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Abstract: Current approaches to characterize the complexity of dynamical systems usually 

rely on state-space trajectories. In this article instead we focus on causal structure, treating 

discrete dynamical systems as directed causal graphs—systems of elements implementing 

local update functions. This allows us to characterize the system’s intrinsic cause-effect structure 

by applying the mathematical and conceptual tools developed within the framework of 

integrated information theory (IIT). In particular, we assess the number of irreducible 

mechanisms (concepts) and the total amount of integrated conceptual information Φ specified 

by a system. We analyze: (i) elementary cellular automata (ECA); and (ii) small, adaptive 

logic-gate networks (“animats”), similar to ECA in structure but evolving by interacting with 

an environment. We show that, in general, an integrated cause-effect structure with many 

concepts and high Φ is likely to have high dynamical complexity. Importantly, while a 

dynamical analysis describes what is “happening” in a system from the extrinsic perspective 

of an observer, the analysis of its cause-effect structure reveals what a system “is” from its 

own intrinsic perspective, exposing its dynamical and evolutionary potential under many 

different scenarios. 

Keywords: integration; information; causation; artificial evolution 

 
  

OPEN ACCESS



Entropy 2015, 17 5473 

 

 

1. Introduction 

The term “dynamical system” encompasses a vast class of objects and phenomena—any system 

whose state evolves deterministically with time over a state space according to a fixed rule [1]. Since 

living systems must necessarily change their state over time, it is not surprising that many attempts have 

been made to model a wide range of living systems as dynamical systems [2–7], although identifying an 

accurate time-evolution rule and estimating the relevant state variables can be hard. On the other hand, 

even simple state-update rules can give rise to complex spatio-temporal patterns. This has been demonstrated 

extensively using a class of simple, discrete dynamical systems called “cellular automata” (CA) [8–12]. 

CA consist of a lattice of identical cells with a finite set of states. All cells evolve in parallel according 

to the same local update rule, which takes the states of neighboring cells into account (Figure 1A). In 

any dynamical system, the time-evolution rule determines the future trajectory of the system in its state 

space given a particular initial state. The aim of dynamical systems theory is to understand and characterize 

a system based on its long-term behavior, by classifying the geometry of its long-term trajectories. In 

this spirit, cellular automata have been classified according to whether their evolution for most initial 

states leads to fixed points, periodic cycles, or chaotic patterns associated with strange attractors [8,13] 

(Figure 1B). Despite the simplicity of the rules, this classification is undecidable for many CA with 

infinite or very large numbers of cells [14,15]. This is because determining the trajectory of future states 

is often computationally irreducible [16], meaning that it is impossible to predict the CA’s long-term 

behavior in a more computationally efficient way than by actually running the system. In general, the 

relationship between the time-evolution rule, which describes the local behavior of each cell, and the 

global behavior of the entire CA remains indeterminate. Assuming an actual physical implementation 

of a finite size CA, the time-evolution rule is equivalent to a cell’s mechanism, which determines its 

causal interactions with neighboring cells (Figure 1C, see below). Like a logic-gate, each cell computes 

its current state according to its rule, based on the inputs it receives from itself and its neighbors, and 

then outputs its state to itself and its neighbors in turn. 

While the rich dynamical repertoire (dynamical complexity) of cellular automata has been studied 

extensively, their causal structure (causal complexity) has received little attention, presumably because 

it is assumed that all that matters causally reduces to the simple mechanism of the cells, and anything 

that may be interesting and complex is only to be found in the system’s dynamic behavior. For the 

dynamical system itself, however, whether it produces interesting patterns or not might not make any 

causal difference. 

Integrated information theory (IIT) [17,18] offers a mathematical framework to characterize the  

cause-effect structure specified by all the mechanisms of a system from its own intrinsic perspective, 

rather than from the perspective of an extrinsic observer. Table 1 provides an overview of all relevant 

IIT quantities. In IIT a mechanism is any system element or combination of elements with a finite number 

of states and an update rule, such as a CA cell, or a logic-gate, as long as it has irreducible cause-effect 

power within the system. This means that: (a) the mechanism must constrain the past and future states 

of the system by being in a particular state (information); and (b) the particular way in which it does so—

the mechanism’s cause-effect repertoire—must be irreducible to the cause-effect repertoire of its parts 

(integration), as measured by its integrated information φ. 
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Figure 1. Elementary cellular automata (ECA). (A) ECA consist of a 1-dimensional chain 

of cells in either state 0 or 1, which are updated according to a time-evolution rule dependent 

on a cell’s previous state and that of its two nearest neighbors. Given the 23 = 8 possible past 

configurations, 256 different update rules exist, which are labeled by the decimal number of 

their rule in binary. “0” to “1” and/or left-right transformation of a rule (past and current 

state) lead to rules with equivalent behavior; (B) Example evolutions of four ECA (number 

of cells N = 50) with distinct long-term behavior over 50 time-steps for a random initial state 

and periodic boundary conditions; (C) ECA with N = 6 cells and periodic boundary conditions 

illustrated as a network of interacting elements. Edges denote connections between cells. 

Each cell in the ECA has a self-loop and connections to its nearest neighbors. Note, however, 

that depending on the cell’s update rule some of the edges may not be causally effective, 

e.g., if the state of the left neighbor is irrelevant as in rule 136 (10001000). 

Mathematically, the cause-effect repertoire (CER) of a mechanism Mt in its current state mt is a set of 

two conditional probability distributions: the possible past states of a set of elements within the system 

(Zt−1) and the possible futures states of a set of elements within the system (Zt+1) conditioned on mt: ܴܧܥ(݉௧, ܼ௧±ଵ) = ሼcause(ݖ௧ିଵ|݉௧), ሽ (1)(௧ାଵ|݉௧ݖ)effect

By contrast to correlational measures, which use observed state distributions, in IIT cause-effect 

power is quantified taking all possible system perturbations into account with equal probability. In the 

Markovian systems discussed below, this corresponds to applying independent, maximum-entropy input 

states to all system elements (see [17,18] and Supplementary Methods for details). 
To assess the integrated information φ of a mechanism Mt = mt for a given ܼ௧±ଵ, its CER is partitioned 

into two independent parts by injecting independent noise into the connections between ൛ܯଵ,௧, ܼଵ,௧±ଵൟ 
and ൛ܯଶ,௧, ܼଶ,௧±ଵൟ. φ is then measured as the distance between the intact CER and the product CER under 

the partition P: ߮(݉௧, ܼ௧±ଵ, ܲ) = ,௧݉)ܴܧܥ൫ܦ ܼ௧±ଵ), ,ଵ,௧݉)ܴܧܥ ܼଵ,௧±ଵ) × ,ଶ,௧݉)ܴܧܥ ܼଶ,௧±ଵ)൯ (2)

To quantify the irreducibility of a mechanism over a particular set ܼ௧±ଵ it is important to determine  

φ for the “minimum information partition” (MIP), the partition that makes the least difference:  MIP = argmin ቀ߮(݉௧, ܼ௧±ଵ, ܲ)ቁ. The maximally irreducible CER of a mechanism in a state Mt = mt 

over the particular set of system elements ܼ௧±ଵ∗  that maximizes ߮(݉௧, ܼ௧±ଵ,MIP) is called its “concept” 
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(see Table 1). A concept determines the mechanism’s causal role within the system from the intrinsic 

perspective of the system itself. Elementary mechanisms specify 1st-order concepts; mechanisms composed 

of several system elements specify higher-order concepts.  

The set of all concepts is the “cause-effect structure” of a system St in state st. Integrated conceptual 

information Φ quantifies the irreducible cause-effect power of a system of mechanisms taken as a whole. 

It measures how irreducible a system’s cause-effect structure C(st) is compared to the cause-effect structure 

of the system when it is causally partitioned (unidirectionally) across its weakest link ܥ(ݏ௧,	MIP): ߔ(ݏ௧,MIP) = ,௧ݏ)ܥ|(௧ݏ)ܥ)ܦ MIP)) (3)

where D is a distance measure between the two cause-effect structures (see Methods and [17]).  

Over a particular set of elements, one can define any subset as a system from the extrinsic perspective 

of an observer, some of which may specify integrated cause-effect structures with Φ > 0. From the 

intrinsic perspective taken by IIT, however, only non-overlapping sets of elements that specify local maxima 

of integrated conceptual information ΦMax form “complexes” with self-defined causal boundaries. Only 

sets of elements with many specialized, but integrated concepts can achieve high values of Φ. Φ can 

thus be viewed as a measure of the intrinsic causal complexity of a system. 

In this paper, we wish to investigate the relation between the dynamical properties of a system and its 

intrinsic cause-effect power, both in isolated systems and in agents that evolve in and interact with an 

environment of rich causal structure. To that end, we: (i) exhaustively characterize the cause-effect 

power of elementary cellular automata (ECA), one-dimensional CA with only nearest-neighbor 

interactions; and (ii) examine the causal and dynamical properties of small, adaptive logic-gate networks 

(“animats”) evolving in task environments with different levels of complexity. While the state evolution 

of isolated systems, such as the ECA, must be a product of their intrinsic mechanisms, the dynamics of 

behaving agents, such as the animats, is at least partially driven by the inputs they receive from their 

environment. We predict that, to have a large dynamical repertoire, isolated systems must have an 

integrated cause-effect structure with many concepts. In particular, isolated systems that: (i) have few, 

unselective mechanisms with low φMax; (ii) lack composition, meaning their cause-effect structures lack 

higher-order concepts; or (iii) are reducible (Φ = 0), should not be able to produce interesting global 

dynamics. In isolated systems, IIT measures characterizing intrinsic cause-effect power, such as ΦMax, 

the number of concepts, and their ΣφMax, should thus correlate with general dynamical properties of the 

system, such as the maximal transient length to reach fixed points or periodic cycles. By contrast, non-

isolated systems can exhibit complex reactive behavior driven by the environment. Analyzing the 

intrinsic cause-effect structure of a behaving agent can elucidate to what extent the agent itself has a 

complex structure, and to what extent it is merely reactive. Moreover, integrated systems with a rich 

cause-effect structure have adaptive advantages in environments that require context-sensitivity and 

memory [19]. Finally, the examples discussed in this article also reveal conceptual dissociations between 

the observable behaviors of discrete dynamical systems, which describe what a system “happens to be 

doing”, and their intrinsic cause-effect structures, which describe what a system “is”. 

