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Abstract:

 A common statistical situation concerns inferring an unknown distribution Q(x) from a known distribution P(y), where X (dimension n), and Y (dimension m) have a known functional relationship. Most commonly, n ≤ m, and the task is relatively straightforward for well-defined functional relationships. For example, if Y1 and Y2 are independent random variables, each uniform on [0, 1], one can determine the distribution of X = Y1 + Y2; here m = 2 and n = 1. However, biological and physical situations can arise where n > m and the functional relation Y→X is non-unique. In general, in the absence of additional information, there is no unique solution to Q in those cases. Nevertheless, one may still want to draw some inferences about Q. To this end, we propose a novel maximum entropy (MaxEnt) approach that estimates Q(x) based only on the available data, namely, P(y). The method has the additional advantage that one does not need to explicitly calculate the Lagrange multipliers. In this paper we develop the approach, for both discrete and continuous probability distributions, and demonstrate its validity. We give an intuitive justification as well, and we illustrate with examples.
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1. Introduction

We are often interested in quantitative details about quantities that are difficult or even impossible to measure directly. In many cases we may be fortunate enough to find measureable quantities that are related to our variables of interest. Such examples are abundant in nature. Consider a community of microbes coexisting in humans or other metazoan species [1,2]. It is possible to measure the relative abundances of different species in the microbial community in individual hosts, but it could be difficult to directly measure parameters that regulate interspecies interactions in these diverse communities. Knowing the quantitative values of the parameters representing microbial interactions is of great interest, both because of their role in development of therapeutic strategies against diseases such as colitis, and for basic understanding, as we have discussed in [3].

Inference of these unknown variables from the available data is a subject of a vast literature in diverse disciplines including statistics, information theory, and, machine learning [4–7]. In this paper we will be interested in a specific problem where the unknown variables in a large dimension are related to a smaller number of variables whose joint probability distribution is known from measurements.

In the above example, parameters describing microbial interactions could represent such unknown variables, and their number could be substantially larger than the number of measurable variables, such as abundances of distinct microbial species. The distribution of abundances of microbial species in a host population can be calculated from measurements performed on a large number of individual subjects. The challenge is to estimate the distribution of microbial interaction parameters using the distribution of microbial abundances.

These inference problems can be dealt with by Maximum Entropy (MaxEnt)-based methods that maximize an entropy function subject to constraints provided by the expectation values calculated from measured data [4,5,7,8]. In standard applications of MaxEnt, usually, averages, covariances, and, sometimes, higher-order moments calculated from the data are used to infer such distributions [4,5,7]. Including larger number of constraints in the MaxEnt formalism involves calculating a large number of Lagrange multipliers by solving an equal number of nonlinear equations, which can pose a great computational challenge [9]. Here we propose a novel MaxEnt-based method to infer the distribution of the unknown variables. Our method uses the distribution of the measured variables and provides an elegant MaxEnt solution that bypasses direct calculation of the Lagrange multipliers. Instead, the inferred distribution is described in terms of a degeneracy factor, described by a closed form expression, which depends only on the symmetry properties of the relation between the measured and the unknown variables.

More generally, the above problem relates to the issue of calculating a probability function of X from the probability function of Y, where X and Y are both random variables, and Y and X have a functional relationship. This could involve either discrete or continuous random variables. Standard textbooks [10] in probability theory usually deal with cases where (a) variables X are related to variables of Y by a well-defined functional relationship (x = g(y)), with the distribution of the Y variables (y) known, and (b) X resides in a manifold (dimension n) of lower dimension than the Y manifold (dimension m). However, it is not clear how to extend the standard calculations pertaining to the above well-defined case when multiple values of X variables are associated with the same Y variable. This situation easily arises when n is greater than m. We address this problem here, where we estimate Q(x) from P(y) when n > m. i.e., we infer the higher-dimension variable from the lower-dimension one. We show that when the variables are discrete, no unique solution exists for Q(x), as the system is underdetermined. However, the MaxEnt-based method can provide a MaxEnt solution in this situation that is constrained only by the available information (P(y) in this case) and is free from any additional assumptions. We then extend the results for continuous variables.



