is no content][image: there is no content] with P (φ) > 0 satisfies ∑φ∈π−g(π∞)P(φ)logB(φ)=+∞.

Now assume that B(φn) > 0 for all n ∈ ℕ.

Since B∈[image: there is no content][image: there is no content] it holds that ∑φ∈π∞B(φ)≤1. Thus, there has to exists an infinite set ℕB ⊆ ℕ \ {1} such that n ∈ ℕB implies [image: there is no content]. Let [image: there is no content] be an enumeration of ℕB. Let [image: there is no content] be an enumeration of an infinite subset of ℕB such that [image: there is no content] and [image: there is no content] for all k ∈ ℕ \ {1}. Since the [image: there is no content] tend to infinity, such a sequence (mkB)k∈[image: there is no content]\{1} has to exist.

Recall that ∑[image: there is no content]1n2=π26. Let P∈[image: there is no content][image: there is no content] be such that for k ≥ 2 it holds that



P(φmkB):=6π2⋅1k2P(φ1):=1−∑k=2∞P(φmkB)=6π2P(φn):=0foralln∈[image: there is no content]\{1,m2B,m3B,…}.








We now explain why such a probability function P∈[image: there is no content][image: there is no content] exists.

The idea is to define a measure which assigns the set of term structures which are a model of [image: there is no content]the value [image: there is no content] and assigns value zero to all other term structures which do not model any of the [image: there is no content]. The probability of an arbitrary sentence χ∈S[image: there is no content] is then measure assigned to all term structures in which χ holds. One has to be careful of how to set up this measure. Fortunately, the recipe for doing so is well-known.

We follow [7] (pp. 164) and define a term structure [image: there is no content] of [image: there is no content] as a structure with domain {tn : n ∈ ℕ} and each constant symbol tn of [image: there is no content] is interpreted in [image: there is no content] as itself. We use T[image: there is no content] to denote the set of term structures of [image: there is no content].

Now let [image: there is no content](T[image: there is no content]) denote the power set of T[image: there is no content] and put



T(θ):={[image: there is no content]∈T[image: there is no content]:[image: there is no content]|=θ}R:={T(θ):θ∈S[image: there is no content]∄}⊆[image: there is no content](T[image: there is no content]).








For a quantified sentence θ = ∃xθ(x) let T(θ) := ∪i∈ℕT(θ(ti)), similarly for the universal quantifier ∀.

Now let μ* be any (finitely additive and normalised to one) outer measure on [image: there is no content](T[image: there is no content]) such that [image: there is no content]. Particularly simple such outer measures μ* are measures which for all mk assign a single particular term structure [image: there is no content] in which [image: there is no content] holds the value [image: there is no content].

Next, define R∞ to be the smallest subset of [image: there is no content](T[image: there is no content]) which contains R and is closed under complements and countable unions. We now define a countably additive measure μ∞ on R∞ as follows: μ∞ : R∞ → [0, 1] such that μ∞(A) = μ*(A) for all A ∈ R∞.

Letting P(θ) := μ∞(T(θ)) defines a probability function as shown in [7] (pp. 168–171). Furthermore, by construction [image: there is no content].

Having demonstrated the existence of the required probability function P, we now show that, for this function P, B incurs an infinite loss. Intuitively, P(φn) can be obtained from the sequence (1k2)k∈[image: there is no content] by inserting zeros and normalising by multiplying with [image: there is no content]. The idea behind this definition is to ensure that for all k ∈ ℕ there exists a unique n ∈ ℕB such that [image: there is no content]. Furthermore, for these n ∈ ℕB it holds that [image: there is no content]. For all other n > 1 we ensure that P(φn) vanishes; P(φ1) is defined in such that Σφ∈πP(φ)=1 holds.

So, when P(φn) > 0 and [image: there is no content] we have



−P(φn)logB(φn)≥6π21k2loge(k2)=6π21k2k2loge=6π2.








Finally, we obtain



−∑φ∈πg(π∞)P(φ)logB(φ)≥g(π∞)∑m2B,m3B,…[image: there is no content]=+∞.








In particular, even the super-regular belief functions have infinite score on any such partition, so one cannot say that any super-regular function has lower overall score than a non-super-regular function. This result, then, casts further doubt on the suggestion that it might be preferable to adopt a super-regular function as one’s belief function. Moreover, it clearly suggests that an attempt to extend the minimax approach, which is based on scoring rules, to languages with quantifiers will be fraught with difficulty.



5.2. The Probability Norm

We have argued that there is little scope for straightforwardly extending the minimax analysis to languages with quantifiers because of the problem that scores will quickly become infinite and thus incomparable. So we need another approach, if we are to show that the Probability axioms P1-P3, as well as the Calibration and Equivocation norms, are to apply to languages with quantifiers.

Our plan of attack is as follows. First, as noted in Section 4.5, language invariance is an important desideratum. In particular, one would not want one’s degrees of belief on the sentences of a quantifier-free language [image: there is no content]∄ to change if one were to introduce quantifiers into the language. That is, if evidence determines that one should adopt B1 as one’s belief function on [image: there is no content]∄ and B2 as one’s belief function on [image: there is no content]∃, where both languages contain the same individuals and relation symbols, then one would want B1 and B2 to agree on quantifier-free sentences of [image: there is no content], i.e., one would want that B1(θ) = B2(θ) for each θ∈S[image: there is no content]∄.

Thus far, we have argued that a belief function on [image: there is no content]∄, given finitely generated [image: there is no content], ought to satisfy the axioms of probability P1 and P2 on [image: there is no content]∄, as well as the Calibration and Equivocation norms. Given the language invariance desideratum, this implies that the appropriate belief function on [image: there is no content]∃, should, when restricted to quantifier-free sentences, satisfy P1, P2 and the Calibration and Equivocation norms. If we can show that the probability axioms P1-3 should also be satisfied on the language [image: there is no content]∃ as a whole, then degrees of belief in the quantified sentences are uniquely determined by those on the quantifier-free sentences [7] (Theorem 11.2): there is no further role that Calibration or Equivocation can play on the quantified sentences. Thus it suffices to argue for the probability axioms on [image: there is no content]∃. As usual, we restrict attention to evidence sets that are finitely generated in the sense of Definition 5, i.e., [image: there is no content][image: there is no content] generated by constraints involving sentences of some [image: there is no content]K∄ and regular weighting functions g.

In Theorem 4 we showed that the default loss incurred by adopting belief function B when φ is true is such that L(φ, B) = − log B(φ), modulo some multiplicative constant. This penalises smaller degrees of belief more than larger degrees of belief. As discussed above, there is little scope for using this to measure the overall expected loss incurred by B on [image: there is no content]∃, and so we cannot directly extend the notion of loss profile developed in Definition 21 to [image: there is no content]∃. However, this default loss function does suggest the following constraint:

(*) Suppose that for all θ∈S[image: there is no content]∃, B(θ) ≥ B′(θ), and there is some φ∈S[image: there is no content]∃ such that B(φ) > B′(φ). Then B has a better loss profile than B′.

In other words, if the default loss incurred by B′ dominates that incurred by B then B has a better loss profile than B′. We can use (*) to extend our notion of loss profile: the two conditions in Definition 21 apply to quantifier-free sentences in [image: there is no content]∃, and we add the further condition (*) to constrain the quantified sentences. We shall show that the addition of (*) goes some way towards demonstrating P1-3 on [image: there is no content]∃, although we shall have to add a further desideratum in order to complete the derivation.

Definition 24 (Better loss profile on[image: there is no content]∃). B has a better loss profile on [image: there is no content]∃ than B′ if and only if:


	B ≺ B′ (as defined in Definition 21), or


	B dominates B′ on[image: there is no content]∃and there exists someφ∈S[image: there is no content]∃such that B(φ) > B′(φ).




We write B ≺* B′ to denote that B has a better loss profile on[image: there is no content]∃than B′. Clearly, ≺* is asymmetric. We will be interested in those belief functions on[image: there is no content]∃that have the best loss profile on [image: there is no content]∃, i.e., the minimal elements of ≺*, and define:



minloss*[image: there is no content][image: there is no content]:={B∈[image: there is no content][image: there is no content]:thereisonB′∈[image: there is no content][image: there is no content]suchthatB′≺*B}.



(14)




Note that if B dominates B′ on [image: there is no content]∃, then B ≺ B′ cannot hold. ≺ and ≺* are thus consistent.

Proposition 20. All B ∈ minloss* [image: there is no content][image: there is no content]agree with[image: there is no content]on[image: there is no content]∄.

Proof. Since we assume that g is regular and that [image: there is no content][image: there is no content] is finitely generated we can apply Theorem 6 to obtain that all all B ∈ minloss [image: there is no content][image: there is no content] agree with [image: there is no content] on [image: there is no content]∄.

The claim now follows, since B ≺ B′ implies B ≺* B′. □

Proposition 21. If minloss [image: there is no content][image: there is no content]=∅, then minloss* [image: there is no content][image: there is no content]=∅.

Proof. ≺ is asymmetric, irreflexive and transitive, Proposition 10; and thus free of cycles. Hence, for all fixed B′∈[image: there is no content][image: there is no content] there exists some B∈[image: there is no content][image: there is no content] such that B ≺ B′. This implies B ≺* B′.

Hence, for all B′∈[image: there is no content][image: there is no content] there exists some B∈[image: there is no content][image: there is no content] such that B ≺* B′. We obtain minloss* [image: there is no content][image: there is no content]=∅. □

We shall use B†∈[image: there is no content][image: there is no content] to denote an arbitrary but fixed belief function in minloss* [image: there is no content][image: there is no content]. A priori, it is not clear that such a function B† exists.

The rest of this section does not depend on [image: there is no content][image: there is no content], the weighting function g nor the particular probability function the B ∈ minloss [image: there is no content][image: there is no content] agree with on [image: there is no content]∄. All that matters is that there exists some probability function P∈[image: there is no content][image: there is no content] the B ∈ minloss [image: there is no content][image: there is no content] agree with on [image: there is no content]∄. As we know, this is the case if [image: there is no content][image: there is no content] is finitely generated and g is regular.

Definition 25. A sentenceφ∈S[image: there is no content]∃is called contingent, if and only if φ and ¬φ are satisfiable.

Lemma 10. For all θ, φ∈S[image: there is no content]∃such that θ |= φ it holds that B†(φ) ≥ B†(θ). In particular, B†(ψ) = 0 for all contradictionsψ∈S[image: there is no content]∃and B†(χ) = 1 for all tautologiesχ∈S[image: there is no content]∃.

For θ, φ∈S[image: there is no content]∃ we have already seen that B†(φ) ≥ B†(θ), this followed from B† satisfying P1 and P2 on [image: there is no content]∄.

Proof. Case 1. θ is a contradiction.

For a tautology τ∈S[image: there is no content]∄, {τ, θ} is a partition. Since B†(τ) = 1 and B†(τ) + B†(θ) ≤ 1 it follows that B†(θ) = 0. Hence, B†(φ) ≥ 0 = B†(θ).

Case 2. θ is a tautology.

Let χ∈S[image: there is no content]∃ be a contradiction. We just proved that B†(χ) = 0. The only constraints applying to B†(θ) are of the form B†(θ) + B†(χ) ≤ 1 where χ is a contradiction and of the form B†(θ) ≤ 1. Thus, the only meaningful constraint on B†(θ) is B†(θ) ≤ 1. By (*) we have B†(θ) = 1.

Since θ implies φ, φ has to be a tautology, too. Hence, B†(φ) = 1 = B†(θ).

Case 3. θ is contingent.

If φ is a tautology, then B†(φ) = 1 by the above and we are done.

Note that φ cannot be a contradiction since θ is satisfiable.

Assume from now on that φ is contingent.

Case 3A |= θ ↔ φ.

For all index sets I and all sentences φi∈S[image: there is no content]∃ the following are equivalent


	{φ}∪∪i∈I{φi}ϵ∏[image: there is no content],


	{θ}∪∪i∈I{φi}ϵ∏[image: there is no content]




(*) implies that B†(φ) = B†(θ).

Case 3B θ, φ and φ ∧ ¬θ are contingent.

Let I be any countable index set and let φi∈S[image: there is no content]∃ for i ∈ I be contingent such that



{φ}∪∪i∈I{φi}ϵ∏[image: there is no content].