The material on evolving animats presented in this article includes and extends data from [19].  

A condensed version of this article will appear as a book chapter in “From Matter to Life: Information 

and Causality”. 
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Table 1. Overview of integrated information theory (IIT) quantities of mechanisms and 

systems of elements. For a more detailed mathematical formulation see the glossary of 

[17,18]. D: distances in IIT are measured using the earth mover’s distance (see Methods). 

M
E

C
H

A
N

IS
M

 

cause-effect 

repertoire ܴܧܥ(݉௧, ܼ௧±ଵ) 
A set of two conditional probability distributions:  ܴܧܥ(݉௧, ܼ௧±ଵ) = ൛cause(ݖ௧ିଵ|݉௧),   ,ൟ(௧ାଵ|݉௧ݖ)effect
describing how the mechanism Mt in its current state mt constrains the past and future states 

of the sets of system elements Zt-1 and Zt+1, respectively. 

partition P 
ܲ = ൛ܯଵ,௧, ܼଵ,௧±ଵ;ܯଶ,௧, ܼଶ,௧±ଵൟ, where the connections between the parts ൛ܯଵ,௧, ܼଵ,௧±ଵൟ and ൛ܯଶ,௧, ܼଶ,௧±ଵൟ are injected with independent noise. 

integrated 

information φ 

(“small phi”) 

φ measures the irreducibility of a CER w.r.t. a partition P:  ߮(݉௧, ܼ௧±ଵ, ܲ) = ,௧݉)ܴܧܥ൫ܦ ܼ௧±ଵ), ,ଵ,௧݉)ܴܧܥ ܼଵ,௧±ଵ) × ,ଶ,௧݉)ܴܧܥ ܼଶ,௧±ଵ)൯ 
MIP 

The partition that makes the least difference to a CER: 

MIP = argmin ቀ߮(݉௧, ܼ௧±ଵ, ܲ)ቁ. 

ܼ௧±ଵ∗  

The set of system elements ܼ௧±ଵ∗ = ሼܼ௧ିଵ∗ , ܼ௧ାଵ∗ ሽ, where ܼ௧ିଵ∗ = ቊargmaxషభ ൫߮cause(݉௧, ܼ௧ିଵ,MIPcause)൯ቋ and ܼ௧ାଵ∗ =ቊargmaxశభ ቀ߮effect൫݉௧, ܼ௧ାଵ,MIPeffect൯ቁቋ. 

φMax(mt) 

The intrinsic cause-effect power of a mechanisms Mt: ߮Max(݉௧) = ߮൫݉௧, ܼ௧±ଵ∗ ,MIP൯ =min൫߮cause
Max (݉௧), ߮effect

Max (݉௧)൯ =min ቀ߮cause(݉௧, ܼ௧ିଵ∗ ,MIPcause), ߮effect൫݉௧, ܼ௧ାଵ∗ ,MIPeffect൯ቁ 

concept 

The maximally irreducible CER(mt) with φMax(mt) over ܼ௧±ଵ∗ ,௧݉)ܴܧܥ  : ܼ௧±ଵ∗ ) = ൛cause(ݖ௧ିଵ∗ |݉௧), ∗௧ାଵݖ)effect |݉௧)ൟ,  
describing the causal role of mechanism Mt within the system. 

S
Y

S
T

E
M

 

cause-effect 

structure C(st) 

The set of concepts specified by all mechanisms with φMax(mt) > 0 within the system St in 

its current state st. 

ΣφMax The sum of all φMax(mt) of C(st). 

unidirectional  

partition →ܲ 
→ܲ = ሼ ଵܵ, ܵଶሽ, where the connections from the set of elements ଵܵ to ܵଶ are injected with 

independent noise (for t-1 → t and t → t+1). 

integrated 

conceptual 

information Φ 

(“big phi”) 

Φ measures the irreducibility of a cause-effect structure w.r.t. a partition →ܲ:  ݏ)ߔ௧, →ܲ) = ,௧ݏ)ܥ|(௧ݏ)ܥ)ܦ →ܲ)).  
Φ captures how much the CERs of the system’s mechanisms are altered and how much 

φMax is lost by partitioning the system. 

MIP 
The unidirectional system partition that makes the least difference to C(st):  
MIP = argmin→ ൫Φ(ݏ௧, →ܲ)൯. 

ΦMax 

The intrinsic cause-effect power of a system of elements ܵ௧∗.  ߔMax = (∗௧ݏ)ߔ > 0 such that for any other St with (ܵ௧ ∩ ܵ௧∗) ≠ (௧ݏ)ߔ  ,∅ ≤  .(∗௧ݏ)ߔ
complex 

A set of elements ܵ௧∗ with ߔெ௫ = (∗௧ݏ)ߔ > 0. A complex thus specifies a maximally 

irreducible cause-effect structure. 
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2. Results and Discussion 

Central to integrated information theory (IIT) is the postulate that, in order to exist, a system in a state 

must have cause-effect power, since there is no point in assuming that something exists if nothing can 

make a difference to it or it does not make a difference to anything. To exist from its own intrinsic 

perspective, the system moreover must have cause-effect power upon itself. To that end, the system must 

be comprised of mechanisms, elements that have cause-effect power on the system, alone or in combination. 

Our objectives here are to assess whether and how much certain isolated and adaptive discrete dynamical 

systems exist (have irreducible cause-effect power) from their own intrinsic perspective and to determine 

how their cause-effect structures relate to their dynamic complexity. With our results we want to shed 

light on the distinction between the intrinsic perspective of the system itself and the extrinsic perspective 

of an observer, and highlight key aspects of the IIT formalism, such as the notions of causal selectivity, 

composition, and irreducibility, and their significance in the analysis of discrete dynamical systems. 

2.1. Behavior and Cause-Effect Power of Elementary Cellular Automata 

In order to analyze the cause-effect power of elementary cellular automata (ECA), we treat the ECA 

as directed causal graphs, meaning as systems of connected elements that each implement a particular 

function (Figure 1C). If not specified otherwise, all elements of a system implement the same ECA rule. 

It is assumed that the transition probabilities of all system states are known. In a discrete, deterministic 

system, such as the ECA, this corresponds to perturbing the system into all its possible states and 

recording all state-to-state transitions over one time-step (see Supplementary Methods). In the Methods 

section, we outline how the integrated conceptual information Φ and the cause-effect structure of an 

example ECA in a particular state are determined. Even for simple systems with a low number of cells 

N, evaluating the cause-effect structure and its Φ value for a given state is computationally costly. For 

this reason, the Φ values of the ECA rules presented below were calculated from only N+1 states out of 

the 2N possible states with different numbers of cells in states “0” and “1”, from which we obtained an 

average value (<ΦMax>). Since all elements in an ECA specify the same rule and symmetric states have 

redundant cause-effect structures, this sample of states is representative of a large number of the 2N 

possible states (see Figure S1 for distributions of measured IIT quantities across all ECA with N = 5). 

For further details on the mathematical and conceptual tools developed within the IIT framework  

see [17,18]. For the interested reader, the IIT website [20] allows calculating Φ and other IIT measures 

for small systems of logic gates. 

2.1.1. Cause-Effect Structure of ECA vs. Wolfram Classes 

There exist 256 possible ECA time-evolution rules, which can be grouped into 88 different 

equivalency classes. Each class contains maximally four rules, which show identical behavior under “0” 

to “1” transformations, left-right transformations, or both transformations applied at once (Figure 1A). 

Equivalent rules have identical Φ values and equivalent cause-effect structures for complementary states. 

In the remaining article we will thus label each equivalency class by its lowest-numbered member rule. 

In Figure 2 the average ΦMax values of all 88 ECA rule classes are plotted against their respective number 

of concepts and ΣφMax for systems with five and six cells. ΦMax is the integrated conceptual information 
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of the main complex in the system, the set of elements ܵ௧∗ that is most irreducible. φMax measures the 

cause-effect power of individual concepts within the main complex (see Table 1 and Methods). Each 

equivalency class is color-coded according to its Wolfram classification I–IV for random initial states 

[9] according to whether almost all initial conditions lead to (I) the same uniform stable state (black); 

(II) a non-uniform stable state or periodic behavior (blue); (III) pseudo-random or chaotic behavior 

(green), or (IV) complex behavior with a mixture of randomness and order (red). Figure 1B shows the 

time evolution of four example rules from class I–IV, which are also highlighted in Figure 2. For ECA 

with five cells, simple rules from class I all have Φ = 0 or low <ΦMax>, only a limited number of 

concepts, and a low value of <ΣφMax>. Rules from class II have low to intermediate values of <ΦMax>, 

but can have a high number of concepts, albeit typically with lower <ΣφMax> than class III rules (Figure 2B). 

Class III rules show the highest values of <ΦMax> and <ΣφMax> with an intermediate number of concepts. 