2. The Problem

We state the problem, illustrating in this section with discrete random variables. Consider a case when n different random variables, x1,…, xn, are related to m (n > m) different variables, y1, …, ym, as {Yi = fi(x1,…, xn)} (f: [image: there is no content]). We know the probabilities for the y variables and want to reach some conclusion about the probabilities of the x variables.

We introduce a few terms and notations borrowed from physics that we will use to simplify the mathematical description [11]. A state in the x (or y) space refers to a particular set of values in the variables x1,…, xn (or y1,…, ym). We denote the set of these states as {x1,…, xn} or {y1,…, ym}. The vector notations, [image: there is no content] and [image: there is no content], will be used to compactly describe expressions when required. For the same reason, when we use f without a subscript, it will refer to a vector of f values, i.e., y→=f→([image: there is no content])=(f1([image: there is no content]),…,fm([image: there is no content])). In standard textbook examples in elementary probability theory and physics, we are provided with the probability distribution function [image: there is no content], where X is related to Y by a well-defined function, [image: there is no content]. Such cases are common when Y resides in a higher or equal dimension (m ≥ n) than X. Then [image: there is no content], with lower dimension n, is calculated using



Q([image: there is no content])=∑y1,⋯,ym|[image: there is no content][image: there is no content]



(1a)




The summation in Equation (1a) is performed over only those states {y1,…, ym} that correspond to the specified state [image: there is no content]. However, note that the above relation does not hold even when m ≥ n if multiple values of X variables are associated with the same values of the Y variables, e.g., x2 = y, where −∞ < x < ∞ and 0 ≤ y < ∞. The MaxEnt formalism developed here can be used for estimating [image: there is no content] using [image: there is no content] in such cases (see Appendix A1).
Here we are interested in the inverse problem: we are still provided with the probability distribution P(y1,…, ym) and need to estimate the probability distribution Q(x1,…, xn), but now m < n. In this situation, multiple values of the unknown variable X are associated with the same values of observable Y variables and no unique solution for Q(x1,…, xn) exists as the system is underdetermined. Instead of Equation (1a), we use this equation:



P(y→)=∑x1,⋯,xn|f→([image: there is no content])=y→[image: there is no content]=∑x1,⋯,xnQ([image: there is no content])∏i=1mδyi,fi([image: there is no content])



(1b)




The constraints imposed on the summation in the last term by the relations (y→=f→([image: there is no content])) between the states in x and y are incorporated using the Kronecker delta function (δab, where, δa,b = 1 when a = b, and, δa,b = 0 when a ≠ b). For pedagogical reasons we elucidate the problem of non-uniqueness in the solutions using a simple example. This example can be easily generalized.

Example 1. We start with a discrete random variable y, with known distribution [image: there is no content] for y = 0, 1, 2. Then assume that discrete random variables x1 and x2 are related to y, as, y = f(x1,x2) = x1 + x2. We restrict x1 and x2 to being nonnegative integers; hence x1, and x2 can assume only three values, 0, 1, and 2.

It follows that Q(x1,x2) are related to P(y) following Equation (1b) as,



P(y)={Q(0,0)fory=0Q(0,1)+Q(1,0)fory=1Q(0,2)+Q(1,1)+Q(2,0)fory=2








Hence


[image: there is no content]



(2)




The above relation provides three independent linear equations for determining six unknown variables, Q(0,0), Q(1,0), Q(0,1), Q(1,1), Q(2,0), and, Q(0,2). Note, the condition of ∑x1,x2Q(x1,x2)=∑yP(y)=1 is satisfied by the above linear equations, which also makes Q(1,2) = Q(2,1) = Q(2,2) = 0. Therefore, the linear system in Equation (2) is underdetermined and Q(x1,x2) cannot be found uniquely using these equations. (e.g., Q(0,1) and Q(1,0) could each equal 1/6; or Q(0,1) could equal 1/12, with Q(1,0) = 1/4; etc.)

This issue of non-uniqueness is general and will hold as long as the number of constraints imposed by P(y1,…, ym) is smaller than that of the number of unknown Q(x1,…, xn). For example, when each direction in y (or x) can take L (or L1) discrete values and all the states in x are mapped to all the states in y, then the system will be underdetermined as long as, Lm < L1n.