Then by the consistency of θ and φ ∧ ¬θ



{θ∧φ}∪{φ∧¬θ}∪∪i∈I{φi}ϵ∏[image: there is no content].








And since θ |= φ



{θ}∪{φ∧¬θ}∪∪i∈I{φi}ϵ∏[image: there is no content].








From normalisation (Definition 1) we now obtain



[image: there is no content]



(15)






[image: there is no content]



(16)




Note that the equations in (15) are the only constraints which constrain B†(φ). In particular, B†(φ) = B†(θ) will not violate any constraint in (15).

The question arises whether B†(ϕ) = B†(θ) imposes any further constraints?

B†(ϕ) only imposes constraints on the B†(φi) for i ∈ I. Let i ∈ I be fixed and let J be an index set and (ψj)j∈J∈S[image: there is no content]∃ be such that {φi}∪{φ}∪∪j∈J{ψj}∈∏[image: there is no content]. Then {φi}∪{θ}∪{φ∧¬θ}∪∪j∈J{ψj}∈∏[image: there is no content]. Thus, B†(φ) = B†(θ) does not impose any further constraint on B†(φi) which is not already imposed by B†(θ).

By (*) we now find B†(θ) ≤ B†(φ). □

Corollary 7. B†respects logical equivalence on[image: there is no content]∃.

Proof. If φ, θ∈S[image: there is no content]∃ are logically equivalent, then B†(φ) ≤ B†(θ) ≤ B†(φ) and thus B†(φ) = B†(θ). □

Corollary 8. For all∃xθ(x)ϵS[image: there is no content]∃it holds that



limn→∞B†(∨i−1nθ(ti))≤B†(∃xθ(x)).








Proof. First note that [image: there is no content] implies [image: there is no content]. Thus, [image: there is no content] is a (not necessarily strictly) increasing sequence in [0, 1] which has a limit. Finally, note that for all n∈[image: there is no content]∨i=1n(θ(ti))implies ∃xθ(x). Hence, B†(∃xθ(x)) has to be greater or equal than the limit. □

Corollary 9 (Superadditivity of B† on [image: there is no content]∃). If |= ¬ (θ ∧ φ), then B†(θ) + B†(ϕ) ≤ B†(θ ˅ φ).

Proof. If either θ or φ is a contradiction or a tautology, then the Corollary follows trivially.

If θ ˅ φ is a tautology, then the corollary follows trivially, too.

It remains to consider the case of contingent θ ˅ φ. By the above we may assume that θ and φ are contingent. Let I be any countable index set and let φi∈S[image: there is no content]∃ for i ∈ I be satisfiable such that



{θ}∪{φ}∪∪i∈I{φi}∈∏[image: there is no content].








Then,



{θ∨φ}∪∪i∈I{φi}∈∏[image: there is no content].








From normalisation (Definition 1) we now obtain



[image: there is no content]








The same reasoning a in Lemma 10 about constraints now yields: B†(θ) + B†(φ) ≤ B†(θ ˅ φ).

Lemma 11. For allθ∈S[image: there is no content]∃it holds that B†(θ) + B†(¬θ) = 1.

In particular, this means that B†(∃xθ(x))+B†(∀x¬θ(x))=1forall∃xθ(x)ϵS[image: there is no content]∃.

Proof. If θ is not contingent, then the lemma holds trivially.

Now assume that θ is contingent and B†(θ) + B†(¬θ) < 1.

Case 1 There exist contingent (φ)i∈I,(ψ)j∈J∈S[image: there is no content]∃ such that



{θ}∪∪i∈I{φi}∈∏[image: there is no content]{¬θ}∪∪j∈J{ψj}ϵ∏[image: there is no content]








with


[image: there is no content]








Note that ∪i∈I{φi}∪∪j∈J{ψj}ϵ∏[image: there is no content] and thus ∑i∈IB†(φi)+∑j∈JB†(ψj)≤1. Adding the above equations we now obtain



2=B†(θ)+∑i∈I[image: there is no content](φi)+B†(¬θ)+∑j∈J[image: there is no content](ψj)≤B†(θ)+B†(¬θ)+1.








B†(θ) + B†(¬θ) ≥ 1 follows. Contradiction.

Case 2 For all π∈∏[image: there is no content] with θ ∈ π and all π′∈∏[image: there is no content] with ¬θ∈π′[image: there is no content] it holds that ∑φ∈πB†(φ)<1 and ∑ψ∈π′B†(ψ)<1.

Applying (*) we obtain a contradiction since B†(θ) or B†(¬θ) could have been set to a greater number.

Case 3 For all π∈∏[image: there is no content] with θ ∈ π it holds that ∑ψ∈πB†(ψ)<1 and there exists a partition π′∈∏[image: there is no content] with ¬θ∈π′[image: there is no content] such that ∑φ∈π′B†(φ) = 1.

Let π′ comprise of contingent (φi)i∈I and ¬θ. For π∈∏[image: there is no content] with θ ∈ π we have for all finite J ⊆ I that



∪j∈J{φj}∪{θ∧¬∨j∈Jφj}∪{ψ∈π:ψ≠θ}ϵ∏[image: there is no content].








In the same manner as in the proof of Lemma 10 it follows that B†(θ) ≥ ∑j∈J B†(φj). Since this holds for all finite J ⊆ I and I can be at most countable, it follows that B†(θ) ≥ ∑i∈I B†(φj).

From B†(¬θ) + ∑i∈I B†(φj) = ∑φ∈π′ B†(φ) = 1 the required contradiction follows:



B†(θ)+B†(¬θ)≥∑i∈IB†(φi)+B†(¬θ)=1.








□

(*) is not strong enough to uniquely determine constrain B† on [image: there is no content]∃. We invoke the following further desideratum to pin down B†: ceteris paribus, prefer belief function B to belief function B′ if B gives greater degree of belief to some universally quantified sentence than does B′. One has to be a bit careful about how one formulates such a principle, in order to specify it in such a way that it can be applied consistently. One can appeal to the concept of prenex normal form in order to formulate this desideratum:

(∀*) Suppose that neither of B, B′ have a better loss profile on [image: there is no content]∃ than the other. Furthermore, suppose there exists a minimal quantifier rank q such that the following hold: For all φ∈S[image: there is no content]∃ in prenex normal form with a quantifier rank of q−1 or less it holds that B(φ) = B(φ′) and for all universally quantified θ∈S[image: there is no content]∃ in prenex normal form of quantifier rank q it holds that B(θ) ≥ B′(θ) and the inequality is strict at least once. Then B is to be preferred to B′.

The motivation behind (∀*) is not in terms of loss. Rather, the motivation stems from the application to inductive logic (see Section 3.3). The use of probability in inductive logic has been roundly criticised for tending to give non-tautological universal laws probability zero, when such laws are widely—and seemingly rationally—believed in science and beyond; see, e.g., Popper [17] (Appendix *vii). Thus there seems good reason to prefer, ceteris paribus, those probability functions which give more credence to universal hypotheses. (There is a flip-side to (∀*). The more credence one gives to a universal statement ∀xθ(x), the less credence one must give to ∃x¬θ(x). One might motivate the latter policy by appeal to Okham’s Razor, which demands scepticism with respect to the existence of entities—particularly new kinds of entity.)

This leaves us with some desiderata that stem from considerations to do with loss, namely the criteria that make up Definition 21—appealing to dominance of loss, dominance of expected loss, and worst-case expected loss—and some desiderata that stem from the application to inductive logic, namely language invariance and (∀*). These desiderata taken together are enough to justify the norms of objective Bayesianism on [image: there is no content]∃, as we shall proceed to show in the remainder of this section.

We shall see first that (∀*) is responsible for ensuring that the degree of belief B(∀xθ(x)), which is already constrained to [0,inf[image: there is no content]∧i=1nB(θ(ti))], is equal to the upper bound. On the other hand, B(∃xθ(x)) comes out to be sup[image: there is no content]∧i=1nB(θ(ti)). An arbitrary belief function B† ∈ minloss* [image: there is no content][image: there is no content] which is also optimal according to (∀*) will be denoted by [image: there is no content].

Proposition 22. For all universally quantified sentences∀xθ(x)ϵ[image: there is no content]∃it holds that[image: there is no content].Proof. First note that [image: there is no content] for all n ∈ ℕ and we thus obtain from Lemma 10 that [image: there is no content].

We now prove by an argument on quantifier ranks that



[image: there is no content]








Assume for contradiction that there exists a minimal quantifier rank q ≥ 1 and a sentence ∀xψ(x) in prenex normal form of quantifier rank q such that [image: there is no content].

We now define a function B′ which will be preferred to [image: there is no content] which contradicts our standing assumption that no function is preferred to [image: there is no content]. Let [image: there is no content] for all sentences χ∈S[image: there is no content]∃ which are in prenex normal form and have a quantifier rank of q − 1 or less. In particular, [image: there is no content] and B′ agree on [image: there is no content]∄.

For all φ(x)ϵ[image: there is no content]∃ in prenex normal form of quantifier rank q − 1 we let



[image: there is no content]








and


[image: there is no content]








Now arbitrarily extend B′ to a function in [image: there is no content][image: there is no content].

Note that [image: there is no content] and [image: there is no content]. So, (*) does not discriminate between [image: there is no content] and B′. Hence, [image: there is no content]and B′ are equally preferable according to ≺*.

[image: there is no content] and B′ agree on all sentences in prenex normal form of quantifier rank q−1. Since [image: there is no content] has to hold for all φ(x)ϵ[image: there is no content]∃ it follows that for φ(x) in prenex normal form of quantifier rank q − 1 that [image: there is no content] and for ∀xφ(x) = ψ the inequality is sharp. (∀*) now implies that B′ is preferred to [image: there is no content].

Finally, every sentence of the form ∀xθ(x) is logically equivalent to a universally quantified sentence φ = ∀xφ(x) in prenex normal. Note that θ(t) is logically equivalent to φ(t) for all constants t. Hence,



B†∀(∀xθ(x))=B†∀(∀xφ(x))=limn→∞B†∀(∧n=1nφ(ti))=limn→∞B†∀(∧n=1nθ(ti)).








□

Proposition 23.[image: there is no content]satisfies the axiom P3.

Proof. Applying Lemma 11, Proposition 22 and applying Lemma 11 a second time we find



B†∀(∃xθ(x))=1−B†∀(∀x¬θ(x))=1−limn→∞B†∀(∧i=1n¬θ(ti))=1−limn→∞(1−B†∀(∨i=1nθ(ti)))=limn→∞B†∀(∨i=1nθ(ti)).








□

The following might be of interest outside the context of this paper since it generalises Gaifman’s Theorem, [5] (Theorem 1).

Proposition 24. Iff:S[image: there is no content]∃→[0,1]satisfies


	f(θ) = 1 for all tautologiesθ∈S[image: there is no content]∄−[P1on[image: there is no content]∄],


	for all mutually exclusive θ, φ∈S[image: there is no content]∄it holds thatf(θ∨φ)=f(θ)+f(φ)−[P2on[image: there is no content]∄],


	[image: there is no content]for all∃xθ(x)ϵS[image: there is no content]∃and – [P3]


	f respects logical equivalence on[image: there is no content]∃ − [P4],




then f is a probability function, i.e., f∈[image: there is no content][image: there is no content].

Clearly, P1 on [image: there is no content]∄ and P4 jointly imply P1.

Proof. First note that f agrees with some probability function on the quantifier free sentences of [image: there is no content]. By Gaifman’s Theorem, this probability function is unique on [image: there is no content]∃; it shall be denoted by Pf.

We now show that f = Pf. We need to show that for all φ∈S[image: there is no content]∃ that f(φ) = Pf(φ).

First, write φ in prenex normal form, φpre. Note that f(φ) = f(φpre).

Next, we do a proof by induction on the quantifier-block rank of φpre to show that f(φpre) = Pf(φpre). The quantifier-block rank of φpre is the number of alternating quantifier blocks in φpre

Base case φpre is of quantifier block rank zero, i.e., φpre does not contain quantifiers. Then



f(φ)=f(φpre)=Pf(φpre)=Pf(φ),








where the second equation holds since f and Pf agree on all sentences of [image: there is no content]∄. The first and the last equation hold since f and Pf respect logical equivalence on [image: there is no content]∄. This fact will be used without further mention.
Inductive step φpre is of quantifier block rank q ≥ 1.