For class III systems to have fewer concepts but higher <ΣφMax> compared to class I and II systems, 

their concepts must typically be more selective and/or more irreducible (have more cause-effect power) 

than those of class I or II systems. Finally, class IV rules have high numbers of concepts with intermediate 

to high <ΦMax> and <ΣφMax> values. 

 

Figure 2. Relation of <ΦMax>, <#concepts>, and <ΣφMax> to Wolfram ECA classes I-IV. 

(A) Mean number of concepts <#concepts> plotted against <ΦMax> for all 88 ECA 

equivalence classes for ECA implementations with N = 5 cells. Each rule is color coded  

by its Wolfram class: (I) uniform fixed points in black; (II) non-uniform fixed points and 

periodic behavior in blue, (III) random, chaotic behavior in green; and (IV) complex behavior 

in red; (B) <ΣφMax> of all concepts in the system plotted against <ΦMax> for N = 5 cells. 

(C,D) Same as (A,B), for N = 6 cells. Rules shown in Figure 1B and below in Figure 3 are 

labeled by their rule number. 
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The number of concepts, <ΣφMax>, and <ΦMax> of ECA tends to grow with the number of cells N 

(see below). Nevertheless the distribution of rules on the <ΦMax>/<#concepts> and <ΦMax>/<ΣφMax> 

planes for ECA with six cells stays the same for classes I, II, and IV, and most rules of class III. 

Exceptions are class III rules 18, 90, 105, and 150, which are strongly dependent on N being even or 

odd, with lower <#concepts> for even N. 

An ECA’s cause-effect structure can yield insights about the dynamic potential of the rule it  

is implementing by making its specific causal features explicit (Figure 3). The simplest rule, both 

dynamically and causally, is rule 0 (00000000), which maps every possible state to “all 0” and thus 

belongs to class I. Systems which implement rule 0 cannot specify information about the past state of 

the system (all system states are possible past states of state “all 0”) and thus have no concepts (all φ = 0). 

Moreover, analyzed from the intrinsic perspective, these systems cannot form complexes and are always 

reducible (Φ = 0) (Figure 3A). The latter also applies to class II rules 204 (11001100), the Identity rule, 

and its negation, rule 51 (00110011). This is because under these rules individual cells do not interact 

with each other and therefore can always be partitioned without loss of cause-effect power. Reducible 

systems cannot exist as a whole from the intrinsic perspective of the system itself, since Φ = 0 means 

that one part of the system is not affected by the other. For the same reason, reducible systems cannot 

produce complex global dynamics. 

Several class I and II rules, such as the AND rule 128, allow for complexes, but have only elementary 

mechanisms (only 1st-order concepts), which leads to low Φ values in all states (Figure 3B, Figure 4). 

The cause-effect structures of systems that implement these rules lack composition [17,18]: all sets of 

elements in these systems are reducible, meaning they do not have cause-effect power over and above 

the elementary mechanisms (φ = 0). In the example of Figure 3B, knowing that element A is in state “0” 

already specifies that the cells in its neighborhood A, B, and E must be “0” in the next state, since they 

are AND mechanisms. The state of element B or E does not have any additional effect with respect to 

specifying the system’s future state. Another example of this type is the COPY rule 170 (10101010), 

which belong to class II. Note that all rules with such simple cause-effect structures can be expressed in 

terms of purely linear minimal Boolean functions over the cell neighborhood. In fact, all evaluated 

systems with <#concepts> ≤ N and <ΦMax> ≤ 1 implement linearly separable rules (defined e.g., in [21]). 

Nevertheless, some linear rules still show a high number of concepts with low to medium φMax and 

moderate <ΦMax> values, such as for example the Majority rule 232 (Figure 3C).  

Nonlinearity is necessary, but not sufficient for class III and class IV behavior in ECA [21]. Rule 74 

(01001010) for example belongs to Wolfram class II. In state “all 0” the system implementing rule 74 

with five cells has only slightly higher Φ than the system implementing the linear rule 232 (Figure 3C,D). 

Averaged over N+1 states, however, <ΦMax>, <#concepts>, and <ΣφMax> of rule 74 are substantially 

higher than rule 232 (Figures 2 and 4).  
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Figure 3. Examples of N = 5 cell ECA cause-effect structures. (A) Systems that implement 

reducible rules can be partitioned without loss of cause-effect power, as indicated by the 

system’s network diagram (left). Note that the three reducible rules 0, 51, and 204 produce 

different patterns: class I, class II with periodic behavior, and class II with steady state 

behavior respectively; (B–F) For each example system, the effective network diagram in its 

current state is displayed on the left, together with the cause-effect structure in cause-effect 

space (middle), and a time evolution of the rule for 50 cells (right). The cause-effect 

structures are projected onto three dimensions of cause-effect space (see Methods). Blue 

axes indicate past system states, green axes futures system states. The φMax value of each 

concept is indicated by the size of its yellow circle. The coordinates for every concept in 

cause-effect space are the probabilities their cause-effect repertoire specifies for each system 

state; (B) The AND rule 128 system is a class I example for a system that does form a 

complex, but has only 1st order concepts. Its cause-effect structure lacks composition, 

leading to a low ΦMax value; (C) Linear class II rules can have many concepts, albeit with 

rather low φMax; (D) Example for a non-linear class II rule with all concepts; (E) Example of 

the nonlinear class III rule 90, which does not have 1st order concepts, but highly irreducible 

concepts of higher orders and high ΦMax for odd numbers of cells; (F) Example of a complex 

class IV rule with all possible concepts and high ΦMax. 

  



Entropy 2015, 17 5481 

 

 

 

Figure 4. Distribution of <#concepts> and <φMax> across concept orders for N = 5 ECA. 

The 88 rule equivalency classes are ordered by their <ΦMax>. For each rule, the bar plot 

shows the <#concepts> of each concept order (1st–5th) as a fraction of the maximum number 

of possible concepts (2N-1 = 31 for N = 5). The blue line depicts <φMax> of all concepts at 

the respective concept order (same y axis as the fraction of concepts). Both <#concepts> and 

<φMax> are averages across N+1 system states. Bar colors indicate a rule’s Wolfram class, as 

in Figure 2: (I) black; (II) blue; (III) green; and (IV) red. Note that there are maximally 5 

possible 1st and 4th order concepts <φMax>, 10 possible 2nd and 3rd order concepts, and only 

one possible 5th order concept in an N = 5 system. 
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For nonlinear rules, it can be the case that elementary mechanisms by themselves have no cause-effect 

power (φ = 0). An example is the class III XOR rule 90 (01011010) (Figure 3E). In a rule 90 system, the 

fact that element A is for example in state “0” does not constrain the future state of the system at all. The 

states of A and C together, however, fully determine the future state of element B. Rule 90 is also 

interesting because <ΦMax> and <#concepts> are strongly dependent on whether the number of cells N 

of the system is even or odd. In the case of even N, only N 2nd order concepts exist, which are composed 

of element pairs separated by one cell, such as AC, BD, etc. For odd N, as in Figure 3E, there can be 

additional concepts of higher order than 2. 

Figure 3F shows the cause-effect structure of an N = 5 cell system in state “all 0” implementing  

rule 106, the class IV rule with the highest <ΦMax> value. In this state the system specifies all possible 

2N-1 concepts. In general, for larger ECA systems certain concepts necessarily become reducible, due to 

the limited range of nearest neighbor interaction. Nevertheless, we found that all class IV rules have 

states with concepts of all possible orders, at least up to N = 7 cell systems. Based on this finding, we 

speculate that the capacity to have irreducible concepts at all orders might be a necessary condition for 

complex, universal class IV rules.  

The examples presented in Figure 3 indicate that not only the overall number of concepts, but also 

the distribution of concepts across the different concept orders and their respective φMax values reflect 

general properties of a rule’s cause-effect structure and its integrated conceptual information <ΦMax>. 

Figure 4 provides an overview of the conceptual profiles of all ECA rules for N = 5 systems, ordered by 

increasing <ΦMax>. Note that considering only causes and effects of individual cells (elementary, 1st order 

mechanisms), or of the ECA system as a whole (highest order) would not expose these differences in 

complexity across ECA. Our findings thus highlight the importance of assessing the causal composition 

of a system across all orders. 

By definition, the reducible rules 0, 51, and 204 of Figure 3A with <ΦMax> = 0 do not have any 

concepts. As discussed above based on the example rule 128 (Figure 3B), several class I and II rules 

generally specify only 1st order concepts (e.g., rules 32, 34, 10, 15, etc.). Of these, rules 15 and 170 have 

the highest <ΦMax> = 1, since their 1st order concepts are very selective with <φMax> = 0.5. As shown 

for rule 90 (Figure 3D), some nonlinear class II and III rules (e.g., 36, 126, 105, 90, etc.) do not specify 

any 1st order concepts. In these systems only sets of elements can have cause-effect power. By contrast, 

all class IV rules have concepts of all orders. Overall, rules that specify cause-effect structures with 

higher <ΦMax> tend to have more higher-order concepts and more selective concepts with high <φMax> 

at all orders. 

Taken together, certain general properties of the cause-effect structures of an ECA system are 

determined by its ECA rule and will hold for any number of cells. Moreover, the cause-effect structures 

of ECA systems with five and six cells suggest that a minimum number of concepts, <ΣφMax>, and 

<ΦMax> may be necessary for rules to have the capacity for intricate class III and IV patterns. 

Nevertheless, certain rules that behaviorally lie in class II have only 1st order concepts and <ΦMax> ≤ 1, 

and are thus intrinsically not more complex than class I rules. Other class II rules, however, have similar 

numbers of concepts and <ΦMax> as rules with more complex or random behavior. This may indicate an 

evolutionary potential of these class II rules for complex behavior, meaning that only small changes are 

necessary to transform them into class III or IV rules. Class II rule 74, for example, has a relatively rich 

causal structure and differs in only one bit from class III rule 90 and class IV rule 106 (Figure 3D–F), 



Entropy 2015, 17 5483 

 

 

and rule 154, the class II rule with the highest <ΦMax> value, has indeed been classified as (locally) 

chaotic by other authors [13,22]. 