3. A MaxEnt Based Solution (Discrete)

In this section we propose a solution of this problem using a Maximum Entropy based principle, for discrete variables. We can define Shannon’s entropy [4,5,7], S, given by



S=−∑x1,⋯,xnQ([image: there is no content])lnQ([image: there is no content])



(3)




and then maximize S with the constraint that [image: there is no content] should generate the distribution [image: there is no content] in Equation (1b).
Equation (1b) describes the set of constraints spanning the distinct states in the y space. For example, when each element in the y vector assumes binary values (+1 or −1) there are in total 2m number of distinct states in the y space providing 2m number of equations of constraints. We can introduce a Lagrange multiplier for each of the constraint equations, which we denote compactly as a function, λ(y1, …, ym) or [image: there is no content] describing a map from [image: there is no content]. That is, every possible y vector is associated with a unique value of λ. Also note, when [image: there is no content] is normalized, [image: there is no content]is normalized due to Equation (1b), therefore, we will not use any additional Lagrange multiplier for the normalization condition of [image: there is no content]. The distribution, [image: there is no content]([image: there is no content]), that optimizes S, subject to the constraints can be calculated as follows. [image: there is no content] is slightly perturbed from [image: there is no content]([image: there is no content]), i.e., Q([image: there is no content])=[image: there is no content]([image: there is no content])+δQ([image: there is no content]). Then expanding S in Equation (3) and the constraints in Equation (1b) in terms of δQ([image: there is no content]) and setting the terms proportional to δQ([image: there is no content]) zero (optimization condition) yields [image: there is no content]([image: there is no content]) in terms of the Lagrange multipliers, i.e.,



−∑x1,⋯,xnδQ([image: there is no content])ln[image: there is no content]([image: there is no content])−∑x1,⋯,xnδQ([image: there is no content])+∑y1,⋯,ym∑x1,⋯,xnλ(y→)δQ([image: there is no content])∏i=1mδyi,fi([image: there is no content])=0



(4)




One can indeed confirm that the terms in the expansion of S and the constraints proportional to [image: there is no content]at Q([image: there is no content])=[image: there is no content]([image: there is no content]) is −1/[image: there is no content]([image: there is no content]), thus, [image: there is no content]([image: there is no content])maximizes S. The method used here for maximizing S subject to the constraints is a standard one [4,11].

The solution for [image: there is no content]([image: there is no content]) from the above Equation (4) is given by,



[image: there is no content]([image: there is no content])=e∑y1,⋯,ymλ(y→)∏i=1mδyi,fi([image: there is no content])−1=eλ(f→([image: there is no content]))−1



(5)




Note the partition function (usually denoted as Z in textbooks [4,11]) does not arise in the above solution as the normalization condition for Q(x) is incorporated in the constraint equations in Equation (1b). We show the derivation of Equation (5) for Example 1 in Appendix A2 for pedagogical reasons. From the above solution (Equation (5)) we immediately observe the two main features that [image: there is no content]([image: there is no content]) exhibits:


	The values of [image: there is no content]([image: there is no content])for the states {x1, …, xn} that map to the same state y1, …, ym via {fi([image: there is no content])} are equal to each other. In the simple example above, this implies Q(1,0) = Q(0,1), and, Q(1,1) = Q(0,2) = Q(2,0).


	contains all the symmetry properties present in the relation {yi = fi(x1, …, xn)}. In the simple example, the relation between y and x was symmetric in permutation of x1 and x2, implying, Q(x1,x2) = Q(x2,x1).




We will take advantage of the above properties to avoid direct calculation of the Lagrange multipliers in Equation (4): For the states [image: there is no content] in the x space that map to the same state, [image: there is no content], in the y space, Equation (1b) can rewritten as



P(y˜→)=∑x˜1,⋯,x˜n[image: there is no content](x˜→)=k(y˜→)[image: there is no content](x˜′→)



(6a)






[image: there is no content]



(6b)




where [image: there is no content] gives the total number of distinct states [image: there is no content] in the x space that correspond to the state, [image: there is no content] or [image: there is no content]. Since, all the states in [image: there is no content] will have the same probability, in the second step in Equation (6a) we replace the summation with [image: there is no content], multiplied by the probability of any state [image: there is no content] or [image: there is no content] in [image: there is no content]. We designate [image: there is no content] as the degeneracy factor, borrowing a similar terminology in physics. [image: there is no content] can be expressed in terms of the Kronecker delta functions as,


k(y˜→)=∑x1,⋯,xn[∏i=1mδy˜i,fi([image: there is no content])]