Let us first suppose that [image: there is no content] For q ≥ 2 the first symbol of χ is a universal quantifier, ∀, for q = 1, the first symbol of χ is a relation symbol, a negation symbol or an opening bracket. We find for q = 1



f(φ)=f(φpre)=f(∃x¯χ(x¯))=p3limn1→∞...limnk→∞f(∨i1=1n1...∨ik=1nkχ(ti1,...,tik))=limn1→∞...limnk→∞Pf(∨i1=1n1...∨ik=1nkχ(ti1,...,tik))=p3Pf(∃x¯χ(x¯))=Pf(φpre)=Pf(φ),








where we may substitute Pf for f since χ is quantifier-free and we can thus apply the induction hypothesis.
For q ≥ 2 [image: there is no content], where Q = ∃ for odd q and Q = ∀ for even q.

First, here is an example of two logically equivalent sentences:



[image: there is no content]








Note that the quantifier block rank on of the sentence on the right of “↔” is two. The quantifier block rank has been kept low at the price of larger blocks of quantifiers. Since we are giving a proof by induction on the quantifier block rank, we do not have to worry about paying this price. To denote the larger blocks we will use [image: there is no content]. In general, the greater the number of variables and on the left of an [image: there is no content], the greater the number of variables in [image: there is no content]i.

Now let us compute



f(φ)=f(φpre)=f(∃x¯1∀x¯2...Qx¯qχ(x¯1,x¯2,...x¯q))=p3limn1→∞...limnk→∞f(∨i1=1n1...∨ik=1nk∀x¯2...Qx¯qχ(ti1,...,tik,x¯2,...x¯q))=limn1→∞...limnk→∞f(∀[image: there is no content]2...Q[image: there is no content]q∨i1=1n1...∨ik=1nkχ(ti1,...,tik,[image: there is no content]2,...,[image: there is no content]q))=IHlimn1→∞...limnk→∞Pf(∀[image: there is no content]2...Q[image: there is no content]q∨i1=1n1...∨ik=1nkχ(ti1,...,tik,[image: there is no content]2,...,[image: there is no content]q))=limn1→∞...limnk→∞Pf(∨i1=1n1...∨ik=1nk∀x¯2...Qx¯qχ(ti1,...,tik,x¯2,...,x¯q))=P3Pf(∃x¯1∀x¯2...Qx¯qχ(x¯1,x¯2,...x¯q))=Pf(φpre)=Pf(φ).








“I H” indicates that we used the induction hypothesis on a sentence of quantifier rank q − 1.

The case of [image: there is no content] = ∀xχ(x) is analogous, simply replace the disjunctions by conjunctions.

Theorem 8. If[image: there is no content][image: there is no content]is finitely generated and g is regular, then



{B†∀}=maxent[image: there is no content][image: there is no content]={PΩ†}.








Proof. By Proposition 24 we only need to convince ourselves that [image: there is no content] satisfies P1 on [image: there is no content]∄, P2 on [image: there is no content]∄, P3 and P4 in order to conclude that B†∀∈[image: there is no content]L. Note that we have done so in Theorem 6, Proposition 23 and Corollary 7. So all [image: there is no content] are probability functions.

All [image: there is no content] agree on [image: there is no content]∄ with PΩ†. Two different probability functions have to disagree on a quantifier-free sentence (Gaifman’s theorem). Hence, [image: there is no content] is a unique and equal to PΩ†.

We should point out that (∀*) was only used in Proposition 23. We showed that (*) alone is enough to force that [image: there is no content]satisfies P1, P2 on [image: there is no content]∄, [image: there is no content] and P4.

In sum, then, by adding invoking two new considerations, (*) and (∀*), one can show that the Probability norm must hold on a predicate language with quantifiers. Since the Calibration and Equivocation norms are already forced on the quantifier-free sentences, and probabilities on these quantifier-free sentences determine those of the quantified sentences, all the norms of objective Bayesianism hold on [image: there is no content]∄, assuming that the weighting function is regular and the evidence is finitely generated.




6. More Complex Evidence

The question arises as to which functions have an optimal loss profile when [image: there is no content]L is not finitely generated. In Section 6.2 we shall present a tractable case and show that in that example the function with maximal standard entropy has the best loss profile. First, in Section 6.1, we shall see that not all examples admit of such an analysis. In particular, we shall analyse an example in some depth in which {P†}=maxent[image: there is no content][image: there is no content]butP†6∉minloss[image: there is no content][image: there is no content]. Thus, when evidence is not finitely generated, the optimal loss profile may not be achievable by maximising entropy.


6.1. When Losses Cannot Be Minimised

We shall now develop an example in which the minimax theorem fails: PΩ†∉minloss[image: there is no content][image: there is no content], as we shall see in Proposition 27. However, the entropy identity, [image: there is no content]†={PΩ†}=maxent[image: there is no content][image: there is no content], does hold (Proposition 25 and Proposition 26). The connection with optimal loss fails to obtain since minloss [image: there is no content][image: there is no content]=∅ (Proposition 30). Thus, there is no belief function with an optimal loss profile in this sort of example. Nevertheless, certain equivocal functions P¯N† derived from the maximal entropy function come arbitrarily close to having the best loss profile (Proposition 29 and Proposition 31). So, while there is no unique function with the best loss profile, the functions P¯N† have a very good loss profile.

In the following discussion we shall focus on the most simple possible language, [image: there is no content]=[image: there is no content]U, which contains only one relation symbol, U, which is unary. We focus on this simple language since the minimax results already fail here and considering more expressive languages does not lead to new insights while creating more notational issues. As a technical convenience, we extend the notion of a loss profile to arbitrary functions f:S[image: there is no content]→[0,1], not merely normalised belief functions.

The example that we shall consider is generated by the following evidence:



E={¬U1ti→¬U1t1:i=1,2,…}.








Let [image: there is no content] be the k-th n-state of [image: there is no content]=[image: there is no content]U, i.e., [image: there is no content]. The set of calibrated probability functions can be characterized in various ways:



[image: there is no content]L={P∈[image: there is no content][image: there is no content]:P(¬U1ti→¬U1t1)=1,i=1,2,…}={P∈[image: there is no content][image: there is no content]:P(ωn+11)=P(ω1n)for alln≥1}={P∈[image: there is no content][image: there is no content]:P(ωin)=0for2≤i≤2n−1,n=1,2,...}={P∈[image: there is no content][image: there is no content]:P(ω2n)=0for alln≥2}={P∈[image: there is no content][image: there is no content]:P(¬Ut1∧Utn)=0for alln≥2}={P∈[image: there is no content][image: there is no content]:P(ω1n+1|ω1n)=1for alln∈[image: there is no content]}={P∈[image: there is no content][image: there is no content]:P(ω2n+1|ω1n)=0for alln∈[image: there is no content]}={P∈[image: there is no content][image: there is no content]:P(∀x(Ut1∨¬Ux))=1}={P∈[image: there is no content][image: there is no content]:P(∃x(¬Ut1∧Ux))=0}








The last two characterisations employ quantifiers; adding quantifiers to the language enables a finite representation of what is essentially an infinitely generated evidence set. Hence in Definition 5, we specified that an evidence set is finitely generated just if it generated by quantifier-free sentences of some finite sublanguage.

We now begin our analysis of this example:

Proposition 25. If g = gΩor if g is symmetric and inclusive, then[image: there is no content]†={PΩ†}andPΩ†is not open-minded.

Proof. For all [image: there is no content]



[image: there is no content]n={P∈[image: there is no content][image: there is no content]n∄:p(ωin)=0for all2≤i≤2n−1}.








Then, by Landes and Williamson [4] (Corollary 6, p. 3574) for symmetric and inclusive g



Pn†(ω1n)=Pn†(ωin)=12n−1+1for all2n−1+1≤i≤2n








and so for all [image: there is no content]and all 1 ≤ i ≤ 2n−1


limn→∞Pn†(ω1n)=limn→∞Pn†(ω11)=limn→∞12n−1+1=0.








For all [image: there is no content] and i ∈ {1, 2n−1+1,…,2n}



[image: there is no content]








The result for g = gΩ follows in the same way as above. □

We shall note for later reference that for all n ≥ 2



HΩn(Pn†)=−log12n−1+1>−log12n−1=HΩn(PΩ†).








Proposition 26. If g = gΩor if g is regular, then



maxent[image: there is no content][image: there is no content]={PΩ†}.








Proof. First note that [[image: there is no content][image: there is no content]]=[image: there is no content][image: there is no content].

We shall show that for all Q∈[image: there is no content][image: there is no content]\{PΩ†}there exists an N∈[image: there is no content]such that for all n ≥ N we have HΩn(Pn†)>HΩn(Q) and Hgn(PΩ†)>Hgn(Q).

Since Q≠PΩ† there exists a minimal k∈[image: there is no content] and a k-state ν ∈ Ωk such that Q(ν) > PΩ†(ν) ≥ 0.

Case 1[image: there is no content].

To simplify notation let α := Pk†(ν) = Pk†() α:=Pk†(ν)=Pk†(ω1n)>0for alln≥1 Let us now define a function [image: there is no content]∈[image: there is no content][image: there is no content]\{PΩ†}. Note that since we want [image: there is no content] to be a member of [image: there is no content][image: there is no content] we need to let [image: there is no content](ω1n):=[image: there is no content](ω11)for all n∈[image: there is no content]. Now let for all n∈[image: there is no content]



[image: there is no content](ω1n):α>0[image: there is no content](ωin):=0for2≤i≤2n−1[image: there is no content](ωin):=1−α2n−1for2n−1+1≤i≤2n








The restriction operator ⇂n applied to some belief function B continuous to refer to the restriction of B to [image: there is no content]n∄, rather than to the restriction to [image: there is no content]n.

Note that for all n ≥ 1



{[image: there is no content]⇂n}=argsupp∈EnP(ω1n)=αHgn(P)








since entropy maximisers assign n-states the same degree of belief whenever possible [4] (Corollary 7, p. 3577). Thus, Hgn([image: there is no content])≥Hgn(Q)for alln∈[image: there is no content].Also,HΩn([image: there is no content])≥HΩn(Q)for alln∈[image: there is no content].
Let us compute for n ≥ k



HΩn(PΩ†)−HΩn([image: there is no content])=−log(12n−1)−[−αlog(α)−(1−α)log(1−α2n−1)]=log(2n−1)+αlog(α)+(1−α)(log(1−α)−log(2n−1))=log(2n−1)−(1−α)log(2n−1)+αlog(α)+(1−α)log(1−α)=α(n−1)log(2)+αlog(α)+(1−α)log(1−α).








It follows that for all large enough n ∈ [image: there is no content] that HΩn(PΩ†)>HΩn([image: there is no content])≥HΩn(Q).

For regular g we now find



Hgn(PΩ†)−Hgn([image: there is no content])=g(πn).[α(n−1)log(2)+αlog(α)+(1−α)(log(1−α)]−∑π∈∏ng(π)∑F∈π°PΩ†(F)log(°PΩ†(F))−°[image: there is no content](F)log(°[image: there is no content](F)).








So, as long as [image: there is no content] goes to zero quickly enough it follows that Hgn(PΩ†)>Hgn([image: there is no content])≥Hgn(Q) for large enough n. Corollary 6 shows that this is indeed the case for regular g.

Case 2ν∈{ω2k,…,ω2k−1k} Since Q is assumed to be calibrated, Q∈[image: there is no content][image: there is no content], this case cannot occur. Case 3ν∈{ω2k−1+1k,…,ω2kk}.

Case 3A[image: there is no content].

Then [image: there is no content] But for all n ∈ ℕ



argsupP∈EnP(ω11=0)HΩn(P)={PΩ⇂n†}=argsupP∈EnP(ω11=0)Hgn(P)








Since Q ≠ PΩ† it follows that there exists some N ∈ ℕ such that Q⇂n≠PΩ⇂n†for alln≥N. But then Hgn([image: there is no content])>Hgn(Q)andHΩn([image: there is no content])>HΩn(Q)for alln≥N.