2.1.2. Additional Causal Equivalencies 

While Wolfram does not distinguish periodic from stationary long term behavior, others further 

subdivided Wolfram’s class II into rules with stable states and rules with periodic behavior [13]. As 

shown above, in terms of the number of concepts, <ΣφMax>, and <ΦMax>, there is no inherent causal 

difference between simple periodic rules and rules with non-uniform stable states. The periodic rule 51, 

for example, is causally equivalent to the stationary rule 204 (Figures 3A and 4). In the same way, the 

Majority rule 232 (11101000), which evolves to a non-uniform stable state, is causally equivalent to rule 

23 (00010111), which is periodic with cycle length 2. Rule 23 is the negation and reversion of rule 232; 

the same is true for rule pair 51 and 204. Analyzing the cause-effect structures of ECA here reveals additional 

equivalences between rules: all rules that under negation or reversion transform into the same rule are 

causally equivalent to their transformation (e.g., in class III 105 to 150, or in class II the equivalency 

classes of rules 12 and 34, etc.; see Figure 4, rules with identical <ΦMax> and concept profiles). These 

additional symmetries between rules have recently been proposed in a numerical study by [23], which 

equates ECA rules if they show equivalent compressed state-to-state transition networks for finite ECA 

across different numbers of cells N. Since compressing the transition network is based on grouping states 

with equivalent causes and effects, the approach is related to IIT measures of cause-effect information, 

but lacks the notion of integration. Intrinsic causal equivalencies between rules that converge to fixed 

points and rules that show simple periodic behavior challenge the usefulness of a distinction based on 

these dynamical aspects. At least for the system itself it does not make a difference. 

2.1.3. Comparison to Several Rule-Based Indicators of Dynamical Complexity 

Integrated conceptual information Φ is related to several rule-based quantities that have been proposed 

as indicators of complex behavior during the past three decades and ultimately rely on basic notions of 

causal selectivity (see below). In Figure 5 we show the correlation between <ΦMax>, <#concepts>, and 

<ΣφMax> obtained from N = 5 ECA systems and three prominent measures [24], Langton’s λ parameter [25], 

the sensitivity measure µ [26], and the Z-parameter [27]. For ECA, the λ parameter simply corresponds 

to the fraction of “0” or “1” outputs in the ECA rule. Rule 232 (11101000) for example has λ = ½. Class 

III and IV rules typically have high λ, and the rules with the highest <ΦMax> values also have the maximum 

value of λ = ½ (Figure 5A, first panel). The parameter µ measures the sensitivity of a rule’s output bit to 

a 1 bit change in the state of the neighborhood, counting across all possible neighborhood states [26]. 

Nonlinear rules that depend on the state of every cell in the neighborhood, such as the Parity rule 150 

(10010110), have the highest values of µ. Finally, the Z parameter assesses the probability with which a 

partially known past neighborhood can be completed with certainty to the left or right side [27]. Sensitive 

rules with high µ also have high Z. However, Z can also be high for some simple rules, such as the 

Identity rule 204 (11001100), which besides has the highest λ = ½.  
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Figure 5. Relation of IIT measures to the rule based parameters λ, µ, and Z. Correlation of 

<ΦMax>, <#concepts>, and <ΣφMax> with (A) Langton’s λ parameter; (B) sensitivity µ, and 

(C) Wuensche’s Z parameter (see text for details). ρ is Spearman’s rank correlation coefficient, 

with p < 0.001 for all correlations, except for the λ and Z parameter vs. <#concepts>, which 

were not significantly correlated when corrected for multiple comparisons. Colors indicate 

Wolfram classes I-IV as in Figures 2 and 4: (I) uniform fixed points in black; (II) non-uniform 

fixed points and periodic behavior in blue; (III) random, chaotic behavior in green; and (IV) 

complex behavior in red. 

All three rule-based quantities are related to each other and the IIT measures to some extent through 

the notion of causal selectivity. A mechanism is maximally selective if it is deterministic and non-degenerate, 

which means that its current state perfectly constrains the past and future state of the system [28]. Causal 

selectivity decreases with indeterminism (causal divergence) and/or degeneracy (causal convergence). 

While cellular automata are fully deterministic systems, many rules show degeneracy, which means they 

are deterministically convergent, mapping several past states into the same present state. Even in fully 

deterministic systems, individual mechanisms comprised of a subset of system elements typically cannot 

constrain the future state of the system completely, if there are degenerate mechanisms in the system: 

conditioning on Mt = mt in this case may still leave the remaining inputs to the elements in Zt+1 

undetermined (“noised”, i.e., equally likely to be “0” or “1”). A single cell in an ECA that implements 

the Majority rule 232, for example, cannot completely determine its next state and that of its neighbors 

by itself (see Methods). Low values of λ, µ, and Z all indicate high degeneracy in the system. This means 

that, on average, the system’s mechanisms and current states do not constrain the past and future states 
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of the system much. Unselective cause-effect repertoires lead to concepts with low φMax, less higher-

order concepts in the system, and less integrated conceptual information Φ.  

Of the three rule-based measures plotted in Figure 5, µ shows the strongest correlation with <ΦMax>, 

<#concepts>, and <ΣφMax>. This is because, similar to the IIT measures, µ assesses the causal power of 

each cell in the rule neighborhood, by testing whether perturbing it makes a difference to the output. 

Unlike the λ and Z parameter, µ thus assigns low (but still not zero) values to rules with selective but 

trivially reducible causes and effects such as the Identity rule 204 or its negation rule 51, which only 

depend on a cell’s own past value but not that of its neighbors (Figure 3A). However, compared to the 

IIT measures, the sensitivity parameter µ lacks the notion of causal composition, according to which 

higher order mechanisms can have irreducible cause-effect power. Generally, while λ, µ, and Z are largely 

based on empirical considerations, measures of information integration are derived from one underlying 

principle—intrinsic, irreducible cause-effect power. 

2.1.4. Other Types of Classifications 

Apart from rule-based measures and the classification of a rule’s long term behavior, a CA’s dynamical 

complexity can also be evaluated based on the morphological diversity [29] and Kolmogorov  

complexity [30] of its transient patterns. Morphological diversity measures the number of distinct 3 × 3 

patterns in an ECA’s evolution for a particular initial state. This is related to the ECA’s cause-effect 

information for cell triplets, albeit inferred from the observed distribution rather than from the uniform 

distribution of all possible states. Again, <ΦMax>, <#concepts>, and <ΣφMax> correlate in a necessary, 

but not sufficient manner with morphological complexity, which can be low while the IIT measures  

are high (ρ = 0.60/0.35/0.53 Spearman’s rank correlation coefficient, p <0.001/0.05/0.001 for 

<ΦMax>/<#concepts>/<ΣφMax> for N = 5 ECA systems) (see below Figure 6). Finally, there is also a 

significant correlation between the IIT measures and the Kolmogorov complexity of an ECA rule, 

approximated by its Block Shannon entropy (ρ = 0.65/0.40/0.59, p <0.001/0.005/0.001) or compressibility 

(ρ = 0.61/0.37/0.53, p < 0.001/0.05/0.001) averaged over several different initial conditions [30].  

2.1.5. Being vs. Happening 

To date, there is no universally agreed-upon classification of (elementary) cellular automata based on 

their dynamical behavior that uniquely assigns each rule to one class (but see [22]). Part of the problem 

is that depending on the initial conditions, a rule can show patterns of very different complexity. The left 

panel in Figure 6A, for example, displays the trivial evolution of three different rules for the typically 

applied initial condition of a single cell in state “1”. Random initial conditions, however, reveal that only 

rules 0 and 128 typically tend to uniform stable states (Wolfram class I), while rule 232 belongs to 

Wolfram class II. Likewise, rules 2, 74, and 106 show the same simple time evolution starting from the 

initial condition with a single cell in state “1”, but belong to different Wolfram classes: rules 2 and 74 to 

class II, while rule 106 belongs to class IV (Figure 6B).  

Moreover, since cellular automata are deterministic, finite CA will eventually all arrive at a steady 

state or periodic behavior (for binary ECA after at most 2N states). Small systems with few cells thus 

cannot unfold the full dynamical potential of their rule, although the local interactions of each cell are 

the same as in a larger system (Figure 6C). In order to predict the actual complexity of a CA’s dynamical 
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evolution accurately, the initial state and the size of the system must be known in addition to the rule. 

This is why purely rule-based measures can, overall, only provide necessary but not sufficient conditions 

for complex behavior.  