(7)




Note, the degeneracy factor in Equation (7) only depends on the relationship between {[image: there is no content]} and [image: there is no content], and, does not depend on the probability distributions, P and Q. In our simple example above, since y = x1 + x2, Q(0,1) and Q(1,0) both correspond to y = 1, therefore [image: there is no content]. Equation (6b) is the main result of this section, which describes the inferred distribution [image: there is no content]([image: there is no content]) in terms of the known probability distribution [image: there is no content], and, [image: there is no content], which can be calculated from the given relation between y and x. Thus, the calculation of [image: there is no content]([image: there is no content]), as shown in Equation (6b), does not involve direct evaluation of the Lagrange multipliers, [image: there is no content]. These two quantities are related to [image: there is no content], and, [image: there is no content], following Equations (5), (6b) and (7), as,


eλ(f→(x′→))−1=P(y˜→)[image: there is no content]



(8)




Example 1, continued. We provide a solution for Example 1 presented above. By simple counting, we see the degeneracy factors are



k(y˜=0)=1,k(y˜=1)=2,k(y˜=2)=3








Thus following Equation (2), Q(0,0) = P(0) = 1/3, Q(0,1) = Q(1,0) = P(1)/2 = 1/6, and, Q(2,0) = Q(1,1) = Q(0,2) = P(2)/3 = 1/9. For more complex problems, the degeneracy factors can be calculated numerically. Maximizing the entropy, S, is what made all the Qs be equal for any one y value.


4. Results for Continuous Variables

The above results can be extended when {Xi} and {Yi} are continuous variables. However, there is an issue that makes a straightforward extension of the calculations shown in the discrete case in the continuum limit difficult. The issue is related to the continuum limit of the entropy function S in Equation (3). Replacing the summation in Equation (3) with an integral in the limit of large number of states as the step size separating the adjacent states is decreased to zero creates an entropy expression which is negative and unbounded [12]. This problem can be ameliorated by defining a relative entropy, RE, defined as,



[image: there is no content]



(9)




where, u is a uniform probability density function defined on the same domain as q. RE always remains positive with a lower bound at zero. The results obtained by maximizing S in the previous section can be derived by minimizing a relative entropy (RE) defined above with the discrete distributions, Q and a uniform distribution, U, where the integral in Equation (9) is replaced by a summation over the states in the x space. RE in Equation (9) quantifies the difference between the distribution q(x1, …, xn) and the corresponding uniform distribution.
The definition of RE in Equation (9) still has an issue of defining the uniform distribution when the x variables are unbounded. In some cases, it may be possible to solve the problem by introducing finite upper and lower bounds and then analyzing the results in the limit where the upper (or lower) bound approaches ∞ (or −∞). We will illustrate this approach in Example 4, below. Also, see Example 3 for a comparison.

In the continuum limit, the constraints on q(x1,…, xn) or q([image: there is no content]), imposed by the probability density function (pdf) p(y1,…,ym) or [image: there is no content] are given by,



p(y→)=∫dx1⋯dxnq([image: there is no content])∏i=1mδD(yi−fi([image: there is no content]))



(10)




The Dirac delta function for a single variable x is defined as,


∫RdxδD(x)=1



(11)




where the region R contains the point [image: there is no content].
Since, the pdf [image: there is no content] resides in a lower dimension compared to q([image: there is no content]), estimation of q([image: there is no content]) in terms of [image: there is no content] requires solution of an underdetermined system.

For continuous variables we can proceed with minimizing the relative entropy using functional calculus [13,14]. The calculation follows the same logic as in the discrete case, we show the steps explicitly for clarity and pedagogy.

The relative entropy (RE) in Equation (9) is a functional of q([image: there is no content]). As in the discrete case, if [image: there is no content] is normalized, i.e., [image: there is no content], then Equations (10) and (11) imply q([image: there is no content]) is normalized as well, i.e.,



∫dx1⋯dxnq([image: there is no content])=1



(12)




We introduce a Lagrange multiplier function, [image: there is no content], and generate a functional, Sλ[q], that we need to minimize in order to minimize Equation (9) along with the constraints in Equation (10). Since, the normalization condition in Equation (12) follows from Equation (10) we do not treat Equation (12) as a separate constraint.