Case B[image: there is no content].

Then [image: there is no content]. Proceed as in Case 1. □

Proposition 27. If g = gΩor if g is regular, thenPΩ†∉minloss[image: there is no content][image: there is no content].

Proof. We here show that there exists an R∈[image: there is no content][image: there is no content]such that for all n ∈ ℕ it holds that Sgn(R,P†)=SΩn(R,P†)=∞ and that there exists an open-minded Q∈[image: there is no content][image: there is no content]such that for all n ∈ ℕ we have supP∈E[image: there is no content]SΩn(P,Q)<∞.

Note that the probability function R∈[image: there is no content][image: there is no content]with [image: there is no content]. Then Sgn(R,PΩ†)=SΩn(R,PΩ†)=∞for alln∈[image: there is no content].

We shall now construct an open-minded Q∈[image: there is no content][image: there is no content] as advertised. For all n ∈ ℕ let



Q(ω1n):=12Q(ωin):=0for all2≤i≤2n−1Q(ωin):=12nfor all2n−1+1≤i≤2n.








Thus, Q is open-minded and hence supP∈[image: there is no content][image: there is no content]SΩn(P,Q)≤supP∈[image: there is no content][image: there is no content]Sgn(P,Q)<+∞ for all n∈ ℕ. □

Note that Condition 1 of Definition 21 is solely responsible for the fact that PΩ†∉minloss[image: there is no content][image: there is no content]. Condition 2 has played no role here.

So far, we have established that [image: there is no content] does not have the best loss profile. The question arises whether there exists a belief function B∈[image: there is no content][image: there is no content] which is a minimal element of ≺, i.e., B∈minloss[image: there is no content][image: there is no content].

Proposition 28. If g = gΩ, then



minloss[image: there is no content][image: there is no content]=∅=minloss[image: there is no content][image: there is no content]=minloss[image: there is no content][image: there is no content]








Initially, one might suspect that minloss[image: there is no content][image: there is no content]=∅ would be somehow due to the fact that the [image: there is no content]do not take beliefs in all sentences into account. This is not the case. As we will see, minloss[image: there is no content][image: there is no content]=∅=minloss[image: there is no content][image: there is no content] holds. That is, even when restricting attention to probability functions, whose values on the n-states completely determine degrees of beliefs in all other sentences, we cannot find a function with an optimal loss profile.

Proof. Suppose for contradiction that Q∈minloss[image: there is no content][image: there is no content]\{PΩ†}.

If Q is not open-minded, then there exists an N ∈ ℕ, an F ⊆ ΩN and an [image: there is no content]∈[image: there is no content][image: there is no content] such that °P (F ) > 0 and °Q(F ) = 0. But then there has to exists some ω ∈ ΩN with ω ∈ F such that P (ω) > 0 = Q(ω) since Q and P are probability functions. Thus, for all n ≥ N there exists some ν ∈ Ωn such that ν = ω with P (ν) > 0 = Q(ν). But then [image: there is no content]for all n ≥ N.

In the proof of Proposition 27 we constructed an open-minded function Q+ ∈ E[image: there is no content]. For Q+ we have for all n that supp∈[image: there is no content][image: there is no content]SΩn(P,Q+)<+∞. So, any Q∈minloss[image: there is no content][image: there is no content] has to be open-minded.

Case 1Q∈minloss[image: there is no content][image: there is no content]\[image: there is no content][image: there is no content]and Q ∉ E[image: there is no content]

Since Q∈[image: there is no content][image: there is no content]\[image: there is no content][image: there is no content] there has to exist a minimal k ≥ 2 such that [image: there is no content].

We next define a probability function [image: there is no content]∈[image: there is no content][image: there is no content] with the following construction for all n ≥ 2



[image: there is no content](ωil):=Q(ωil)for all1≤l≤k−1and alli[image: there is no content](ω1n):=Q(ω1k)for alln∈[image: there is no content][image: there is no content](ω1n):=0for all n≥kand all2≤i≤2n−1[image: there is no content](ωin):=Q(ωin)for all2n−1+1≤i≤2n.








It follows that for all n ≥ k and all ω∈Ωn\{ω2n,…,ω2n−1n} and all P∈[image: there is no content]n such that P (ω) > 0 it holds that. Q(ω)≤[image: there is no content](ω) For all large enough n ∈ N we then find



supp∈E[image: there is no content]SΩn(P,Q)≥−logmin2n−1+1≤i≤2n{Q(ω)}=−logmin2n−1+1≤i≤2n{[image: there is no content](ω)}=supp∈E[image: there is no content]SΩn(P,[image: there is no content])








Hence, there has to exists a [image: there is no content]∈[image: there is no content][image: there is no content]∩minloss[image: there is no content][image: there is no content]with[image: there is no content]≠PΩ†.

Case 2 QQ∈minloss[image: there is no content][image: there is no content]andQ∈[image: there is no content][image: there is no content]{PΩ†}.

Thus, 0<Q(ω11)=Q(ω1n)for all n≥2. Let N ≥ 3 be such that [image: there is no content] For n ≥ N let



[image: there is no content]








We now find for all fixed n ≥ N that



supp∈E[image: there is no content]SΩn(P,Q)=−logQ(ω−n)for allω−n∈Ωn−.








We shall now define a function R∈[image: there is no content][image: there is no content]\{PΩ†} by letting for all n ≥ 2:



R(ω1n):=Q(ω1n)2=Q(ω11)2R(ωin):=0for all2≤i≤2n−1R(ωin):=Q(ωin)+Q(ω11)22|Ωn|>Q(ωin)for all2n−1+1≤i≤2n








That is, [image: there is no content].

For large enough M ∈ ℕ it holds for all n ≥ M that



R(ω1n)>min{R(ω2n−1+1n),...,R(ω2nn)}








Furthermore, for all n ≥ max{M, N} it holds that



argmin{Q(ω2n−1+1n),…,Q(ω2nn)}=argmin{R(ω2n−1+1n),…,R(ω2nn)}








and hence for all large enough fixed n ∈ ℕ and all [image: there is no content]


supP∈E[image: there is no content]SΩn(P,R)=−logR(ω−n)<logQ(ω−n)=supP∈E[image: there is no content]SΩn(P,Q).








Thus, R has a better loss profile than Q. Hence, Q∉minloss[image: there is no content][image: there is no content]andQ∉minloss[image: there is no content][image: there is no content].

Finally, let us consider loss profiles for B∈[image: there is no content][image: there is no content]\[image: there is no content][image: there is no content]..

Case 3B∈minloss[image: there is no content][image: there is no content]andB∉[image: there is no content][image: there is no content]..

For all P∈[image: there is no content][image: there is no content], the expression [image: there is no content]only depends on the degrees of belief B assigns to sentences which represent an n-state. So, the degree of belief in a sentence φ ∈ S[image: there is no content] which does not n-represent an n-state are ignored by [image: there is no content] for all n and all P∈[image: there is no content][image: there is no content]. If B agrees with some probability function P∈[image: there is no content][image: there is no content] on all sentences of S[image: there is no content]∄ which n-represent an n-state, then B and P are equally preferable according to ≺. As we saw above, for all P∈[image: there is no content][image: there is no content] there exists some Q∈[image: there is no content][image: there is no content] with Q ≺ P. Thus, B cannot be a minimal element of ≺.

We can hence assume that for all P∈[image: there is no content][image: there is no content] there exists some sentence φ∈S[image: there is no content]n∄ which n-represents an n-state such that B(φ) 6= P(φ). Since no P∈[image: there is no content][image: there is no content] is dominated, it follows that B(ϕ) < P(φ).

First define a function B0 as follows:



B0(φ):=infρ∈ϱnρω=φB(ρω),if such ann∈[image: there is no content]and such aρ∈ϱnexist,B0(φ):=0otherwish.








B0, which does not agree with any probability function on [image: there is no content]∄ has been constructed in such a way that B and B0 are equally preferred according to ≺.

Next define a function B+ by first letting for all fixed N ∈ ℕ



[image: there is no content]








for all sentences φ∈S[image: there is no content]N∃ which are logically equivalent to an N-state. Put B+(ψ) := 0 for all other ψ∈S[image: there is no content]∃.
Since B+ dominates B0 the loss profile of B+ cannot be worse than that of B0. Furthermore, note that for all N ∈ ℕ, all ω ∈ ΩN and all n > N it holds that



[image: there is no content]








Let α:=limn→∞∑ω∈ΩnB+(ω). For α = 0 it follows by the usual reasoning that B+ cannot have an ideal loss profile. This leads to a contradiction in the usual way.

For 1 ≥ α > 0 define a function B∞ by first letting for all sentences φ∈S[image: there is no content]∃ which are logically equivalent to some n-state ω



[image: there is no content]








For all other sentences φ∈S[image: there is no content]∃ let B∞(φ) := 0.

Observe that for all k ∈ ℕ and all ω ∈ Ωk



B∞(ω)=1αlimn→∞∑v∈Ωnv|=ωB+(v)=1αlimn→∞∑λ∈Ωk+1λ|=ω∑v∈Ωnv|=λB+(v)=∑λ∈Ωk+1λ|=ωB∞(λ).








Finally, we note that B∞ agrees with some P∈[image: there is no content][image: there is no content] on all sentences in S[image: there is no content]∃ which represent a state. Then B cannot have a better loss profile than P. As we saw in Case1 and Case2, for all P∈[image: there is no content][image: there is no content] there exists a Q∈[image: there is no content][image: there is no content] which has a strictly better loss profile than P. This contradicts B ∈ minloss [image: there is no content][image: there is no content]. □

Denote by [image: there is no content] the unique probability function in [image: there is no content][image: there is no content] satisfying for all n ∈ ℕ



P¯N†(ω1n)=PN†(ω1n)=PN†(ω11)=12N−1+1P¯N†(ωin)=0forall2≤i≤2n−1P¯N†(ωin)=(1−12N−1+1)⋅2|Ωn|=1|ΩN|2+1|ΩN||Ωn|forall2n−1+1≤i≤2n.








That is, [image: there is no content] agrees with [image: there is no content] on [image: there is no content]N and equivocates beyond [image: there is no content]N as much as possible while satisfying P¯N†∈[image: there is no content][image: there is no content]Proposition 29. For all ϵ > 0 there exists an N ∈ [image: there is no content]such that for all n ≥ N



supP∈[image: there is no content][image: there is no content]SΩn(P,P¯N†)−supP∈[image: there is no content][image: there is no content]SΩn(P,Pn†)≤ϵ.








Proof. For all large enough N ∈ [image: there is no content] and even larger n ∈ [image: there is no content] we find



0≤supP∈[image: there is no content][image: there is no content]SΩn(P,P¯N†)−supP∈[image: there is no content][image: there is no content]SΩn(P,Pn†)=−log(|ΩN|2|ΩN|2+12|Ωn|)+log(12n2+1)=−log(2N−12N−1+1)+log(2n2)+log(12n−1+1)=−log(2N−12N−1+1)+log(2n−12n−1+1).








For ϵ > 0 let N > 2 be such that [image: there is no content]. Then for all n ≥ N it holds that [image: there is no content]. For n ≥ N large enough we now obtain



0≤supP∈[image: there is no content][image: there is no content]SΩn(P,P¯N†)−supP∈[image: there is no content][image: there is no content]SΩn(P,Pn†)=−log(2N−12N−1+1)+log(2N−12N−1+1)<ϵ.








□

Having considered loss for [image: there is no content]=[image: there is no content]Ω we now investigate loss for regular [image: there is no content].

Proposition 30. If[image: there is no content]is regular, then minloss [image: there is no content][image: there is no content]=∅.

Proof. We will show that ≺ has no minimal element. Suppose for contradiction that B ∈ [image: there is no content][image: there is no content] is such a minimal element.

Define a function B′:S[image: there is no content]→[0,1] by



B′(φ):=0for allφ∈for which there exists ann∈with∨i=22n−1ωin=φB′(ψ):=B(ψ)else.








B′ and B are equally preferable according to ≺ since P (φ) = 0 for all P ∈ [image: there is no content][image: there is no content] and all such φ.

For all φ ∈ S[image: there is no content]∄ let nφ be the minimal n such that φ ∈ S[image: there is no content]nφ∄. Now define a function Binf by first letting



Binf(φ)=infψ∈S[image: there is no content]nφ∄⊨φ↔ψB′(ψ).