 

Figure 6. “Being” vs. “Happening”. (A) Different rules show the same behavior under 

certain initial conditions. Rules 0, 128, and 232 all immediately converge to the state “all 0” 

for the standard initial condition of a single cell in state “1”. Perturbing the system into random 

initial conditions, however, reveals that rules 0 and 128 belong to class I, while rule 232 

belongs to class II; (B) Also rules 2, 74, and 106 show the same behavior for the standard 

initial condition, but belong to different classes under random initial conditions: rules 2 and 

74 belong to class II, while rule 106 belongs to class IV; (C) Rules from the four different 

Wolfram classes all quickly converge to a steady state or periodic behavior for small ECA 

with N = 6 cells as indicated by their maximal transient length for N = 6 cells max(transient) 

(compare to Figures 1B and 3). The IIT measures reflect the classification (“being”), i.e., the 

potential dynamical complexity, rather than the actual behavior (“happening”). The indicated 

IIT measures were obtained from the respective N = 6 ECA of each rule.  
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The problems encountered in classifying rules based on their dynamical complexity stems from  

a discrepancy between “being” and “happening” [18]. Patterns describe what is happening in the CA 

system following a particular initial state. A classification, however, is about what the system is. As the 

examples in Figure 6 show, classifying a rule for arbitrary initial conditions reveals its potential dynamical 

complexity, rather than the states actually observed in a particular dynamic evolution. Since it requires 

perturbing the system into many different initial states, this approach is somewhat related to the causal 

approach of IIT. More generally, the objective of IIT is to reveal and characterize how, and how much, 

a system of mechanisms in its current state exists (“is”) from its own intrinsic perspective, rather than 

from the perspective of an external observer observing its temporal evolution. Intrinsic cause-effect 

power relies on causal composition and requires irreducibility [17,18]. According to IIT, the particular 

way the system exists, is given by its cause-effect structure, and to what extent it exists as a system, is 

given by its irreducibility, quantified as its integrated conceptual information ΦMax.  

While IIT measures do depend on the size of the system and its state, the average values obtained for 

ECA with a small number of cells and for a subset of states already reveal the general causal characteristics 

underlying different rules as demonstrated by the examples shown in Figure 3. In Figure 7, the average 

IIT measures of several rules from all Wolfram classes are plotted against N, the number of cells. Rules 

with the capacity for complex, or random behavior show relatively high values of <ΦMax> already for 

small systems with 3–7 nodes. The way <ΦMax>, <#concepts>, and <ΣφMax> increase with increasing 

system size is also characteristic of a rule’s cause-effect structure.  

Class I rules 32 and 128 for example have only 1st-order concepts; no combination of system elements 

can have irreducible cause-effect power (φ = 0) (see also Figure 3B). Their maximum number of 

concepts thus increases linearly, while their <ΦMax> values stay low, since no matter where the system 

is partitioned, only one concept is lost. By contrast, rules with higher order concepts at each subset size, 

such as rule 30, 106, or 110, show an almost exponential increase of <#concepts>, <ΣφMax> and 

<ΦMax>. The maximum number of potential concepts in any system is determined by the powerset of 

2N−1 candidate mechanisms (combinations of elements) in the system (indicated by the thin black 

dashed line in Figure 7B). While <#concepts> and <ΦMax> will continue to grow for rules like rule 30, 

106, and 110, the number of impossible concepts also increases, because ECA are limited to nearest 

neighbor interactions. In an N = 6 ECA system A-F, for example, the concepts AD, BE, and CF are 

impossible, since they are reducible by default with φ = 0. The reason is that, since their elements do not 

share any inputs or outputs, partitioning between them would thus never make any difference. Finally, 

as described above, for certain rules, the IIT measures depend on the parity of N, as for the XOR rule 90 

(Figure 3E). 

In many cases, the temporal evolution of CA is computationally irreducible [16], which makes  

it impossible to predict their dynamical behavior. Similarly, calculating the cause-effect structure of a 

system becomes computationally intractable already for a small number of elements. On the other hand, 

IIT measures can in principle be extended to higher dimensional CA with more than two states and larger 

neighborhoods. As Figure 7A–C show, general features of a rule’s cause-effect structure can already be 

inferred from very small CA systems.  
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Figure 7. (A) <ΦMax>; (B) <#concepts>; and (C) <ΣφMax> across N = 3–7 cells. Already 

small systems reveal typical features of an ECA’s cause-effect structure. How the IIT 

measures of an ECA rule depend on N is further indicative of the general properties of the 

rule’s cause-effect structure (see main text); (D) Maximal transient length of the respective 

rules evaluated across all system states plotted against the number of cells N. Class I rules 

and class II rules with lower <ΦMax> values (32, 108, 128, and 232) tend to have shorter 

transients as well; (E) Maximal transient length of all ECA equivalency classes plotted 

against <ΦMax>. The top panel shows the correlation of NT = 14 ECA transients to the <ΦMax> 

values obtained from the respective NI = 6 ECA systems. The lower panel shows the correlation 

of NT = 15 ECA transients to the <ΦMax> values obtained from the respective NI = 5 ECA 

systems. The labels indicate some of the example rules discussed above. (A–E) Note the 

logarithmic scale of the y-axis in all panels. Colors denote Wolfram classes as in Figures 2, 

4, and 5. 

Finite ECA necessarily converge to a steady state or periodic cycle after at most 2N time steps.  

In Figure 7D,E we show the maximal transient length of ECA rules across all initial states of small  

N = 5–15 cell systems. While Wolfram’s ECA classification is based on the long-term behavior of a rule 

for most initial states, the maximal transient length of some class I and II rules in these small systems 

can be of the same order as the maximal transient length of other class III or IV rules (compare e.g., rule 

74 to rule 90 in Figure 7D), indicating a potential for complex dynamics under some initial conditions. 

In Figure 6E the maximum transient lengths of N = 14 and N = 15 cell systems are plotted against 

<ΦMax> of their respective rules in N = 6 and N = 5 systems. Since the maximal transient length as well 

as <ΦMax> of certain rules depends on the parity of N (see Figure 7A,D), we evaluated the correlation 

coefficients between the largest even/odd numbered systems for which computing maximal transient 

lengths (NT = 14/15) and IIT measures (NI = 6/5) was feasible for all rules. Similar results were obtained 

comparing all other pairs of system sizes. While the maximal transient length also correlated with 

<#concepts> and <ΣφMax> (ρ = 0.49/0.56, p < 0.001 for NT = 14/NI = 6 and ρ = 0.40/0.51, p < 0.01/0.001 

for NT = 15/NI = 5), it was most strongly correlated with the integrated conceptual information <ΦMax> 

(Figure 7E, ρ = 0.59/0.53, p < 0.001 for both NT = 14/NI = 6 and NT = 15/NI = 5), indicating that 

irreducibility is a relevant factor for the dynamical complexity of a system.  
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In summary, the cause-effect structure of a system and its Φ describe what a system “is” from its intrinsic 

perspective, and thereby reveal a rule’s potential for dynamical complexity. While we found strong 

relations between the IIT measures of ECAs and their Wolfram classes, as well as strong correlations 

with the ECAs’ maximal transient lengths, having many concepts and high <ΦMax> are not sufficient 

conditions for a system to actually show complex behavior under every initial condition. Nevertheless, 

employing IIT measures of causal complexity can significantly reduce the search space for complex 

rules, since they appear to be necessary for class III and IV behavior. Finally, class II rules with high 

<ΦMax> and many concepts tend to exhibit long transients for some initial conditions and typically share 

certain rule-based features with more complex class III and IV rules, which can be interpreted as a high 

potential for complex behavior under small adaptive changes in an evolutionary context. 

2.2. Behavior and Cause-Effect Power of Adapting Animats 

Cellular automata are typically considered as isolated systems. In this section, we examine the  

cause-effect structures of small, adaptive logic-gate systems (“animats”), which are conceptually similar 

to discrete, deterministic cellular automata. By contrast to typical CA, however, the animats are equipped 

with two sensor and two motor elements, which allow them to interact with their environment (Figure 

8A). Moreover, the connections between an animat’s elements, as well as the update rules of its four 

hidden elements and two motors are evolved through mutation and selection within a particular task-

environment over several 10,000 generations (Figure 8B). We demonstrated above, that isolated ECA 

require a sufficiently complex, integrated cause-effect structure for complex global dynamics. Given 

sufficiently complex inputs from the environment, the animats, however, can in principle exhibit 

complex dynamics even if their internal structure is causally trivial and/or reducible (e.g., unconnected 

COPY gates of the sensors). Consequently, the dynamic behavior and intrinsic cause-effect structures of 

these non-isolated systems may be dissociated. Nevertheless, in adaptive systems, evolution to an 

environment with a rich causal structure provides a link between the system’s dynamics and its intrinsic 

cause-effect structures.  

In the following, we review evidence from [19], which shows that, under constraints on the number 

of internal elements, environments that require context-sensitivity and memory favor the evolution of 

integrated systems with rich cause-effect structures. Building on these data, we show that, although the 

animats are very small systems, their average transient lengths in isolation from the environment tend to 

correlate with <ΦMax>, as observed in the isolated ECA systems. Finally, we discuss how the adaptive 

advantages of integrated animats, such as their higher economy in terms of mechanisms per element, 

and larger degeneracy in architecture and function, are related to the animats’ behavioral and dynamical 

repertoire. 

An animated example of animat evolution and task simulation can be found on the IIT website [31]. 

The task environments the animats were exposed to are variants of “Active Categorical Perception” 

(ACP) tasks, where moving blocks of different sizes have to be distinguished [19,32,33]. Solving the 

ACP tasks successfully requires combining different sensory inputs and past experience. Adaptation is 

measured as an increase in fitness: the percentage of correctly classified blocks (“catch” or “avoid”).  
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Figure 8. Fitness, <#concepts>, <ΦMax>, and state entropy H, of animats adapting to four 

task environments with varying requirements for internal memory. (A) Schematic of animat 

in example environment. On each trial, the animat has to recognize the size of the downward 

moving block and either catch or avoid it. Blocks continuously move downward and either 

to the right or left, at a speed of one unit per time step (periodic boundary conditions). The 

animat has two sensors with a space of 1 unit between them and thus a total width of three 

units. Its two motors can move it one unit to the left or right, respectively; (B) Animat 

evolution. Each animat is initialized at generation 0 without connections between elements. 

