Optimization of the Changing Phase Fluid in a Carnot Type Engine for the Recovery of a Given Waste Heat Source
Abstract
:1. Introduction
2. General Endoreversible Carnot Engine Model
2.1. Assumptions and Balances
2.2. Exogenous Optimization
3. Changing Phase Carnot Engine
3.1. Evolution of the Latent Heat of Vaporization with the Temperature
Substance | Molecular formula | Physical data | Approximation data | ||||
---|---|---|---|---|---|---|---|
TC (K) | TC (K) | (J/kg) | value | (%) | (%) | ||
R125 | 339 | 173 | 1.90 × 105 | 2.6 | 2.2 | 0.5 | |
R143a | 346 | 161 | 2.67 × 105 | 2.6 | 1.6 | 0.4 | |
R32 | 351 | 136 | 4.63 × 105 | 2.6 | 2.7 | 0.5 | |
R22 | 369 | 116 | 3.03 × 105 | 2.5 | 2.2 | 1.1 | |
propane | 370 | 86 | 5.63 × 105 | 2.6 | 1.7 | 1 | |
R134a | 374 | 170 | 2.63 × 105 | 2.5 | 3.0 | 0.6 | |
R227ea | 375 | 146 | 1.75 × 105 | 2.5 | 2.3 | 1.6 | |
R152a | 386 | 155 | 4.06 × 105 | 2.5 | 1.7 | 0.6 | |
ammonia | 405 | 195 | 1.48 × 106 | 2.6 | 4.4 | 1.4 | |
isobutane | 408 | 114 | 4.81 × 105 | 2.6 | 1.5 | 0.7 | |
butane | 425 | 135 | 4.96 × 105 | 2.6 | 1.3 | 0.7 | |
R245fa | 427 | 171 | 2.59 × 105 | 2.3 | 16 | 3 | |
R123 | 457 | 166 | 2.24 × 105 | 2.4 | 8.9 | 1.8 | |
acetone | 508 | 179 | 6.49 × 105 | 2.4 | 5 | 1 | |
cyclopentane | 512 | 180 | 4.87 × 105 | 2.5 | 25 | 2.2 | |
cyclohexane | 554 | 279 | 4.04 × 105 | 2.5 | 1.5 | 0.7 | |
benzene | 562 | 279 | 4.48 × 105 | 2.5 | 1.2 | 0.6 | |
toluene | 592 | 178 | 4.92 × 105 | 2.3 | 5.8 | 2.2 | |
decane | 618 | 244 | 3.93 × 105 | 2.3 | 2.7 | 1.4 | |
water | 647 | 273 | 2.50 × 106 | 2.9 | 12 | 1.7 |
3.2. Endogenous Optimization
3.2.1. Temperature Equal to the Ambient Temperature
Substance | TL imposed at 300 K | PL imposed at 1 × 105 Pa | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
TL (=T0) | PL | PH | TL | PL (=P0) | PH | |||||
R125 | 300 | 1.45 × 106 | 327 ± 2 | 2.80 × 106 | 1.9 | 225 | 1 × 105 | 300 ± 1 | 1.46 × 106 | 15 |
R143a | 300 | 1.32 × 106 | 332 ± 1 | 2.81 × 106 | 2.1 | 226 | 1 × 105 | 305 ± 1 | 1.49 × 106 | 15 |
R32 | 300 | 1.77 × 106 | 335 ± 1 | 4.17 × 106 | 2.4 | 221 | 1 × 105 | 306 ± 1 | 2.08 × 106 | 21 |
R22 | 300 | 1.10 × 106 | 347 ± 1 | 3.27 × 106 | 3 | 232 | 1 × 105 | 320 ± 1 | 1.83 × 106 | 18 |
propane | 300 | 9.98 × 105 | 348 ± 1 | 2.86 × 106 | 2.9 | 231 | 1 × 105 | 321 ± 1 | 1.65 × 106 | 16 |
R134a | 300 | 7.03 × 105 | 351 ± 1 | 2.49 × 106 | 3.6 | 247 | 1 × 105 | 330 ± 1 | 1.55 × 106 | 16 |
R227ea | 300 | 4.81 × 105 | 351 ± 1 | 1.77 × 106 | 3.7 | 257 | 1 × 105 | 334 ± 1 | 1.21 × 106 | 12 |
R152a | 300 | 6.30 × 105 | 358 ± 1 | 2.65 × 106 | 4.2 | 249 | 1 × 105 | 339 ± 1 | 1.72 × 106 | 17 |
ammonia | 300 | 1.06 × 106 | 371 ± 1 | 6.04 × 106 | 5.7 | 240 | 1 × 105 | 346 ± 1 | 3.55 × 106 | 35 |
isobutane | 300 | 3.70 × 105 | 372 ± 1 | 1.98 × 106 | 5.4 | 261 | 1 × 105 | 357 ± 1 | 1.46 × 106 | 15 |
butane | 300 | 2.58 × 105 | 383 ± 1 | 1.87 × 106 | 7.3 | 272 | 1 × 105 | 372 ± 1 | 1.51 × 106 | 15 |
R245fa | 300 | 1.59 × 105 | 382 ± 1 | 1.55 × 106 | 10 | 288 | 1 × 105 | 377 ± 1 | 1.39 × 106 | 14 |
R123 | 300 | 9.78 × 104 | 401 ± 1 | 1.41 × 106 | 14 | 301 | 1 × 105 | 401 ± 1 | 1.42 × 106 | 14 |