Put Binf(φ) := B′(φ) for all other φ ∈ S[image: there is no content]∃. For all φ ∈ S[image: there is no content] it holds that Binf(φ) ≤ B(φ). Furthermore, Binf is equally preferable to B′ according to ≺. We now consider cases to show that there is a function with a strictly better loss profile than Binf, which contradicts our assumption that B ∈ minloss [image: there is no content][image: there is no content].

Case A There exists some N ∈ [image: there is no content] such that for all n ≥ N, Binf and [image: there is no content] agree on all n-states. Since [image: there is no content] it holds that [image: there is no content] and hence [image: there is no content]. Thus, for all n ≥ N[image: there is no content]and [image: there is no content] agree on all n-states. But then for all n ≥ N all F ⊆ Ωn and all ρ ∈ ϱn[image: there is no content]. Hence, for all P ∈ [image: there is no content][image: there is no content] it holds that S[image: there is no content]n(P,B12)≤S[image: there is no content]n(P,Binf).

From the above we have that for all n ≥ N there exists an F ⊆ Ωn such that [image: there is no content] and such that [image: there is no content] for some ρ. Thus, there exists some P ∈ [image: there is no content][image: there is no content] with °P(F) > 0. Then S[image: there is no content]n(P,B12)<S[image: there is no content]n(P,Binf) for this P ∈ [image: there is no content][image: there is no content] and all n ≥ N.

Thus, [image: there is no content] by Condition 2 of Definition 21.

Case B There exist infinitely many n ∈ [image: there is no content] where Binf and [image: there is no content] agree on all n-states and infinitely many n ∈ [image: there is no content] many where they do not agree on all n-states.

Since [image: there is no content] is a probability function it follows that for all n ∈ [image: there is no content], all F ⊆ Ωn and all ρ ∈ ϱn[image: there is no content] has to hold. Now proceed as in Case A.

Case C The number of n ∈ [image: there is no content] for which Binf and [image: there is no content] agree on all n-states is finite (possibly zero).

Case C1 There exists an infinite set J ⊆ [image: there is no content], J = {j1, j2, … }, such that limi−→∞∑ω∈ΩjiBinf(ω)=1.

If [image: there is no content] dominates Binf, we are done.

If [image: there is no content] does not dominate Binf, then define a function B1 ∈ [image: there is no content][image: there is no content] by letting for all n ∈ [image: there is no content] and all F ⊆ Ωn



[image: there is no content]








and requiring that B1 satisfies logical equivalence on L∄. For all φ ∈ S[image: there is no content]∃\S[image: there is no content]∄ use Gaifman’s condition to ensure that B1 is a probability function.
Since we assumed that [image: there is no content] does not dominate Binf[image: there is no content] holds. Furthermore, B1 dominates Binf.So, the loss profile of B1 ∈ [image: there is no content][image: there is no content] is at least equally good as that of B.

We complete this proof by showing that [image: there is no content][image: there is no content]∩ minloss [image: there is no content][image: there is no content]=∅.

Now suppose for contradiction that there exists a function Q ∈ [image: there is no content][image: there is no content]∩ minloss [image: there is no content][image: there is no content] such that [image: there is no content] for some n ≥ 2, i.e., Q ∉ [image: there is no content][image: there is no content]. It needs to hold that [image: there is no content] for all n ∈ [image: there is no content] (open-mindedness).

Let k ≥ 2 be minimal such that [image: there is no content]. Now define a function R ∈ [image: there is no content][image: there is no content] by letting for all n > k



R(ωik):=Q(ωik)+PΩ†(ωik)2forall1≤i≤2kR(ωin):=R(ω1k)=Q(ω1k)2=Q(ω1k)+PΩ†(ω1k)2foralln>kR(ω2n−k+1n):=Q(ω2k)+PΩ†(ω2k)2=Q(ω2k)2>0R(ωin):=Q(v)+PΩ†(v)2forall2n−1+1≤i≤2nwherev∈Ωkwithωin⊨vR(ωin):=0otherwise.








That is, R is the arithmetic mean of Q and [image: there is no content] on [image: there is no content]k. Beyond [image: there is no content]k, R equivocates under the k-states which imply Ut1. For such n-states [image: there is no content] holds. Beyond [image: there is no content]k, there are only two n-states which imply ¬Ut1 which are assigned non-zero probability, [image: there is no content] and [image: there is no content].

We now show that R has a strictly better loss profile than Q what contradicts Q ∈ minloss [image: there is no content][image: there is no content].

Let [image: there is no content] ∈ arg [image: there is no content]. Trivially, [image: there is no content]. Next note that for all n ≥ k which are large enough it holds that



[image: there is no content]








and that


[image: there is no content]








We now find for all large enough n > k that



supP∈[image: there is no content][image: there is no content]Sgn(P,Q)−supP∈[image: there is no content][image: there is no content]Sgn(P,R)≥g(πn)log(Q(vk−)⋅|Ωk||Ωn|)−supP∈[image: there is no content][image: there is no content]Sgn(P,R)≥g(πn)(−log(Q(vk−)⋅|Ωk||Ωn|)−supP∈[image: there is no content][image: there is no content]Sgn(P,R))−supP∈[image: there is no content][image: there is no content]−∑π∈Πn\{πn}g(π)∑F∈π°P(F)log°R(F).








Whenever °P (F) > 0 with F ⊆ Ωn, then °R(F) is bounded from below by [image: there is no content]. Hence, the last term in the above sum converges to zero, since g is regular.

We now obtain the contradiction as follows: there exists some ϵ > 0 such that for all large enough n ≥ k it holds that



−log(Q(vk−)⋅|Ωk||Ωn|)−supP∈[image: there is no content][image: there is no content]SΩn(P,R)=−log(Q(vk−)⋅|Ωk||Ωn|)+log(12k−1+Q(vk−)2⋅|Ωk||Ωn|)=log(12k−1+Q(vk−)2)−logQ(vk−)≥ϵ.








We have thus shown that if [image: there is no content][image: there is no content]∩ minloss [image: there is no content][image: there is no content]≠∅, then there exists some Q ∈ [image: there is no content][image: there is no content]∩ minloss [image: there is no content][image: there is no content].

Case C1A[image: there is no content]. Then Q has infinite worst-case expected loss for all n ∈ [image: there is no content] and we are done.

Case C1B[image: there is no content].

By open-mindedness, [image: there is no content] has to hold.

For all n ∈ [image: there is no content] let [image: there is no content] ∈ arg [image: there is no content] From Q ∈ [image: there is no content][image: there is no content] we now obtain that for all large enough n there exists a probability function R ∈ arg supP∈[image: there is no content][image: there is no content][image: there is no content] such that [image: there is no content].

Next, define a probability function Q′ ∈ [image: there is no content][image: there is no content] where [image: there is no content](ω1n):=[image: there is no content](ω11):=[image: there is no content](ω11) and Q′ equivocates over Ut1, [image: there is no content](ωin):=Q(ω21)|Ω1||Ωn| for all n ∈ [image: there is no content] and for all 2n−1 + 1 ≤ i ≤ 2n. Assume for contradiction that Q ≠ Q′.

We next show that Q′ ≺ Q. This contradicts Q ∈ minloss [image: there is no content][image: there is no content]. To this end let us note that for all large enough n



supP∈[image: there is no content][image: there is no content]Sgn(P,[image: there is no content])≤supP∈[image: there is no content][image: there is no content]g(πn)SΩn(P,[image: there is no content])+supP∈[image: there is no content][image: there is no content]−∑π∈∏n\{πn}g(π)∑F∈π°P(F)log°[image: there is no content](F)≤−g(πn)log[image: there is no content](ω2nn)+supP∈[image: there is no content][image: there is no content]−∑π∈∏n\{πn}g(π)∑F∈π°P(F)log[image: there is no content](ω2nn)=−g(πn)log[image: there is no content](ω2nn)−log([image: there is no content](ω21)|Ω1||Ωn|)⋅∑π∈∏n\{πn}g(π).








Since whenever °P (F) > 0, then °Q′(F) is bounded from below by [image: there is no content](ω2nn).

Thus, for all large enough n we have



0≤supP∈[image: there is no content][image: there is no content]Sgn(P,[image: there is no content])−g(πn)supP∈[image: there is no content][image: there is no content]SΩn(P,[image: there is no content])≤−log([image: there is no content](ω21)|Ω1||Ωn|)⋅∑π∈∏n\{πn}g(π).








g is regular, hence, this last term converges to zero. We thus obtain


limn→∞supP∈[image: there is no content][image: there is no content]g(πn)SΩn(P,[image: there is no content])−supP∈[image: there is no content][image: there is no content]Sgn(P,[image: there is no content])=0.



(17)




Since Q ≠ Q′, Q, Q′ ∈ [image: there is no content][image: there is no content] and Q(ω11)=[image: there is no content](ω11), there has to exist some minimal k ∈ ℕ a minimal

i ≥ 2k−1 + 1 such that Q(ωik)<[image: there is no content](ωik). We now find for all large enough n that



supP∈[image: there is no content][image: there is no content]Sgn(P,Q)−g(πn)supP∈[image: there is no content][image: there is no content]SΩn(P,[image: there is no content])≥g(πn)⋅(supP∈[image: there is no content][image: there is no content]SΩn(P,Q)supP∈[image: there is no content][image: there is no content]SΩn(P,[image: there is no content]))≥g(πn)⋅(−logQ(ω−n)+log[image: there is no content](ω2nn))≥g(πn)⋅(−log(Q(ωin)|Ωk||Ωn|)+log([image: there is no content](ω2ik)|Ωk||Ωn|))≥g(πn)⋅(−logQ(ωik)+log[image: there is no content](ωik))>0.








Recall that there exists 0 < a ≤ b such that for all n ∈ ℕ a ≤ g(πn) ≤ b holds. Hence, there exists some constant c > 0 such that g(πn)(−logQ(ωik)+log[image: there is no content](ωik))≥c>0. From (17) we conclude that for all large enough n



supP∈[image: there is no content][image: there is no content]Sgn(P,Q)−supP∈[image: there is no content][image: there is no content]Sgn(P,[image: there is no content])>0








holds. Thus, Q′ ≺ Q. So, Q ∉ minloss [image: there is no content][image: there is no content].
To complete the proof of Case C1B we show that there exists some N ∈ ℕ such that [image: there is no content] has a strictly better loss profile than Q′.

Let N ∈ ℕ be such that P¯N†(ω11)<[image: there is no content](ω11). Analogous to the above it holds that



limn→∞supP∈[image: there is no content][image: there is no content]Sgn(P,P¯N†)−supP∈[image: there is no content][image: there is no content]g(πn)SΩn(P,P¯N†)=0.



(18)




It hence suffices to show that there exists some ε > 0 such that for large enough N ∈ ℕ and all n ≥ N



g(πn)⋅(supP∈[image: there is no content][image: there is no content]SΩn(P,[image: there is no content])−supP∈[image: there is no content][image: there is no content]SΩn(P,P¯N†))>ϵ.








We now recall that [image: there is no content](ω11)>P¯N†(ω11). The required inequality follows for large enough n ∈ ℕ



supP∈[image: there is no content][image: there is no content]SΩn(P,[image: there is no content])−supP∈[image: there is no content][image: there is no content]SΩn(P,P¯N†)=−log(1−[image: there is no content](ω11)2n−1)+log(1−P¯N†(ω11)2n−1)>ϵ.








Hence, P¯N†≺[image: there is no content].

Case C2 There exist an α > 0 and an minimal N1 such that for all [image: there is no content] holds.

We may assume that Binf is open-minded on [image: there is no content]∄. Thus there has to exist some minimal N ≥ N1 such that [image: there is no content] for all n ≥ N. For all large enough n ≥ N we now find



1g(πn)supP∈[image: there is no content][image: there is no content]Sgn(P,Binf)≥supP∈[image: there is no content][image: there is no content]SΩn(P,Binf)=maxω∈Ωn\{ω2n−1+1n,…,ω2nn}−logBinf(ω)=−log(maxω∈Ωn\{ω2n−1+1n,…,ω2nn}Binf(ω))≥−log1−α−Binf(ω11)2n−1.