Through mutation and fitness selection, the animats develop complex network structures 

with mechanisms that enable them to solve their task. Animats were let to evolve for 60,000 

generations; (C) Illustration of the four Task environments with increasing difficulty and 

requirements for internal memory from left to right; (D) The final fitness achieved by the 

animats after 60,000 generations corresponds to the task difficulty. The two red traces show 

data from a subset of Task 3 and Task 4 trials with the same high average fitness as Task 1 

and 2. Animats that evolved to the more difficult tasks, particularly Task 4, developed 

significantly more concepts, higher <ΦMax> values, and more state entropy H, than those 

animats that evolved to Task 1. Shaded areas around curves denote SEM across 50 

independent evolutions (LODs); (E) Scatter plots of all evaluated generations of animats 
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from all 50 LODs of Task 4 illustrating the relation of <#concepts>, <ΦMax>, and H to 

fitness, and H to <ΦMax>. The circle size is proportional to the number of animats with the 

same pair of values. Red dots denote the final generation of animats from all 50 independent 

evolutions. Panels A, C, and D were adapted with permission from [19]. 

An animat’s behavior is deterministically guided by the sensory stimuli it receives from the 

environment. An animat sensor turns on if a block is located vertically above it; otherwise it is off. The 

hidden and motor elements are binary Markov variables, whose value is specified by a deterministic 

input-output logic. However, an animat’s reaction to a specific sensor configuration is context-dependent, in 

the sense that it also depends on the current state of the animat’s hidden elements, which can be considered 

as memories of previous sensor and hidden element configurations. In [19], we evaluated the cause-effect 

structure and integrated conceptual information Φ of animats evolved to four task environments that 

differed primarily in their requirements for internal memory (Figure 8C). For each task environment, we 

simulated 50 independent evolutions with 100 animats at each generation. The probability of an animat 

to be selected into the next generation was proportional to an exponential measure of the animat’s fitness 

(roulette wheel selection) [19,33]. At the end of each evolution, the line of descent (LOD) of one animat 

from the final generation was traced back through all generations and the cause-effect structures of its 

ancestors were evaluated every 512 generations. For a particular animat generation in one LOD, the IIT 

measures were evaluated across all network states experienced by the animat during the 128 test trials, 

weighted by their probability of occurrence. As shown in Figure 8D, adapted from [19], in the more 

difficult task environments that required more internal memory to be solved (Task 3 and particularly 

Task 4), the animats developed overall more concepts and higher <ΦMax> than in the simpler task 

environments (Task 1 and 2). This is even more evident when the tasks are compared at the same level 

of fitness (red lines in Figure 8D). Note that <#concepts> shown in Figure 8 was evaluated across all of 

the animat’s elements including sensors and motors in order to capture all fitness relevant causal 

functions, while ΦMax is the integrated conceptual information of the set of elements that forms the major 

complex (MC) in an animat’s “brain” (values for the number of MC concepts behave similarly and can 

be found in [19]). 

As an indicator for the dynamical repertoire (dynamical complexity) of the animats in their respective 

environments, we measured the state entropy ܪ = ∑ ௦log௦  of the animats’ hidden and motor	(௦)

elements for the different task environments, displayed in the right panel of Figure 8D. The animats’ 

state entropy increases with adaptation across generations, and also with task difficulty across the 

different task environments, similar to the IIT measures. The maximum possible entropy for six binary 

elements is H = 6, if all system states have equal probability to occur. Note that the animats are initialized 

without connections between elements and elements without inputs cannot change their state. During 

adaptation, the number of connected elements increases, particularly in the more difficult tasks that 

require more memory. More internal elements mean a greater capacity for memory, entropy, and also a 

higher number of concepts and integrated conceptual information. In this way, fitness, dynamical 

complexity, and causal complexity are tied together, particularly if the requirement for internal memory 

is high, even though, in an arbitrary, non-isolated system, the state entropy H could be dissociated from 

the system’s cause-effect structure. This relation is illustrated in Figure 8E, where the <#concepts>, 

<ΦMax>, and the state entropy H are plotted against fitness for every animat of all 50 LODs of Task 4. 



Entropy 2015, 17 5492 

 

 

All three measures are positively correlated with fitness (ρ = 0.80/0.79/0.54 Spearman’s rank correlation 

coefficient for H/<#concepts>/<ΦMax> with p < 0.001). Note that animats from the same LOD are related. 

The red dots in Figure 8E highlight the final generation of each LOD, which are independent of each 

other. Taking only the final generation into account, H and <#concepts> still correlate significantly with 

fitness. However, the correlation for <ΦMax> is not significant after correcting for multiple comparisons 

(ρ = 0.63/0.56 for H/<#concepts> with p < 0.001), since having more <ΦMax> even at lower fitness 

levels has no cost for the animats. 

In contrast to the state entropy H, the entropy of the sensor states HSen is mostly task dependent: during 

adaptation HSen increases only slightly for Tasks 3 and 4 and decreases slightly for Tasks 1 and 2 (see 

Figure S4 of [19]). The entropy of the motor states HMot represents the behavioral repertoire (behavioral 

complexity) of the animats and is included in H. HMot increases during adaptation, but asymptotes at 

similar values (~1.6) for all tasks. This reflects the fact that the behavioral requirements (“catch” and 

“avoid”) are similar in all task environments (see Figure S4 of [19]). 

More elements allow for a higher capacity for state entropy H and also higher <ΦMax>. Nevertheless, 

H is also directly related to <ΦMax>, since the highest level of entropy for a fixed number of elements is 

achieved if, for each element, the probability to be in state “0” or “1” is balanced. As we saw above for 

elementary cellular automata, balanced rules that output “0” or “1” with equal probability are more likely 

to achieve high values of <ΦMax> (Figure 5B, λ parameter). This is because mechanisms with balanced 

cause-effect repertoires have on average higher φ values and lead to more higher-order concepts, and 

thus cause-effect structures with higher <ΦMax>. Likewise, as shown for Task 4 in Figure 8E, right panel, 

animats with high <ΦMax> also have high entropy H (ρ = 0.66, p < 0.001; taking only the final generation 

into account the correlation is still almost significant after correcting for multiple comparisons with ρ = 

0.44, p = 0.053).  

In the last section, we noted that for isolated ECA systems, having a certain level of <ΦMax> and 

<#concepts> is necessary in order to have the potential for complex dynamics, and thus high state 

entropy. The animats, however, receive sensory inputs that can drive their internal dynamics. Consequently, 

also animats with modular, mainly feedforward structures (Φ = 0) can have high state entropy H while 

they are behaving in their world. Keeping the sensory inputs constant, animats converge to steady states 

or periodic dynamics of small cycle length within at most seven time-steps. The average length of these 

transients, measured for the final generation of animats of all 50 LODs, tends to correlate with the 

average <ΦMax> calculated from all states experienced during the 128 test trials especially in the simpler 

tasks 1 and 2 (ρ = 0.45/0.46/0.43/0.39 Spearman’s rank correlation coefficient for Task 1–4 with p = 

0.04/0.03/0.067/0.19 after correcting for multiple comparisons). Interestingly, there is no correlation 

between the transient length and the animats’ fitness. This is because, in general, high fitness only requires a 

rich behavioral repertoire while interacting with the world, but not in isolation.  

In addition to the state entropy, in [19] we also assessed how the sensory-motor mutual information 

(ISMMI) [34] and predictive information (IPred) [35] of the animats as defined in [19,36] evolved during 

adaptation. ISMMI measures the differentiation of the observed input-output behavior of the animats’ 

sensors and motors. IPred, the mutual information between observed past and future system states, 

measures the differentiation of the observed internal states of the animats’ hidden and motor elements. 

Both, high ISMMI and high IPred, should be advantageous during adaptation to a complex environment, 

since they reflect the animats’ behavioral and dynamical repertoire, in particular how deterministically 
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one state leads to another. IPred in the animats is indeed closely tied to the state entropy: it increases 

during adaptation with increasing fitness and a higher number of internal elements. ISMMI, however, may 

actually decrease during adaptation in the animats, since an increase in internal memory may reduce the 

correlation between sensors and motors, which are restricted to two each (see Figure S4 of [19]). Both 

ISMMI and IPred, are correlational measures, which depend on the observed distributions of system states. 

By contrast, analyzing the cause-effect structure of a system requires system perturbations that reveal 

the causal properties of the system’s mechanisms under all possible initial states. The cause-effect 

structure thus takes the entire set of possible circumstances the animat might be exposed to into account 

and not just those observed in a given setting. As for cellular automata, an animat’s cause-effect structures, 

evaluated by its <#concepts> and <ΦMax> quantify its intrinsic causal complexity and its dynamical 

potential.  

Under external constraints on the number of available internal elements, having many concepts and 

high integrated conceptual information Φ proved advantageous for animats in more complex environments 

(Figure 8D and [19]). While the simpler Tasks 1 and 2 could be solved (100% fitness) by animats with 

either integrated (Φ > 0) or modular (Φ = 0) network architectures, only animats with integrated 

networks reached high levels of fitness in the more difficult Tasks 3 and particularly Task 4, which 

required more internal computations and memory [19]. This is because integrated systems can implement 

more functions (concepts) for the same number of elements, since they can make use of higher-order 

concepts—irreducible mechanisms specified by combinations of elements.  

When particular concepts are selected for during adaptation, higher-order concepts become available 

at no extra cost in terms of elements or wiring. This degeneracy in concepts may prove beneficial to 

respond to novel events and challenges in changing environments. Degeneracy here refers to different 

structures that perform the same function in a certain context [37,38]. Contrary to redundant structures, 

degenerate structures can diverge in function under different contexts. Animats with integrated networks 

with many degenerate concepts may already be equipped to master novel situations. In principle, this allows 

them to adapt faster to unpredicted changes in the environment than animats with modular structures, 

which first have to expand and rearrange their mechanisms and connectivity [39]. 