acetone | 300 | 3.33 × 104 | 432 ± 1 | 1.31 × 106 | 39 | 329 | 1 × 105 | 444 ± 1 | 1.68 × 106 | 17 |
cyclopentane | 300 | 4.55 × 104 | 434 ± 1 | 1.44 × 106 | 32 | 322 | 1 × 105 | 444 ± 1 | 1.71 × 106 | 17 |
cyclohexane | 300 | 1.41 × 104 | 458 ± 1 | 1.04 × 106 | 74 | 353 | 1 × 105 | 483 ± 1 | 1.56 × 106 | 16 |
benzene | 300 | 1.38 × 104 | 462 ± 1 | 1.20 × 106 | 87 | 353 | 1 × 105 | 488 ± 1 | 1.80 × 106 | 18 |
toluene | 300 | 4.18 × 103 | 473 ± 1 | 7.67 × 106 | 184 | 383 | 1 × 105 | 515 ± 1 | 1.50 × 106 | 15 |
decane | 300 | 2.07 × 102 | 492 ± 1 | 2.49 × 106 | 1202 | 447 | 1 × 105 | 558 ± 1 | 8.90 × 106 | 8.9 |
water | 300 | 3.54 × 103 | 507 ± 1 | 3.62 × 106 | 1023 | 373 | 1 × 105 | 554 ± 1 | 6.51 × 106 | 65 |
3.2.2. Pressure Equal to the Ambient Pressure
4. Endogenous and Exogenous Optimization of a Carnot Engine
Substance | TL imposed at 300 K | PL imposed at 1 × 105 Pa | ||||
---|---|---|---|---|---|---|
R125 | 327 ± 2 | 358 | 0.280 | 300 ± 1 | 401 | 0.589 |
R143a | 332 ± 1 | 368 | 0.323 | 305 ± 1 | 412 | 0.635 |
R32 | 335 ± 1 | 376 | 0.368 | 306 ± 1 | 424 | 0.713 |
R22 | 347 ± 1 | 402 | 0.487 | 320 ± 1 | 443 | 0.786 |
propane | 348 ± 1 | 404 | 0.504 | 321 ± 1 | 448 | 0.830 |
R134a | 351 ± 1 | 410 | 0.467 | 330 ± 1 | 441 | 0.681 |
R227ea | 351 ± 1 | 411 | 0.491 | 334 ± 1 | 436 | 0.675 |
R152a | 358 ± 1 | 430 | 0.538 | 339 ± 1 | 462 | 0.756 |
ammonia | 371 ± 1 | 460 | 0.593 | 346 ± 1 | 500 | 0.835 |
isobutane | 372 ± 1 | 464 | 0.686 | 357 ± 1 | 489 | 0.863 |
butane | 383 ± 1 | 491 | 0.757 | 372 ± 1 | 509 | 0.880 |
R245fa | 384 ± 1 | 488 | 0.736 | 377 ± 1 | 494 | 0.783 |
R123 | 402 ± 1 | 537 | 0.890 | 402 ± 1 | 537 | 0.888 |
acetone | 432 ± 1 | 617 | 1.14 | 444 ± 1 | 598 | 1.02 |
cyclopentane | 434 ± 1 | 628 | 1.16 | 445 ± 1 | 615 | 1.06 |
cyclohexane | 458 ± 1 | 698 | 1.22 | 483 ± 1 | 660 | 1.01 |
benzene | 462 ± 1 | 712 | 1.26 | 488 ± 1 | 674 | 1.06 |
toluene | 478 ± 1 | 750 | 1.57 | 516 ± 1 | 694 | 1.22 |
decane | 492 ± 1 | 788 | 1.59 | 558 ± 1 | 696 | 1.02 |
water | 507 ± 1 | 893 | 1.80 | 554 ± 1 | 824 | 1.45 |
5. Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Carnot, S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance; Bachelier: Paris, France, 1824. (in French) [Google Scholar]
- Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 1, 22–24. [Google Scholar] [CrossRef]
- Novikov, I. The efficiency of atomic power stations (a review). J. Nucl. Energy 1958, 7, 125–128. [Google Scholar] [CrossRef]
- Chambadal, P. Le choix du cycle thermique dans une usine génératrice nucléaire. Revue Générale de l'Electricité 1958, 67, 332–345. (in French). [Google Scholar]
- Vaudrey, A.; Lanzetta, F.; Feidt, M.H.B. Reitlinger and the origins of the efficiency at maximum power formula for heat engines. J. Non-equilib. Thermodyn. 2014, 39, 199–203. [Google Scholar] [CrossRef]
- Moreau, M.; Gaveau, B.; Schuman, S. Stochastic dynamics, efficiency and sustainable power production. Eur. Phys. J. D 2011, 62, 67–71. [Google Scholar] [CrossRef]
- Yvon, J. The Saclay reactor: Two years experience on heat transfer by means of compressed gas. In Proceedings of the International Conference on Peaceful Uses of Atomic Energy, Geneva, Switzerland, 8–20 August 1955.