Sλ[q] is given by,



Sλ[q([image: there is no content])]=∫dx1⋯dxn[q([image: there is no content])ln[q([image: there is no content])u([image: there is no content])]]−∫dy1⋯dymλ(y→)[p({yj})−∫dx1⋯dxnq([image: there is no content])∏k=1mδD(yk−fk([image: there is no content]))]=∫dx1⋯dxn[q([image: there is no content])ln[q([image: there is no content])u([image: there is no content])]]−∫dy1⋯dymλ(y→)p(y→)−∫dx1⋯dxnλ(f([image: there is no content]))q([image: there is no content])



(13)




We can take the functional derivative to minimize S as,



δSλ[q([image: there is no content])]δq([image: there is no content])=ln[q([image: there is no content])]+1−ln[u([image: there is no content])]−λ(f→([image: there is no content]))=0



(14)




In deriving Equation (14) we used the standard relation [image: there is no content]. For multiple dimensions this generalizes to, δf[[image: there is no content]]δf[x′→]=∏j=1nδD(xj−x′j). The chain rule for derivatives of functions can be easily generalized for functional derivatives [14]. Equation (14) provides us with the solution that minimizes Equation (13):



q^([image: there is no content])=u([image: there is no content])eλ({fi([image: there is no content])})−1=u0eλ({fi([image: there is no content])})−1=q˜({fi([image: there is no content])})



(15)




where, u0 is a constant related to the density of the uniform distribution. Note the {xi} dependence in the solution, q^([image: there is no content]), arises only though f→([image: there is no content]).
Substituting Equation (15) in Equation (10),



p(y→)=∫dx1⋯dxnq^([image: there is no content])∏k=1mδD(yk−fk([image: there is no content]))=∫dx1⋯dxnq˜(f([image: there is no content]))∏k=1mδD(yk−fk([image: there is no content]))=q˜(y→)κ(y→)⇒q˜(y→)=[image: there is no content][image: there is no content]



(16)




where,


κ(y→)=∫dx1⋯dxn∏k=1mδD(yk−fk([image: there is no content]))



(17)




The second derivative gives,


δ2Sλ[q([image: there is no content])]δq([image: there is no content]′)δq([image: there is no content]″)=1/q([image: there is no content]″)δD(x′−x″)



(18)




The second derivative of Sλ in Equation (18) is always positive, since q is positive. Therefore, q^([image: there is no content]), minimizes the relative entropy in Equation (9). Equations (16) and (17) are the main results of this section, which are the counterparts for the Equations (6b) and (7) in discrete case.

We apply the above results for two examples below.

Example 2. Consider a linear relationship between y and x, e.g., y = x1 + x2, where, 0 ≤ y ≤ ∞ and 0 ≤ x1 ≤ ∞, 0 ≤ x2 ≤ ∞. If the pdf in y is known as, p(y) = 1/μ exp(−y/μ), we would like to know the pdf corresponding q(x1,x2), where, the pdfs p and q are related by Equation (10), i.e.,



[image: there is no content]








The degeneracy factor in the continuous case, according to Equation (17), in this case is,


κ(y)=∫0∞dx1∫0∞dx2δD(y−x1−x2)=∫0ydx1∫0ydx2δD(y−x1−x2)=∫0ydx1∫0ydx2δD(x2−(y−x1))=∫0ydx1=y








The second equality results from the fact that the Dirac delta function is zero outside that region. The fourth equality uses the property of the Delta function,


∫0ydx2δD(x2−a)(where,a=y−x1=constfor this integration)=1








Therefore, [image: there is no content].
Example 3. Let [image: there is no content], 0 ≤ y ≤ ∞ and 0 ≤ (x1, x2) ≤ ∞. Then κ(y), as given by Equation (17), is,



κ(y)=∫0∞dx1∫0∞dx2δD(y−x12−x22)=∫0∞drrδD(y−r2)∫0π/2dϕ=∫0∞d(r2)δD(y−r2)π4=π4








Therefore, according to Equation (17),


[image: there is no content]








In our final example, we illustrate solving the problem by taking the limit when the upper and/or lower bound(s) approach ± ∞, as mentioned near the beginning of this section of the paper.