Using (18) we find for all large enough n ∈ ℕ



supP∈[image: there is no content][image: there is no content]Sgn(P,Binf)−supP∈[image: there is no content][image: there is no content]Sgn(P,P¯N†)≥g(πn)⋅(−log1−α−Binf(ω11)2n−1+log1−PN†(ω11)2n−1)+(log(|Ωn|)−log(|Ωn|)−log(P¯N†(ω2NN)))⋅∑π∈Πn\{πn}g(π)>0.








□

Proposition 31. For all regular g and all ϵ > 0 there exists an N ∈ ℕ such that for all n ≥ N



supP∈[image: there is no content][image: there is no content]Sgn(P,P¯N†)−supP∈[image: there is no content][image: there is no content]Sgn(P,P¯N†)≤ϵ.








Proof. Let ϵ > 0 be fixed. By (18) it suffices to show that there exists some N ∈ ℕ such that for all n ≥ N it holds that



0≤supP∈[image: there is no content][image: there is no content]Sgn(P,P¯N†)−supP∈[image: there is no content][image: there is no content]Sgn(P,P¯N†)≤g(πn)supP∈[image: there is no content][image: there is no content]SΩn(P,P¯N†)−g(πn)supP∈[image: there is no content][image: there is no content]SΩn(P,P¯N†)≤ϵ.








Now simply note that we have proved this already in Proposition 29. □

Hence, for all ϵ > 0 there exists some N ∈ ℕ such that for all n ≥ N and all Q ∈ [image: there is no content][image: there is no content]



supP∈[image: there is no content][image: there is no content]Sgn(P,PN†)−supP∈[image: there is no content][image: there is no content]Sgn(P,Q)≤supP∈[image: there is no content][image: there is no content]Sgn(P,PN†)−supP∈[image: there is no content][image: there is no content]Sgn(P,PN†)>ϵ.








Although, [image: there is no content] is not a minimal element of ≺, the losses incurred by adopting any other B ∈ [image: there is no content][image: there is no content] can only be marginally better, eventually.

Thus, for fixed k and δ > 0 there exists an N ∈ ℕ such that for all φ∈S[image: there is no content]k|P¯N†(φ)−PΩ†(φ)|<δ. Hence, belief functions with an arbitrarily good loss can be found within an (Euclidean) neighbourhood of [image: there is no content].

Since the [image: there is no content] are probability functions, there does not exist a B ∈ [image: there is no content][image: there is no content] which dominates [image: there is no content] on [image: there is no content]∃ or on [image: there is no content]∄. Furthermore, the [image: there is no content] are optimal according to (∀*). The [image: there is no content] thus are almost optimal in all the senses we here considered.

In essence, the phenomenon of minloss [image: there is no content][image: there is no content]=∅arises from [image: there is no content] having a strictly better loss profile than [image: there is no content] but the limit of the sequence (P¯N†)[image: there is no content] is [image: there is no content], which is not open-minded. This phenomenon is reminiscent of min{x ∈ ℝ : 0 < x < 1} = ∅, where it is possible to get ever closer to zero but it is impossible to reach it.

6.2. When Losses Can Be Minimised

The analysis of Section 6.1, shows that there can be no general minimax theorem which covers any evidence that is not finitely generated. On the other hand, we shall see in this section that for certain natural cases evidence which cannot be finitely generated, minimax theorems do obtain.

Let [image: there is no content] contain only one m-ary relation symbol, U, and c ∈ [0, 1]. Let ν1n:=∧1≤i1,…,im≤n¬Uti1ti2…tim∈Ωn and let [image: there is no content] be an enumeration of the remaining n-states. We shall consider the following example:



[image: there is no content][image: there is no content]={P∈[image: there is no content][image: there is no content]:limn→∞P(ν1n)=c}={P∈[image: there is no content][image: there is no content]:P(∀x1x2…xm¬Ux1x2…xm)=c}.








Slightly less general versions of [image: there is no content][image: there is no content] have attracted recent interest in the literature [18] (Example 3, p. 95), [19] (Example 3.5, p. 172) and [1] (Example 5.7, p. 99). We here consider relations symbols U of arbitrary arity, while previously U was taken to be unary.

First of all, if c = 0 and g is symmetric and inclusive, then P= ∈ [image: there is no content][image: there is no content] and we immediately obtain that [image: there is no content] and {P=}=maxent[image: there is no content][image: there is no content]=minloss[image: there is no content][image: there is no content].

We shall assume from now on that c > 0.

Proposition 32. For symmetric and inclusive g it holds that[image: there is no content]†={P†}={PΩ†}and[image: there is no content]and[image: there is no content]for all n ∈ ℕ and all 1 ≤ I ≤ |Ωn|.

Proof. For all n ≥ 2 and symmetric and inclusive gn it holds that [image: there is no content] for all 1 ≤ i ≤ |Ωn| − 2 by [4] (Corollary 7, p. 3577). Thus, there exists some λn ≥ 0 such that [image: there is no content] and [image: there is no content] for all 2 ≤ k ≤ |Ωn|.

For all n ∈ ℕ, now define a function P1 ∈ [[image: there is no content]n] by [image: there is no content]. Then, define a convex combination of the equivocator on [image: there is no content]n and P1 by [image: there is no content].. Recall that gn is equivocator-preserving (Proposition 7) and that [image: there is no content] is strictly concave on ℙn (Lemma 1). Thus, [image: there is no content] for all [image: there is no content].

On the one hand g-entropy strictly increases with decreasing λn on the other hand Pn†∈[[image: there is no content][image: there is no content]] imposes the constraint [image: there is no content].. Let N ∈ ℕ be minimal with [image: there is no content] Then for all n ≥ N it holds that [image: there is no content]. and [image: there is no content] for all 1 ≤ i ≤ |Ωn| −2.

For all r ≥ N it follows that



[image: there is no content]








Thus, for all r ≥ N we find



P†(ν2r)=limn→∞Pn†(ν2r)=1−c|Ωr|P†(ν1r)=limn→∞Pn†(ν2r)=1−(|Ωr|−1)P†(ν2r)=|Ωr|−(|Ωr|−1)(1−c)|Ωr|=c+1−c|Ωr|=c+P†(ν2r).








Thus, for all n ∈ ℕ [image: there is no content] and [image: there is no content].

We now show that P† is indeed a probability function. We need to show that [image: there is no content] for all n ∈ ℕ and all ω ∈ Ωn:



P†(νin)=1−c|Ωn|=|Ωn+1|1−c|Ωn||Ωn+1|=|Ωn+1||Ωn|P†(νin+1)for all2≤i≤|Ωn|P†(ν1n)=c+1−c|Ωn|=c+1−c|Ωn+1|+(|Ωn+1||Ωn|−1)1−c|Ωn+1|=P†(ν1n+1)+(|Ωn+1||Ωn|−1)P†(ν2n+1).








Finally, observe that [image: there is no content]n†=argsupP∈[image: there is no content]nHΩn(P). Hence, [image: there is no content]†={PΩ†}. □

Proposition 33. If g = gΩor if g is regular, then maxent [image: there is no content][image: there is no content]={PΩ†}.

Proof. Let Q ∈ [image: there is no content][image: there is no content]\{PΩ†}. For regular g, it suffices to show that there exists an N ∈ ℕ such that for all n≥NHgn(Q)<Hgn(PΩ†) holds.

Since [image: there is no content] there has to exist a minimal N ∈ ℕ and an N-state ω′ ∈ [image: there is no content] such that [image: there is no content].

Now define a function Q′: S[image: there is no content] → [0, 1] by requiring that Q′ respects logical equivalence, Q and Q′ agree on S[image: there is no content]N,


	[image: there is no content](ν′):=|ΩN||Ωn|Q(ω′)Q(ω0) for all n > N all ν′ ∈ Ωn with ν′ ⊨ ω′,


	[image: there is no content](ν1n):=Q(ν1n) for all n > N and


	[image: there is no content](ν):=1−Q(ν1n)−Q(ω′)|Ωn|−1−|Ωn||ΩN| for all n > N and all ν ∈ Ωn \ [image: there is no content]with ν ⊭ ω′




In general, Q′ is not a probability function because



[image: there is no content](ν1n)<∑ω∈Ωn+1ω⊨ν1n[image: there is no content](ω).








Note that for all n≥NHΩn(Q)≤HΩn([image: there is no content]) holds.

We now show that for all large enough nHΩn([image: there is no content])<HΩn(PΩ†) holds. Let us first compute



−HΩn([image: there is no content])=Q(ν1n)log(Q(ν1n))+(|Ωn||ΩN||ΩN||Ωn|Q(ω′))logQ(ω′)⋅|ΩN||Ωn|+(1−Q(ν1n)−Q(ω′))log1−Q(ν1n)−Q(ω′)|Ωn|−1−|Ωn||ΩN|=Q(ν1n)log(Q(ν1n))+Q(ω′)⋅(log(Q(ω′))+log(|ΩN||Ωn|))=+(1−Q(ν1n)−Q(ω′))⋅(log(1−Q(ν1n)−Q(ω′)|ΩN|−|ΩN||Ωn|−1)+log(|ΩN||Ωn|))+(1−Q(ν1n)−Q(ω′))⋅log(1−Q(ν1n)−Q(ω′)|ΩN|−|ΩN||Ωn|−1).








Since



[image: there is no content]








we now find with limn→∞[image: there is no content](v1n)=c that


limn→∞HΩn(PΩ†)−HΩn([image: there is no content])=−clog(c)+limn→∞(−(|Ωn|−1)1−c|Ωn|log(1−c|Ωn|)+Q(ν1n)log(Q(ν1n))+Q(ω′)log(Q(ω′))+(1−Q(ν1n))(log(|ΩN||Ωn|))+(1−Q(ν1n)−Q(ω′))⋅(log(1−Q(ν1n)−Q(ω′)|ΩN|−|ΩN||Ωn|−1)))=−clog(c)−(1−c)log(1−c)+limn→∞((1−c)(|ΩN|−1)|Ωn|log(|Ωn|)+clog(c)+Q(ω′)log(Q(ω′))+(1−Q(ν1n))(log(|ΩN||Ωn|)))+(1−c−Q(ω′))⋅(log(1−c−Q(ω′)|ΩN|−1))=−(1−c)log(1−c)+Q(ω′)log(Q(ω′))+(1−c−Q(ω′))⋅(log(1−c−Q(ω′)|ΩN|−1))+limn→∞((1−c)(|Ωn|−1)|Ωn|log(|Ωn|)+(1−Q(ν1n))(log(|ΩN|)−log(|Ωn|)))=−(1−c)log(1−c|ΩN|)+Q(ω′)log(Q(ω′))+(1−c−[image: there is no content](ω′))⋅(log(1−c−Q(ω′)|ΩN|−1))+limn→∞(1−c)(|Ωn|−1)|Ωn|log(|Ωn|)−(1−Q(ν1n))log(|Ωn|)≥Q(νn1)≥c−(1−c)log(1−c|ΩN|)+Q(ω′)log(Q(ω′))+(1−c−Q(ω′))⋅(log(1−c−Q(ω′)|ΩN|−1))+limn→∞(1−c)(|Ωn|−1)|Ωn|log(|Ωn|)−(1−c)log(|Ωn|)=−(1−c)log(1−c|ΩN|)+Q(ω′)log(Q(ω′))+(1−c−Q(ω′))⋅(log1−c−Q(ω′)|ΩN|−1))+(1−c)limn→∞(|Ωn|−1|Ωn|−1)log(|Ωn|)=−(1−c)log(1−c|ΩN|)+Q(ω′)log(Q(ω′))+(1−c−Q(ω′))⋅(log(1−c−Q(ω′)|ΩN|−1)).








Since [image: there is no content] there exists some ϵ > 0 such that for all large enough n



HΩn(PΩ†)−HΩn([image: there is no content])>ϵ>0.








This establishes the result for g = gΩ.

We now turn to regular g.



Hgn(PΩ†)−Hgn(Q)≥HΩn(PΩ†)−HΩn(Q)−∑π∈Πn\{πn}g(π)∑f∈π°Q(F)log°Q(F)≥HΩn(PΩ†)−HΩn([image: there is no content])−∑π∈Πn\{πn}g(π)∑f∈π°Q(F)log°Q(F).