- Andresen, B. Finite-Time Thermodynamics; Physics Laboratory II, University of Copenhague: Copenhague, Denmark, 1983. [Google Scholar]
- Feidt, M.; Costea, M.; Petre, C.; Petrescu, S. Optimization of the direct Carnot cycle. Appl. Therm. Eng. 2007, 27, 829–839. [Google Scholar] [CrossRef]
- Chen, J.; Yan, Z.; Lin, G.; Andresen, B. On the Curzon–Ahlborn efficiency and its connection with the efficiencies of real heat engines. Energy Convers. Manag. 2001, 42, 173–181. [Google Scholar] [CrossRef]
- Kodal, A.; Sahin, B.; Yilmaz, T. A comparative performance analysis of irreversible Carnot heat engines under maximum power density and maximum power conditions. Energy Convers. Manag. 2000, 41, 235–248. [Google Scholar] [CrossRef]
- Agnew, B.; Anderson, A.; Forst, T.H. Optimization of a steady state flow Carnot cycle with external irreversibilities for maximum specific output. Appl. Therm. Eng. 1997, 17, 3–15. [Google Scholar] [CrossRef]
- Feidt, M. Thermodynamique Optimale en Dimensions Physiques Finies; Lavoisier: Paris, France, 2013. [Google Scholar]
- Tchanche, B.F.; Papadakis, G.; Lambrinos, G.; Frangoudakis, A. Fluid selection for a low-temperature solar organic Rankine cycle. Appl. Therm. Eng. 2009, 29, 2468–2476. [Google Scholar] [CrossRef]
- Chen, H.; Goswami, D.Y.; Stefanakos, E.K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew. Sustain. Energy Rev. 2010, 14, 3059–3067. [Google Scholar] [CrossRef]
- Hung, T.C.; Wang, S.K.; Kuo, C.H.; Pei, B.S.; Tsai, K.F. A study of organic working fluids on system efficiency of an ORC using low-grade energy sources. Energy 2010, 35, 1403–1411. [Google Scholar] [CrossRef]
- Badr, O.; Probert, S.D.; O’Callaghan, P.W. Selecting a working fluid for a Rankine-cycle engine. Appl. Energy 1985, 21, 1–42. [Google Scholar]
- Liu, B.-T.; Chien, K.-H.; Wang, C.C. Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 2004, 29, 1207–1217. [Google Scholar] [CrossRef]
- West, H.H.; Patton, J.M. Selection of working fluids for the organic Rankine cycle. In Proceedings of the First Industrial Energy Technology Conference, Houston, TX, USA, 22–25 April 1979; pp. 953–959.
- Le, V.L.; Feidt, M.; Kheiri, A.; Pelloux-Prayer, S. Performance optimization of low-temperature power generation by supercritical ORCs (Organic Rankine Cycles) using low GWP (Global Warming Potential) working fluids. Energy 2014, 67, 513–526. [Google Scholar]
- De Witt, B.; Hugo, R. Naturally-Forced Slug Flow Expander for Application in a Waste-Heat Recovery Cycle. Energies 2014, 7, 7223–7244. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaise, M.; Feidt, M.; Maillet, D. Optimization of the Changing Phase Fluid in a Carnot Type Engine for the Recovery of a Given Waste Heat Source. Entropy 2015, 17, 5503-5521. https://doi.org/10.3390/e17085503
Blaise M, Feidt M, Maillet D. Optimization of the Changing Phase Fluid in a Carnot Type Engine for the Recovery of a Given Waste Heat Source. Entropy. 2015; 17(8):5503-5521. https://doi.org/10.3390/e17085503
Chicago/Turabian StyleBlaise, Mathilde, Michel Feidt, and Denis Maillet. 2015. "Optimization of the Changing Phase Fluid in a Carnot Type Engine for the Recovery of a Given Waste Heat Source" Entropy 17, no. 8: 5503-5521. https://doi.org/10.3390/e17085503
APA StyleBlaise, M., Feidt, M., & Maillet, D. (2015). Optimization of the Changing Phase Fluid in a Carnot Type Engine for the Recovery of a Given Waste Heat Source. Entropy, 17(8), 5503-5521. https://doi.org/10.3390/e17085503