Example 4. Let [image: there is no content], 0 ≤ y ≤ 2L2 and 0 ≤ (x1, x2) ≤ L. First we calculate κ(y) as given in Equation (17). Therefore, we need to evaluate the integral,



[image: there is no content]








We divide the region of integration (0≤ (x1, x2) ≤ L) into two parts, region I (lighter shade) and II (darker shade) as shown in the Figure 1. Region I contains x1 and x2 values, where, x12 + x22 = y2 ≤ L2, and, region II contains the remaining of the part of the domain (0≤ (x1, x2) ≤ L) of integration. The integrals in these regions are given by the first and the second term after the second equality sign in the equation below.

Figure 1. Shows the different regions used in calculating the integral for κ(y) in Example 4.



[image: Entropy 17 04986f1 1024]







κ(y)=∫regionI∫dx1dx2δD(y−x12−x22))+∫regionII∫dx1dx2δD(y−x12−x22))=∫0LdrrδD(y−r2)∫0π/2dϕ+∫0Ldrr∫cos−1(r/L)π/2−cos−1(r/L)dϕδD(y−r2)








In region I, where y ≤ L2,


κI(y)=∫0LdrrδD(y−r2)∫0π/2dϕ=π2y2y=π4








In region II, where L2 ≤ y ≤ 2L2,


κII(y)=∫0Ldrr∫cos−1(L/r)π/2−cos−1(L/r)dϕδD(y−r2)=∫0Ldrr(π/2−2cos−1(L/r))δD(y−r2)=y2y(π/2−2cos−1(L/y))=π4−cos−1(L/y)








[image: there is no content] varies between 0 (on the line x12 + x22 = L2) and π/4 (at x1 = x2 = L). Note, κ(y) = 0 when x1 = x2 = L, which does have any degeneracy. Therefore, Equation (16) is not valid at this point. Thus, as in Example 2 and 3,


q^(x1,x2)={4p(f(x1,x2))π,when,x12+x22≤L2p(f(x1,x2))(π/4−cos−1(L/x12+x22)),when,L2≤x12+x22<2L2








Limit L→∞: When y ≤ L2, κ(y) = π/4. Thus, as L→∞, as long as y remains in region I we correctly recover the result in example III. If y is in region II, then we can expand κ(y) in a series of a small parameter ε = (y − L2)/L2 as κ(y) = π/4 − [image: there is no content] + O(ε3/2). This result follows from the expansion of [image: there is no content] in region II. We can write,



[image: there is no content]








where, 0 < ε[= (y − L2)/L2] ≤ 1. Using series expansion of cos−1(x) [15] we find, [image: there is no content], and thus, κ(y) = π/4 − [image: there is no content] + O(ε3/2).


5. Discussion

The problem we have attacked here arose from our work with microbial communities [3], but it also has broader statistical applications. For example, the responses of immune cells to external stimuli involve protein interaction networks, where protein-protein interactions, described by biochemical reaction rates, are not directly accessible for measurement in vivo. Recent developments in single cell measurement techniques allow for measuring many protein abundances in single cells, making it possible to evaluate distribution of protein abundances in a cell population [16]. However, it is a challenge to characterize protein-protein interactions underlying a cellular response because the number of these interactions could be substantially larger than the number of measured protein species [17]. These problems involve determining the distribution of a random variable x, where y is another random variable, and X and Y have a functional relationship. In the more common situation, x has dimensionality less than or equal to that of y, and there is often a unique solution. In contrast, we considered here the case where x’s dimensionality is greater than that of y, so there is no unique solution to the problem.

Since there is no unique solution, we propose taking a MaxEnt approach, as a way of “spreading out the uncertainty” as evenly as possible. In the discrete case, intuition would suggest that if k values of Q sum to a given value of P, then the solution that makes the least additional assumptions is for each Q to equal P/k. This intuition is confirmed by our MaxEnt results for the discrete case. In the continuous case, the intuition is not as obvious. However, the MaxEnt solution does capture the same intuitive idea. Instead of dividing P by [image: there is no content] (an integer), we divide p by [image: there is no content], where κ(y)=∫[image: there is no content]d[image: there is no content]δD(y−f([image: there is no content])) when y has dimension 1, or more generally by Equation (17). This use of the Dirac delta function has the similar effect of spreading out the uncertainty evenly.