The last sum goes to zero since g is regular, Corollary 6. Eventually, HΩn(PΩ†)−HΩn([image: there is no content]) is greater some ϵ > 0 as we established in the first part of the proof. Thus, for all large enough n ∈ ℕ and all Q∈[image: there is no content][image: there is no content]\{P†} we have



[image: there is no content]








□

Lemma 12. The following three conditions are equivalent for all large enough n ∈ ℕ and inclusive and symmetric g


	P′ϵargsupP∈E[image: there is no content]Sgn(P,PΩ†)


	[image: there is no content]


	P′∈argsupP∈E[image: there is no content]SΩn(P,PΩ†)




Proof. Note that for all P ∈ ℙ[image: there is no content]



Sgn(P,PΩ†)=−∑π∈Πng(π)∑F∈π°P(F)log°PΩ†(F)=−∑ν∈ΩnP(ν)∑F⊆Ωnν∈Fγn(F)log°PΩ†(F)=−P(ν1)(γn(ν1)logPΩ†(ν1)+∑ν1∈F|F|≥2F⊆Ωnγn(F)log°PΩ†(F))+∑i=2|Ωn|−P(νi)(γn(νi)logPΩ†(νi)+∑νi∈F|F|≥2F⊆Ωnγn(F)log°PΩ†(F)).








The term between the last set of brackets () does not depend on i. So, [image: there is no content] only depends on P(ν1) but not on how P distributes probabilities among the other n-states.

For large enough N ∈ ℕ it holds that [image: there is no content] for all 3 ≤ i ≤ |Ωn|.

Since g is symmetric, γn(F) is only a function of the size of F, |F|, it follows that every P′∈argsupP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†) assigns as little probability as possible to ν1. Since we require that P∈[image: there is no content][image: there is no content] it follows that P′(ν1) = c.

The result for [image: there is no content] follows as above by noting that for g = gΩ it holds that γn(ν) = 1 for all n-states ν ∈ Ωn and γn(F) = 0 otherwise. □

Adapting Joyce’s notion of truth-directedness [14] we define:

Definition 26 (Chance-directed scoring rule). A function Ff: [0, 1] × [0, 1] → [0, +∞] of the form Ff (x, y) = x · f(y) + (1 − x) · f(1 − y) is called chance-directed, if and only if for all x ∈ [0, 1], all 0 ≤ λ < 1 and all y ∈ [0, 1] \ {x}



Ff(x,y)=x⋅f(y)+(1−x)⋅f(1−y)>x⋅f((1−λ)x+λy)+(1−x)⋅f(1−(1−λ)x−λy)=Ff(x,(1−λ)x+λy)








holds. For a scoring rule Ff this formalises the idea that beliefs which are closer to the chances on two mutually exclusive and exhaustive events are strictly better scored.
In particular, Ff(x, y) = −x log y − (1 − x) log(1 − y) is chance-directed. The score improves by simultaneously moving y closer to x and 1 − y closer to 1 − x.

Proposition 34. If g is regular, then all B ∈ minloss [image: there is no content][image: there is no content]agree with[image: there is no content]on [image: there is no content]∄.

Proof. If c = 1, then |[image: there is no content][image: there is no content]|=1 and maxent [image: there is no content][image: there is no content]={PΩ†} follows trivially. By Theorem 5 we have that for every function B′∈arginfB∈[image: there is no content][image: there is no content]supP∈[image: there is no content][image: there is no content]Sgn(P,B) it holds that [image: there is no content]. Thus, all B ∈ minloss [image: there is no content][image: there is no content] agree with [image: there is no content] on [image: there is no content]∄.

We now focus on 0 < c < 1.

From the above lemma we obtain



supP∈[image: there is no content][image: there is no content]SΩn(P,PΩ†)=−clog(c+1−c|Ωn|)−(1−c)log(1−c|Ωn|).








We now follow the structure of the proof of Proposition 16 for fixed 0 < c < 1. Let B ∈ minloss [image: there is no content][image: there is no content].

Case1B∈[image: there is no content][image: there is no content]\{PΩ†}.

Case1AB∈[[image: there is no content][image: there is no content]]\{PΩ†}.

If there exists an n ∈ ℕ such that [image: there is no content], then [image: there is no content]. If there exists an m ∈ ℕ such that [image: there is no content], then there has to exist some k > m such that



[image: there is no content]








Since [image: there is no content] either such an n ∈ ℕ or such a k ∈ ℕ has to exist, possibly both exist. Overall, there has to exist some N ∈ ℕ, a [image: there is no content] and an ϵ > 0 such that [image: there is no content].

For large enough n ∈ ℕ, depending on B, [image: there is no content] and c, it holds that



supP∈[image: there is no content][image: there is no content]SΩn(P,B)≥−clogB(ν1n)−(1−c)log(B(νN)|ΩN||Ωn|)>−clogB(ν1n)−(1−c)log((B(νN)+ϵ2)|ΩN||Ωn|)supP∈[image: there is no content][image: there is no content]SΩn(P,PΩ†)=−clog(c+1−c|Ωn|)−(1−c)log(PΩ†(νN)|ΩN||Ωn|).








Since we may assume that [image: there is no content] converges in n to cB∈[image: there is no content][image: there is no content] we now find



limn→∞supP∈[image: there is no content][image: there is no content]SΩn(P,B)−supP∈[image: there is no content][image: there is no content]SΩn(P,PΩ†)1−c≥limn→∞−log(B(νN)|ΩN||Ωn|)+log(PΩ†(νN)|ΩN||Ωn|)>−log(B(νN)+ϵ2)+logPΩ†(νN)>0.








Whether this limit exists or not, we have thus established that for large enough n ∈ ℕ there exists a lower bound of the sequence



(supP∈[image: there is no content][image: there is no content]SΩn(P,B)−supP∈[image: there is no content][image: there is no content]SΩn(P,PΩ†))[image: there is no content]








which is strictly positive, since we take N ∈ ℕ to be fixed here.
For all fixed n ∈ ℕ let P′n∈[image: there is no content][image: there is no content] be such that [image: there is no content] and [image: there is no content]. Note that P′n∈argsupP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†) for all large enough n and P′n∈argsupP∈[image: there is no content][image: there is no content]SΩn(P,PΩ†) for all large enough n, Lemma 12.

To simplify notation let [image: there is no content]. With this notation we have for all large enough n ∈ ℕ



0≤Rn=∑π∈Πn\{πn}−g(π)∑F∈π°P′n(F)log°PΩ†(F)≤∑π∈Πn\{πn}−g(π)∑F∈π°P′n(F)log1−c|Ωn|=∑π∈Πn\{πn}−g(π)log1−c|Ωn|=(log(|Ωn|)−log(1−c))⋅∑π∈Πn\{πn}g(π).








By our standing assumption on g (regularity), we obtain that Rn converges to zero. We now find



supP∈[image: there is no content][image: there is no content]Sgn(P,B)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)=supP∈[image: there is no content][image: there is no content]Sgn(P,B)−g(πn)SΩn(P′n,PΩ†)−Rn≥g(πn)(SΩn(P′n,B)−SΩn(P′n,PΩ†))−Rn.








Because g(πn) is bounded and Rn converges to zero, we obtain for all large enough n ∈ ℕ that



supP∈[image: there is no content][image: there is no content]Sgn(P,B)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)>0.








Case1BB∉[[image: there is no content][image: there is no content]]\[[image: there is no content][image: there is no content]].

Case1Bi [image: there is no content].

Let us first note that this limit has to exist, because [image: there is no content] is a (not necessarily strictly) decreasing sequence bounded from below by c. Let [image: there is no content].

Note that there has to exist some N ∈ ℕ such that for all n ≥ N it holds that [image: there is no content]. For all n ≥ N there has to exist some [image: there is no content] such that [image: there is no content]. Then, for all n ≥ N



1g(πn)⋅supP∈[image: there is no content][image: there is no content]Sgn(P,B)≥−clogB(ν1n)−(1−c)log1−B(ν1n)|Ωn|−1=−clogB(ν1n)−(1−c)(log(1−B(ν1n))+log1|Ωn|−1)>−clog(c+b1−c2)−(1−c)log(1−c−b1−c2)+(1−c)log1|Ωn|−1=clog(c+b1+c2)−(1−c)log1−c−b1−c2|Ωn|−1=−clog(b1+c2)−(1−c)log1−b1+c2|Ωn|−1,








where the strict inequality follows from chance-directedness. We now find


limn→∞supP∈[image: there is no content][image: there is no content]Sgn(P,B)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)>limn→∞g(πn)(−clog(b1+c2)−(1−c)log(1−b1+c2|Ωn|−1)+clog(c+1−c|Ωn|)+(1−c)log(1−c|Ωn|))−Rn=limn→∞g(πn)(−clog(b1+c2)−(1−c)log(1−b1+c2|Ωn|−1⋅|Ωn|)+clog(c+1−c|Ωn|)+(1−c)log(1−c))=limn→∞g(πn)(−clog(b1+c2)−(1−c)log(1−b1+c2)+clog(c+1−c|Ωn|)+(1−c)log(1−c))=(limn→∞g(πn))⋅(−clog(b1+c2)−(1−c)log(1−b1+c2)+clog(c)+(1−c)log(1−c))>0,








where the last line follows from the fact that the standard logarithmic scoring rules is strictly proper, i.e., Equation (11) holds.
Case1Bii[image: there is no content].

Let [image: there is no content], b2 exists for the same reasons b1 exists. Note that there has to exist some N ∈ ℕ such that for all n ≥ N it holds that [image: there is no content]. Using chance-directedness we find for all n ≥ N



1g(πn)⋅supP∈[image: there is no content][image: there is no content]Sgn(P,B)≥−clogB(ν1n)−(1−c)log1−B(ν1n)|Ωn|−1>−clog(c+b2−c2)−(1−c)log1−c−b2−c2|Ωn|−1=−clog(b2−c2)−(1−c)log1−b2−c2|Ωn|−1.








Now proceed as in Case1Bi.

Case2B∈[image: there is no content][image: there is no content]\[image: there is no content][image: there is no content] and B respects logical equivalence on [image: there is no content]∄.

Case2A There exists a PB∉[image: there is no content][image: there is no content] such that for all n ∈ ℕ and all F ⊆ Ωn it holds that °B(F) ≤ °PB(F).

Since B∉[image: there is no content][image: there is no content] there has to exists an N ∈ ℕ and an F′ ∈ ΩN such that °B(F′) < °PB(F′).

Case2Ai[image: there is no content] and no other P∈[image: there is no content][image: there is no content] is such that °B(F) ≤ °P (F) for all n and all F ⊆ Ωn. Follows as does Case2Ai in Proposition 16.

Case2Aii There exists a PB∈[image: there is no content][image: there is no content] such that [image: there is no content].

Then for all n ≥ N and all P ∈ [ [image: there is no content][image: there is no content]] it holds that [image: there is no content]. For all large enough n ∈ ℕ it holds by Case1 that supP∈[image: there is no content][image: there is no content]Sgn(P,PB)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)>0. Thus,



supP∈[image: there is no content][image: there is no content]Sgn(P,B)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)≥supP∈[image: there is no content][image: there is no content]Sgn(P,PB)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)>0.








Case2B There does not exist a PB∈[image: there is no content][image: there is no content] such that for all n ∈ ℕ and all F ⊆ Ωn it holds that °B(F) ≤ °PB(F).

As in Case2B in Proposition 16 we obtain that there has to exist an α > 0 and a N ∈ ℕ such that for all n ≥ N it holds that [image: there is no content].

We have for n ≥ N that



supP∈[image: there is no content][image: there is no content]Sgn(P,B)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)=supP∈[image: there is no content][image: there is no content]Sgn(P,B)−g(πn)SΩn(P′n,PΩ†)−Rn≥g(πn)(SΩn(P′n,B)−SΩn(P′n,PΩ†))−Rn.








To complete the proof we will now show that there exists some β > 0, which depends on [image: there is no content][image: there is no content] and g but does not depend on the particular n ≥ N, such that [image: there is no content]. Since g(πn) is bounded, we then obtain that supP∈[image: there is no content][image: there is no content]Sgn(P,B)−supP∈[image: there is no content][image: there is no content]Sgn(P,PΩ†)>0 for all large enough n ∈ ℕ.