In the context of changing environments, large behavioral and dynamical repertoires are advantageous 

not only at the level of individual organisms, but also at the population level. In [19] we found that the 

variety of network connectomes, mechanisms, and distinct behaviors was much higher among animats 

that solved Task 1 and 2 perfectly with integrated network structures (<ΦMax> > 0, high degeneracy) 

than among animats with the same perfect fitness, but <ΦMax> = 0 (low degeneracy). In Task 1, for 

example, integrated solutions were encountered in six out of 50 lines of descent (LODs); modular 

solutions in seven out of 50 LODs. Nevertheless, analyzing all animats with perfect fitness across all 

generations and LODs, animats with <ΦMax> > 0 showed 332 different behavioral strategies, while 

animats with <ΦMax> = 0 only produced 44 different behavioral strategies. The reason is that integrated 

networks are more flexible and allow for neutral mutations that do not lead to a decrease in fitness. By 

contrast, modular networks showed very little variability once a solution was encountered. Having more 

potential solutions should give a probabilistic selective advantage to integrated networks, and should 

also lead to more heterogeneous populations, which provide an additional advantage in the face of 

environmental change. 
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Taken together, in causally rich environments that foster memory and sensitivity to context, integrated 

systems should have an adaptive advantage over modular systems. This is because under naturalistic 

constraints on time, energy, and substrates, integrated systems can pack more mechanisms for a given 

number of elements, exhibit higher degeneracy in function and architecture, and demonstrate greater 

sensitivity to context and adaptability. These prominent features of integrated systems also link intrinsic 

cause-effect power to behavioral and dynamical complexity at the level of individuals and populations. 

3. Conclusions 

One hallmark of living systems is that they typically show a wide range of interesting behaviors, far 

away from thermodynamic equilibrium (e.g., [40]). How living systems change their states in response 

to their environment can be seen as a form of natural computation [41]. Among the oldest model systems 

for the study of natural computation are small discrete dynamical systems, cellular automata [10,42]. 

CA have revealed that complex dynamical patterns can emerge from simple, local interactions of small 

homogeneous building blocks. It is thus not surprising that the extensive body of research dedicated to 

CA focused mainly on the systems’ dynamical properties, investigating what is “happening” during their 

temporal evolution. While the scientists studying cellular automata may observe intriguing patterns 

computed by the system, it has been pointed out that these patterns have no relevance for the CA itself 

in the absence of some kind of “global self-referential mechanism” [43]. Integrated information theory 

(IIT) provides a framework for establishing precisely to what extent a system “makes a difference” to 

itself, from its own intrinsic perspective. The cause-effect structure of a system and its integrated conceptual 

information Φ characterize what a system “is”—how much and in which way it exists for itself, 

independent of an external observer—rather than what a system happens to be “doing”. Consequently, 

even inactive systems, or systems in a steady state that do not appear to be “doing” anything from the extrinsic 

perspective, can nevertheless specify rich cause-effect structures [17] from their own intrinsic 

perspective. The cause-effect structure of a system can be taken as the causal foundation for the system’s 

dynamic behavior, which may or may not manifest itself under the observed circumstances. For purposes 

of dynamical analysis, evaluating cause-effect structures may help to identify systems that are candidates 

for complex dynamic behavior. 

4. Methods 

In the following we illustrate the main principles and measures invoked by integrated information 

theory (IIT) by reference to a simple, elementary cellular automaton (ECA) with six cells and periodic 

boundary conditions implementing rule 232, the Majority rule (Figure 9A). Table 1 provides an overview 

over the general mathematical expressions of all relevant IIT measures. See [17] for more details. All 

IIT measures can be derived from the system’s one time-step transition probability matrix (TPM). To 

obtain the TPM, we perturb the system into all possible states with equal probability and observe the 

resulting state distribution at the next time step (see Supplementary Methods). 
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Figure 9. Information, integration, and exclusion postulate at the level of mechanisms.  

(A) ECA 232 with N = 6 cells A-F illustrated as a network of interacting elements in the 

current state A-Ft = 111000. All cells implement rule 232, the Majority rule; (B) Information: 

Element At in state 1 constrains the past and future states of ABFt±1 compared to their 

unconstrained (flat) distribution (overlaid in gray); (C) Integration: Elements A and D do 

not form a higher order mechanism, since ADt is reducible to its component mechanisms At 

and Dt. ABt in state 11, however, does form a higher order mechanism, since ABt specifies both 

irreducible causes and irreducible effects, as evaluated by integrated information φ (see text); 

(D) Exclusion: Cause and effect repertoires are evaluated over all sets of system elements. 

The cause and effect repertoire that are maximally irreducible and their φMax value form the 

concept of a mechanism. In case of AB, the maximally irreducible cause-repertoire is over 

elements BCFt-1; the maximally irreducible effect-repertoire is over elements ABt+1. 

4.1. Mechanisms and Concepts 

To determine whether a set of elements Mt in state mt forms a mechanism with cause-effect power on 

the system, we first need to evaluate whether (i) the past state of the system makes a difference to the 

set Mt and (ii) the state of the set Mt = mt makes a difference to the future state of the system. Condition 

(i) is satisfied if Mt, by being in its current state mt, constrains the probability distribution of possible 

past states of a set of system elements Zt-1, specified by the cause repertoire cause(ݖ௧ିଵ|݉௧). The cause-

repertoire of element At in state “1” of the ECA shown in Figure 9A over its inputs ABFt-1, for example, 

reflects A’s update rule: only states in which two or more of A’s inputs are “1” are possible past states 

of ܣ௧ = 1 (see Supplementary Methods for details on the calculation of the cause repertoire). The cause 

information (ci) of ܣ௧ = 1 quantifies the distance between its cause repertoire and the unconstrained (uc) 

cause repertoire in which each past state of ABFt-1 is assumed equally likely (see Figure 9B).  
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௧ܣ)݅ܿ = 1, (௧ିଵܨܤܣ = ௧ܣ|௧ିଵܨܤܣ)cause൫ܦ = 1), ௨௦௨ ൯(௧ିଵܨܤܣ) = 0.75 (4)

Distances in IIT are measured by the so-called earth mover’s distance (emd) [44,45]. The emd 

quantifies the cost of transforming one probability distribution into another, using the Hamming distance 

between states as the underlying metric. (For the cause repertoire of Figure 9B, for example, p = 1/8 has 

to be moved from each of the four states 110, 101, 011, and 111 to the remaining states, twice over a 

Hamming distance of 1 (e.g., 101→100) and twice over a Hamming distance of 2 (e.g., 110→ 000), 

resulting in a value of 2 × 2 × 1/8+2 × 1 × 1/8=0.75).  

Condition (ii) is satisfied if Mt, by being in its current state mt, constrains the probability  

distribution of possible future states of a set of system elements Zt+1, specified by the effect repertoire effect(ݖ௧ାଵ|݉௧) . Figure 9B shows the effect repertoire of ܣ௧ = 1  over its outputs ABFt+1 (see 

Supplementary Methods for details on the calculation of the effect repertoire). The effect information 

(ei) of ܣ௧ = 1  quantifies the distance between its effect repertoire and the unconstrained effect 

repertoire, which considers all input states to all system elements to be equally likely.  ݁݅(ܣ௧ = 1, (௧ାଵܨܤܣ = ௧ܣ|௧ାଵܨܤܣ)effect൫ܦ = 1), effect௨ ൯(௧ାଵܨܤܣ) = 0.75 (5)

Note that, although the ECA is deterministic, ܣ௧ = 1 by itself cannot perfectly constrain its outputs 

ABFt+1. Since the state of the other inputs to ABFt+1 is unconstrained (perturbed into “0” and “1” with 

equal probability), the effect of ܣ௧ = 1 by itself is merely to increase the probability of its output 

elements to be in state “1” at t + 1 compared to the unconstrained distribution, as specified by the effect 

repertoire shown in Figure 9B. 

In order to have cause-effect power, the cause-effect information (cei) of Mt, the minimum of its ci 

and ei, must be positive. Here, for ܣ௧ = ௧ܣ)݅݁ܿ :1 = 1, (௧±ଵܨܤܣ = min൫ܿ݅(ܣ௧ = 1, ,(௧ିଵܨܤܣ ௧ܣ)݅݁ = 1, ௧ାଵ)൯ܨܤܣ = 0.75 (6)

Even a set of elements with positive cei does not have cause-effect power of its own, and is thus not 

a mechanism, if it is reducible to its sub-mechanisms. Consider, for example, elements A and D in the 

ECA system of Figure 9. At and Dt together do not constrain the past or future states of the system more 

than At and Dt taken separately. Irreducibility is tested by partitioning connections, which means making 

connections causally ineffective, and can be thought of as “injecting independent noise” into the connections. 