Estimating the distribution Q(x) does not require explicit calculation of the Lagrange multipliers and the partition sum. Rather, Q(x) is directly evaluated following Equation (6b) (or Equation (17) in the continuous case), using the measured P(y) (or p(y)), and, k(y) (or κ(y)), which depends only on the relationship y = f(x). In standard MaxEnt applications, where constraints are imposed by the average values and other moments of the data, inference of probability distributions requires evaluation of the Lagrange multipliers and the partition sum Z. This involves solving a set of nonlinear equations and the relation between the Z and the Lagrange multipliers. Calculating these quantities, which is usually carried out numerically, can pose a technical challenge when the variables reside in large dimensions. In our case, we avoid these calculations and provide a solution for Q(x) in terms of a closed analytical expression, which is general and thus applicable to any well-behaved example. A limitation is that calculation of the degeneracy factor k(y) (or κ(y) in the continuous case) can present a challenge in higher dimensions and for complicated relations between y and x. Monte Carlo sampling techniques[18] and discretization schemes for Dirac delta functions[19] can be helpful in that regard.
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Appendix


A1. An example for MaxEnt for y = f(x) when n≤ m

Consider a relation, y = x2, where, y and x are integers, and, 0 ≤ y ≤ 1 and −1 ≤ x ≤ 1. Thus, both x = ± 1 are associated with y = 1. The pdf of X, Q(x), is related to the pdf of Y, P(y), as,



[image: there is no content]



(A1a)






[image: there is no content]



(A1b)




Therefore, if P(y) is known, Equation (A1) cannot be used to uniquely determine Q(x) as the above system is underdetermined. We can use the MaxEnt scheme developed here to estimate Q(x). Equation (1) determines Q(0) and using Equation (6): Q(1) = Q(−1) = P(1)/2.



A2. Details of the MaxEnt Calculations for Example 1



S=−Q(0,0)lnQ(0,0)−Q(0,1)lnQ(0,1)−Q(1,0)lnQ(1,0)−Q(0,2)lnQ(0,2)−Q(1,1)lnQ(1,1)−Q(2,0)lnQ(2,0)








The three constraints corresponding to P(y) at y = 0, y = 1, and, y = 2, are denoted by λ1, λ2, and λ3, respectively. Therefore, Equation (4) in this case is given by,



δS=0=−δQ(0,0)(ln[image: there is no content](0,0)+1)−δQ(0,1)(ln[image: there is no content](0,1)+1)−δQ(1,0)(ln[image: there is no content](1,0)+1)−δQ(0,2)(ln[image: there is no content](0,2)+1)−δQ(1,1)(ln[image: there is no content](1,1)+1)−δQ(2,0)(ln[image: there is no content](2,0)+1)+λ1δQ(0,0)+λ2(δQ(1,0)+δQ(0,1))+λ3(δQ(2,0)+δQ(1,1)+δQ(0,2))








The solution for [image: there is no content] can be found by equating the coefficients of each of the δQ to zero since δQ is arbitrary.



[image: there is no content](0,0)=eλ1−1,[image: there is no content](1,0)=[image: there is no content](0,1)=eλ2−1,[image: there is no content](2,0)=[image: there is no content](0,2)=[image: there is no content](1,1)=eλ3−1








Using the above solution and Equation (2) we can easily find


[image: there is no content](0,0)=1/3,[image: there is no content](1,0)=[image: there is no content](0,1)=1/6,[image: there is no content](2,0)=[image: there is no content](0,2)=[image: there is no content](1,1)=1/9








[image: there is no content] is normalized as expected.
Substituting the above equations in the constraint equation in Equation (2) (or Equation (8)) provides the values for the Lagrange multipliers, i.e.,



eλ1−1=1/3⇒λ1=−ln(3)+1;eλ2−1=1/6⇒λ2=−ln(6)+1;eλ3−1=1/9⇒λ3=−ln(9)+1
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