We show that for all large enough n ∈ ℕ that



[image: there is no content]








for all functions f : Ωn→ [0, 1] such that [image: there is no content].
The minimum obtains, if and only if [image: there is no content] for all ω ∈ Ωn as we saw in Proposition 16. Thus, the minimum obtains for [image: there is no content] and [image: there is no content] for all other [image: there is no content]. Let us now compute



−∑ω∈ΩnP′n(ω)logf(ω)=−clog((1−α)(c+1−c|Ωn|))−(1−c)log((1−c)(1−α)|Ωn|−1)=−c(log(c+1−c|Ωn|)+log(1−α))−(1−c)(log(1−c|Ωn|−1)+log(1−α))=−clog(c+1−c|Ωn|)−(1−c)log(1−c|Ωn|−1)−log(1−α).








For n approaching infinity we find



[image: there is no content]








which is strictly greater some β > 0 as required.
Case3B∈[image: there is no content][image: there is no content]\[image: there is no content][image: there is no content] and B does not respect logical equivalence on [image: there is no content]∄.

Simply proceed as in Case2 in Theorem 17. □

Theorem 9.



maxent[image: there is no content][image: there is no content]={PΩ†}={B†∀}.








Proof. Since all B∈minloss[image: there is no content][image: there is no content] agree with [image: there is no content] on [image: there is no content]∄, all B†∈minloss[image: there is no content][image: there is no content] agree with [image: there is no content] on [image: there is no content]∄; as we noted in Proposition 20.

Recall that Theorem 8 does not depend on the particular probability function, as we stated on Page 2508. We can thus apply Theorem 8 to infer that



maxent[image: there is no content][image: there is no content]={PΩ†}={B†∀}.








□




7. Conclusion

In this paper we have set out to provide a unified justification of the three norms of objective Bayesianism in the setting in which the underlying language is a first-order predicate language. We have seen that an approach based on scoring rules can be used to justify the norms on sentences without quantifiers: if the evidence is finitely generated, then the belief function with the best loss profile is a probability function in the set of those calibrated with evidence which has maximum standard entropy, as long as the scoring rule used in the definition of loss profile is defined in terms of a regular weighting function. One can extend this line of argument to handle sentences with quantifiers if one extends the notion of loss profile and imposes two extra desiderata: (i) language invariance and (ii) that one should not give universal hypotheses less credence than the maximum forced by the evidence.

Finally, we saw that this line of justification also applies in some cases in which evidence is not finitely generated. However, we investigated another case in which the justification does not apply because the evidence is such that there is no belief function with the best loss profile. The most one can ask in such a situation is for a belief function that has a sufficiently good loss profile. We saw that in this case one can use standard entropy maximisers to determine belief functions which are arbitrarily close to optimal.

We would identify two main questions for further research. First, it remains an open question as to whether, when the evidence is not finitely generated, a construction appealing to standard entropy maximisers always leads to belief functions that are arbitrarily close to optimal. Second, it would be interesting to investigate the extent to which one can relax the condition that a weighting function should be regular. We speculated that it may be the case that language invariance can be used in place of the condition that the weighting function be strongly refined, but we have little evidence, at this stage, to warrant apportioning a high degree of belief to this claim.






Appendix


A. Non-maximal entropies and non-minimal losses

In Section Section 4.4 we gave a number of minimax theorems for finitely generated evidence. As we saw in Section Section 6.1 the case of evidence which is not finitely generated is more complex. Entropy limits incur, in certain cases, infinite worst case expected loss.

While the minimax theorems relate entropy maximisers (respectively entropy limits) to loss minimisers (respectively belief functions with the best loss profile), these theorems do not tell us much about the general relation between entropy and loss. In particular, the minimax theorems leave open the question as to whether an improvement in loss profile is always accompanied by greater entropy. In this section we will show that this is not the case, by appealing to an example involving a set of calibrated probability functions E[image: there is no content]⊂[image: there is no content][image: there is no content] which is finitely generated and two probability functions, Q, R∈[image: there is no content][image: there is no content], such that Q has a better loss profile than R but has lower entropy than R.

In contrast to Section 6.1, our functions Q and R are open-minded. So, all losses we consider are finite. The fact that R has greater entropy than Q but also incurs a greater loss is thus not due to taking logarithms of zero.

For the sake of simplicity, we shall consider [image: there is no content]=[image: there is no content]U.

Proposition 35. There exist regular weightings g, a finitely generated set[image: there is no content][image: there is no content]⊂[image: there is no content][image: there is no content]and probability functions Q, R∈[image: there is no content][image: there is no content]such that for all[image: there is no content]



Hgn(Q)<Hgn(R)P∈[image: there is no content][image: there is no content]supSgn(P,Q)<P∈[image: there is no content][image: there is no content]supSgn(P,R).








The standard weighting gΩis another such weighting.

Thus, Q has a better loss profile than R, Q ≺ R, but Q also has lower entropy than R, R ≫ Q. Proof. Let



[image: there is no content][image: there is no content]={P∈[image: there is no content][image: there is no content]:P(ω22)=P(ω32)=0&P(ω21)≥0.495}.








We now define R and Q as follows for n ≥ 3:



R(ω11):=0.505=:R(ω12)andR(ω21):=0.495=:R(ω42)R(ωin):=0.505⋅4|Ωn|for all1≤i≤14|Ωn|R(ωin):=0for all14|Ωn|+1≤i≤34|Ωn|R(ωin):=0.495⋅4|Ωn|for all34|Ωn|+1≤i≤|Ωn|Q(ω11):=0.490=:R(ω12)andR(ω21):=0.510=:R(ω42)Q(ωin):=0.490⋅4|Ωn|for all1≤i≤14|Ωn|Q(ωin):=0for all14|Ωn|+1≤i≤34|Ωn|Q(ωin):=0.510⋅4|Ωn|for all34|Ωn|+1≤i≤|Ωn|.








That is, Q and R equivocate beyond [image: there is no content].

We find for n = 1



g(π1)⋅HΩ1(Q)=Hg1(Q)=−g(π1)(0.49log(0.49)+0.51log(0.51))≈0.6929⋅g(π1)<0.6931⋅g(π1)≈−g(π1)(0.505log(0.505)+0.495log(0.495))=Hg1(R)=g(π1)⋅HΩ1(R)








and


g(π1)⋅P∈[image: there is no content][image: there is no content]supSΩ1(P,Q)=P∈[image: there is no content][image: there is no content]supSg1(P,Q)=−g(π1)(0.495log(0.51)+0.505log(0.49))≈0.6935⋅g(π1)<0.7032⋅g(π1)≈−g(π1)log(0.495)=P∈[image: there is no content][image: there is no content]supSg1(P,R)=g(π1)⋅P∈[image: there is no content][image: there is no content]supSΩ1(P,R).








Having established the result for n = 1 we shall now to the general case for n ≥ 2.

For n = 2 note that



HΩ2(Q)=HΩ1(Q)<HΩ1(R)=HΩ1(R)P∈[image: there is no content][image: there is no content]supSΩ2(P,Q)=P∈[image: there is no content][image: there is no content]supSΩ1(P,Q)<P∈[image: there is no content][image: there is no content]supSΩ1(P,R)=P∈[image: there is no content][image: there is no content]supSΩ2(P,R).








For n ≥ 3 we have



HΩn(Q)=−(0.49⋅4|Ωn|)|Ωn|4log(0.49⋅4|Ωn|)−(0.51⋅4|Ωn|)|Ωn|4log(0.51⋅4|Ωn|)=−0.49log(0.49)−0.51log(0.51)+log|Ωn|4=HΩ1(Q)+log|Ωn|4








and in the same way we find


[image: there is no content]








Furthermore,



P∈[image: there is no content][image: there is no content]supSΩn(P,Q)=−0.505log(0.49⋅4|Ωn|)−0.495log(0.51⋅4|Ωn|)=−0.49log(0.49)−0.51log(0.51)+|Ωn|4=P∈[image: there is no content][image: there is no content]supSΩ1(P,Q)+log|Ωn|4P∈[image: there is no content][image: there is no content]supSΩn(P,R)=−log(0.495⋅|Ωn|4)=P∈[image: there is no content][image: there is no content]supSΩ1(P,R)=+log|Ωn|4.








This establishes the result for g = gΩ.

The result follows for such general weightings g which converge quickly enough to the standard weighting gΩ so that all further terms are negligible.



B. Symmetry and equivocator preservation

Recall Definition 14: g is called equivocator-preserving, if and only if gn is equivocator-preserving for all [image: there is no content], i.e., if and only if



[image: there is no content]n†={Q⇂n:Q∈argP∈[image: there is no content][image: there is no content]supHgn(P)}={P=⇂n}.








So, if g is equivocator-preserving and if P=∈[[image: there is no content][image: there is no content]], then P=maximises supP∈[image: there is no content][image: there is no content]Hgn(P) and thus [image: there is no content]†={P=}=maxent[image: there is no content][image: there is no content]=minloss[image: there is no content][image: there is no content]. We know from Proposition 7 that inclusive and symmetric g are equivocator-preserving.

Interestingly, we shall see that there exist non-symmetric gn which are equivocator-preserving. This answers the question posed at the bottom of Landes and Williamson [4] (p. 3574) in the negative.

Proposition 36 (Non-symmetric equivocator preservation). For all[image: there is no content]such that |Ωn| ≥ 4 there exist inclusive, equivocator-preserving and non-symmetric weighting functions gn. The set of such weighting functions gn is convex.

Proof. By Landes and Williamson [4] (Lemma 9 p. 3573) it holds that gn is inclusive and equivocator-preserving, if and only if



y(ω):=∑ω∈FF⊆Ωn∑ω∈Fπ∈∏κ−gn(π)(1−log|Ωn|+log|F|)=c








for some constant, c.
Note that we can simply this expression as follows



∑ω∈FF⊆Ωn∑ω∈ππ∈∏n−gn(π)(1−log|Ωn|+log|F|)=(1−log|Ωn|∑ω∈FF⊆Ωn∑ω∈ππ∈∏n−gn(π)+∑ω∈FF⊆Ωn∑ω∈Fπ∈∏π−gn(π)log|F|=(1−log|Ωn|∑π∈∏n−gn(π)+∑ω∈FF⊆Ωnlog(|F|)⋅∑F∈ππ∈∏n−g(π)=(1−log|Ωn|∑π∈∏n−gn(π)+∑ω∈FF⊆Ωn−γnlog|F|.








The first sum does not depend on ω. Thus, y(ω) is constant, if and only if z(ω):=∑ω∈FF⊆Ωn−γn(F)log|F| is constant.

Let us now define an inclusive and non-symmetric weighting function [image: there is no content] which satisfies this condition. Let k be such that [image: there is no content] and put



[image: there is no content]








Clearly, [image: there is no content] is inclusive (gn(π) > 0 for all π ∈ Πn), non-symmetric (there are two partitions π, π′ such that the classes of π and π′ have the same number of elements but [image: there is no content]) and z(ω) is constant (since ∑ω∈FF⊆Ωnlog(|F|)⋅∑F∈ππ∈Πκ−gn(π)is invariant under permutations of n-states).

Addressing the second part of the proof: For inclusive and equivocator-preserving gn it holds that [image: there is no content] is a strictly concave function on [image: there is no content] and supP∈[image: there is no content]nHgn(P) always obtains for P=⇂n. [image: there is no content] is convex. Hence, the unique maximum of every convex combination of such gn obtains for P=⇂n.

In general, computing a function which maximises [image: there is no content] for P∈[[image: there is no content][image: there is no content]] is a non-trivial computational problem, even for g = gΩ. The only widely shared intuition is that P= ought to be the function in [image: there is no content][image: there is no content] which has greatest entropy. Imposing symmetry is sufficient—but, as we have just seen, not necessary—to ensure that this constraint is satisfied. Imposing symmetry has further structural consequences such as: if [image: there is no content][image: there is no content] is invariant under renaming of states, then so is [image: there is no content]; see Landes and Williamson [4] (Appendix B.3) for details.



C. Key notation

Here we summarise key notation, for ease of reference.
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