Partitioning between At and Dt and their respective inputs and outputs does not make a difference to 

ADt’s cause or effect repertoire (φ = 0). The elements A and B together, however, do form a higher-order 

mechanism ABt, since no matter how the mechanism’s connections are partitioned, ABt’s cause-effect 

repertoire is changed. To assess the irreducibility of ABt, over ABCFt − 1 we first calculate the integrated 

cause information φcause for all possible partitions of ABt and ABCFt − 1, as the distance between the 

intact cause repertoire and the product cause repertoire of the partition. In this way, we find the partition 

that makes the least difference to the cause repertoire, the minimum information partition MIPcause =argmin ൫߮cause(ܤܣ௧ = 11, ,௧ିଵܨܥܤܣ ܲ)൯. Here:  					߮cause(ܤܣ௧ = 11, ܫܯ,௧ିଵܨܥܤܣ ܲ௨௦) = ௧ܤܣ|௧ିଵܨܥܤܣ)cause൫ܦ = 11), (∅|௧ିଵܥ)cause) × ௧ܤܣ|௧ିଵܨܤܣ)cause) = 11)൯ = 0.2 
(7)
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where ∅ denotes the empty set (a partition with (∅|∅), however, is not a valid partition). Likewise, we 

calculate the integrated effect information φeffect for all possible partitions to find MIPeffect =argmin ൫߮effect(ܤܣ௧ = 11, ,௧ାଵܨܥܤܣ ܲ)൯. Here:  ߮effect(ܤܣ௧ = 11, =(௧ାଵ,MIPeffectܨܥܤܣ ௧ܤܣ|௧ାଵܨܥܤܣ)effect൫ܦ = 11), (∅|௧ାଵܥ)effect) 	× ௧ܤܣ|௧ାଵܨܤܣ)effect) = 11)൯ = 0.25 
(8)

An irreducible set of elements Mt = mt with positive integrated information ߮(݉௧, ܼ௧±ଵ,ܲܫܯ), the 

minimum of φcause and φeffect, is a mechanism that has cause-effect power on the system. Note that, 

depending on whether φ = φcause or φ = φeffect, Mt’s overall MIP = argmin ቀ߮(݉௧, ܼ௧±ଵ, ܲ)ቁ is either MIPcause or MIPeffect. The set of Mt’s cause and effect repertoire describe how Mt constrains the past and 
future of the system elements Zt ± 1 and is termed “cause-effect repertoire” ܴܧܥ(݉௧, ܼ௧±ଵ). 

Finally, φcause and φeffect can be measured for cause-effect repertoires over all possible sets of system 

elements Zt±1. The cause-effect repertoire of Mt = mt that is maximally irreducible over the sets of 
elements ܼ௧±ଵ∗ , with max(φcause) and max(φeffect) (see Table 1), and its integrated information φMax form 

Mt’s “concept”. It can be thought of as the causal role of the mechanism in its current state from the 

intrinsic perspective of the system itself. The concept of AB in state “11” in the ECA system, for 

example, is specified by the cause repertoire over the set of elements BCF and the effect repertoire over 
the set of elements AB, with ϕ Max = min(ϕcause

Max ,ϕeffect
Max ) = 0.2 .  											߮causeMax ௧ܤܣ) = 11)) = ௧ܤܣ|௧ିଵܨܥܤ)cause൫ܦ = 11), (∅|௧ିଵܥ)cause) × ௧ܤ|௧ିଵܨܤ)cause) = 1)൯ = 0.2 

(9)

										߮effectMax ௧ܤܣ) = 11)) = ௧ܤܣ|௧ାଵܤܣ)effect൫ܦ = 11), ௧ܣ|∅)effect) = 1) × ௧ܤ|௧ାଵܤܣ)effect) = 1)൯ = 0.5 
(10)

For comparison, the cause-effect repertoire over all inputs and outputs of AB is less irreducible with 

φ = 0.17 (see Equations (7) and (8)) and thus not further considered.  

4.2. Cause-Effect Structures 

As stated above, to have intrinsic cause-effect power, the system must have elements with cause-effect 

power upon the system. In other words, the system must have concepts. The set of concepts of all 

mechanisms within a system shapes its “cause-effect structure”. The 6-node, rule 232 ECA A-Ft in state 

“111000” for example has 14 concepts, six elementary and eight higher-order concepts (Figure 10A).  

As with a mechanism, a system only exists as a whole from the intrinsic perspective if it is irreducible 

to its parts. Specifically, every subset of the system must have cause-effect power upon the rest of the 

system, otherwise there may be system elements that never affect the system or are never affected by the 

system. This is tested by unidirectionally partitioning the connections between every subset of the system 

and its complement (see Table 1). Integrated conceptual information Φ quantifies the distance between 

the cause-effect structure C(st) of the intact system St = st and the cause-effect structure of the partitioned 

system ݏ)ܥ௧, →ܲ). Again, we test all possible partitions →ܲ in order to find the minimum information 

partition (MIP), the partition that makes the least difference to the cause-effect structure of St. The 
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distance between two cause-effect structures is evaluated using an extended version of the earth mover’s 

distance (emd). It quantifies the cost of transforming one cause-effect structure into another, taking into 

account how much the cause-effect repertoires and φMax values of all concepts change through the 

partition, see [17].  

 

Figure 10. Information, integration, and exclusion postulate at the level of systems of 

mechanisms. (A) Information: The system A-Ft in state “111000” has 14 concepts: six 

elementary concepts At,Bt,Ct,Dt,Et and Ft, four 2nd order concepts of adjacent elements, as 

well as ACt and DFt, and the 3rd order concepts ABCt and DEFt; (B) Integration: the cause-

effect structures of A-Ft is irreducible to the cause-effect structure of its minimum 

information partition (MIP), which eliminates the effects of subset ABCt onto subset DEFt, 

as measured by the integrated conceptual information Φ, which quantifies the distance 

between the whole and partitioned cause-effect structure; (C) Exclusion: Cause-effect 

structures and their Φ values are evaluated over all sets of system elements. The set of 

elements ܵ௧∗ with the maximally irreducible cause-effect structure forms a complex; here it 

is the whole system A-Ft. This is not always the case. For different types of rules, or more 

heterogeneous connections or rules, system subsets may be maximally irreducible 

complexes. Complexes cannot overlap. In the three examples on the right, DEFt thus may 

form another complex beneath the main complex ABCt; the whole system, however, is 

excluded from being a complex, as are subsets of elements within a complex. 

In the example system A-Ft the MIP renders the connections from subset ABC to DEF causally 

ineffective. Although this partition is the one that least affects the cause-effect structure of A-Ft, it still 



Entropy 2015, 17 5499 

 

 

alters the cause-effect repertoires of many concepts (Figure 9B). Only the concepts Bt = 1, Et = 0,  

ABt = 11, and BCt = 11 remain intact. A-Ft’s cause-effect structure is thus irreducible with: ܣ)ߔ − ௧ܨ = 111000,	MIP) = ܣ)ܥ൫ܦ − ௧ܥܤܣ)ܥ௧)หܨ ← ௧)൯ܨܧܦ = 0.83. (11)

Even if a system is irreducible, there may be subsets (or supersets, if the system were embedded in a 

larger set of elements) that also specify irreducible cause-effect structures. When subsets of elements of 

a larger system are considered, Φ is calculated for the set, treating the other elements as fixed background 

conditions. To avoid causal over-determination (counting the cause-effect power of the same mechanism 

multiple times) and thereby the multiplication of “entities” beyond necessity (Occam’s razor), only one 

of all overlapping irreducible cause-effect structures is postulated to exist—the one that is maximally 

irreducible with the highest Φ value (ΦMax). A set of elements that has ΦMax and is thus maximally 

irreducible is called a “complex”. In our example, the whole set A-Ft is a complex, since it has the highest 

Φ value compared to all its subsets. This is not always the case: given different ECA rules, systems with 

heterogeneous rules, or systems with slightly different connectivity, smaller sets may have the most 

irreducible cause-effect structure (Figure 10C). Once the major complex with ΦMax is identified,  

non-overlapping sets of elements can form additional, minor complexes, as shown for the system with 

heterogeneous rules (Figure 10C, middle). The whole system A-Ft, however, is excluded from being a 

complex in this example, since it overlaps with the major complex ABCt.  

The cause-effect structure of a system can be illustrated as a constellation in cause-effect space. In 

cause-effect space, every axis is a past or future state of the system resulting in a total of 2 × 2N axes in 

a system with N cells and binary elements. Each system concept corresponds to a point in this  

high-dimensional space. The coordinates are given by the probabilities specified in the concept’s  

cause-effect repertoire for each past and future system state. The size of each point corresponds to the 

concept’s φMax value. To plot cause-effect structures in cause-effect space, we project the high dimensional 

structure onto the three past or future states (blue or green, respectively) for which the concepts’ cause-

effect repertories have the highest variance (see Figure 3C for a N = 5 cell Rule 232 system in state “all 0”). 

In this way, the selectivity and distribution of concepts in the state space of their system can be visualized 

in a straightforward manner. On the IIT webpage [20] all example cause-effect structures of this article 

can be viewed in 3D.  

In sum, IIT postulates that a set of elements exists for itself to the extent that it has maximally irreducible 

cause-effect power, evaluated by ΦMax. In order to have high cause-effect power, it is necessary to have 

many internal mechanisms, which form a rich cause-effect structure with many elementary and higher 

order concepts. 

4.3. Transient Lengths 

Maximal transient lengths of ECA reported in Figures 6C and 7D,E were obtained from ECA systems 

of N cells with periodic boundary conditions, taking all possible system states into account. To that end, 

the ECA were started in a particular system state and evolved in time until a previous state was repeated. 

In finite ECA systems, which are discrete, deterministic dynamical systems, this must happen after at 

most 2N time steps, corresponding to the number of possible states of the system. Transient lengths for 
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the animats were obtained in the same way, for all possible sensor states, keeping the sensor inputs to 

the animat constant while the internal states and motors evolved in time. 

4.4. Statistics and IIT Code 

All correlation coefficients ρ presented in this study are Spearman rank correlation coefficients.  

The p-values were corrected for multiple comparisons by multiplying the p-value from every single 

comparison with the number of evaluated coefficients, Ncoeff = 40.  

Custom-made MATLAB software was used for data analysis. The PyPhi package used to calculate 

all IIT measures is available at [46]. All examples presented in this paper can also be viewed and 

recalculated online at the IIT website [20]. EMD calculations within the IIT program were performed 

using the open source fast code of Pele and Werman [45]. 
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