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Abstract:

 This paper considers the consensus problem of nonlinear multi-agent systems under switching directed topologies. Specifically, the dynamics of each agent incorporates an intrinsic nonlinear term and the interaction topology may not contain a spanning tree at any time. By designing a state-controlled switching law, we show that the multi-agent system with the neighbor-based protocol can achieve consensus if the switching topologies jointly contain a spanning tree. Moreover, an easily manageable algebraic criterion is deduced to unravel the underlying mechanisms in reaching consensus. Finally, a numerical example is exploited to illustrate the effectiveness of the developed theoretical results.
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1. Introduction

Recent years have witnessed a growing interest in the consensus problem of multi-agent systems in system and control community. A lot of effort has been made to design distributed control law for each agent such that the system as a whole can perform complex tasks in a cooperative manner. The distinguishing feature of such control law lies in its lack of global information while aiming to cooperate with all agents. In this paper, we deal with the consensus problem of multi-agent systems with nonlinear dynamics and switching topologies jointly containing a spanning tree.

Over the past decade, many well-known results on consensus have been reported in [1,2,3,4,5,6,7], to name just a few. Based on algebraic graph theory, Olfati-Saber and Murray [1] discussed the consensus problem for networked single-integrator agents over directed fixed and switching topologies with communication time-delays. Following this work, the consensus problem has been recently investigated from various perspectives, for example, system with second-order dynamics [8,9], nonlinear agent dynamics [10,11], time-delays [12,13], quantization [14], saturation [15], etc. However, most of the aforementioned works were predominantly concerned with the multi-agent systems under fixed communication topologies.

In practical application, the interaction topology among agents may change dynamically due to the limited sensing regions of sensors or effect of obstacles. Different assumptions on the switching topologies for multi-agent systems have been explored in recent years [16,17,18]. By assuming that the switching topologies keep connected or contain a spanning tree at every time, a heap of results have been reported [19,20,21,22,23]. However, it is impractical to impose the connectivity condition on all possible topologies. Thus, seeking feasible while less restrictive condition on the switching topologies becomes a mix of diverse challenging, yet interesting topic. In discrete-time setting, Jadbabaie et al. [24] provided a simple consensus protocol for Vicsek’s model [25], which was analyzed theoretically by exploiting properties of products of stochastic matrices under jointly connected topologies. The result was later extended in [26] to the case of directed graphs where conditions for consensus under switching interaction topologies were presented. For continuous-time systems, Hong et al. [27] proposed a local control strategy for multi-agent systems with jointly connected topologies. In [28,29,30], the switching communication topologies were assumed to be governed by continuous-time homogeneous Markov processes, whose state space corresponds to the communication patterns. The authors of [31,32,33] considered continuous-time multi-agent systems under jointly connected topologies, which had less constraints on each possible topology. However, these results are quite conservative in the sense that the underlying topology of the system switches without concerning the current states of the multi-agent systems.

Inspired by the above discussion, this paper aims to investigate the leadless consensus problem of multi-agent systems with Lipschitz nonlinear dynamics over state-controlled switching topologies. Relevant work can be found in [34], where the author studied leader-following consensus for double-integrator-based multi-agent systems under jointly connected topologies. In this paper, all possible topologies are allowed to be disconnected, and only jointly contains a spanning tree is required for the system to achieve consensus. By using the state transformation method, the consensus problem becomes a stability problem of a nonlinear switched system. Then, based on the Lyapunov stability approach, the consensus of the considered system is proved to be achieved with a prescribed consensus error. The contribution of this paper can be ascribed as follows: (1) Inspired by the stabilizing switching theory [35], we design a state-controlled switching law for the considered switching topologies. To avoid the switching signal from chattering, a new mechanism is introduced, and then, the low bound of dwell time of switching topologies is explicitly calculated. This is neglected in [34]; therefore, the controllers therein may suffer from chattering. (2) The dynamics of multi-agent system incorporates nonlinearities, which have been less reported in the literature, especially when the topologies are assumed to jointly contain a spanning tree. This paper attempts to explore the consensus of multi-agent systems with both nonlinear dynamics and state-controlled switching topologies, which thus constitutes a necessary complement to the existing literature.

The rest of the paper is organized as follows. In Section 2, some preliminaries on algebraic graph theory and model formulation are given. Sufficient conditions are given to ensure consensus of first-order multi-agent systems in Section 3. In Section 4, we give a numerical example to illustrate the proposed protocol. Conclusions are drawn in Section 5.

Throughout the paper, the following notations are adopted for the ease of presentation. [image: there is no content] is the n-dimensional Euclidean space and [image: there is no content] stands for the set of [image: there is no content] real matrix. [image: there is no content] and [image: there is no content] are [image: there is no content] identity and zero matrices, respectively. [image: there is no content] denotes the diagonal matrix with diagonal elements [image: there is no content] to [image: there is no content]. [image: there is no content] refers to the Euclidean vector norm and the induced matrix norm.



2. Preliminaries and Problem Statement

A weighted digraph (or directed graph) [image: there is no content] of order n consists of a set of nodes [image: there is no content], a set of edges [image: there is no content] and a weighted adjacency matrix [image: there is no content]=[[image: there is no content]]∈[image: there is no content]. A directed edge in [image: there is no content] is denoted by eij=(i,j)∈[image: there is no content], which means node i has access to the information of j. The element [image: there is no content] in [image: there is no content] is decided by the edge between i and j, i.e., eij∈[image: there is no content]⇔[image: there is no content]>0; otherwise [image: there is no content]=0. The set of neighbors of node i is denoted by Ni={j∈V|(i,j)∈[image: there is no content]}. The Laplacian matrix L of graph G is defined by L=D-[image: there is no content], where [image: there is no content], and di=∑j∈Nin[image: there is no content] is the in-degree of node i. A sequence of edges [image: there is no content] is called a directed path from node [image: there is no content] to node [image: there is no content]. If there exists at least one node (called the root) having directed path to any other nodes, the digraph is said to have a spanning tree.

To depict the varying topologies, let [image: there is no content]={Gm=(V,[image: there is no content]m,[image: there is no content]m)|m∈[image: there is no content]} denote the collection of all possible digraphs on the same node set [image: there is no content], and [image: there is no content] be the index set of possible topologies, where M is the number of possible topologies. Then, the underlying graph at time t can be denoted by [image: there is no content], where [image: there is no content] is a piecewise constant switching function defined as [image: there is no content]. It is assumed that [image: there is no content] switches finite times in any bounded time interval. For a collection [image: there is no content] of digraphs, its union digraph is defined as [image: there is no content]=(V,∪m=1M[image: there is no content]m,∑m=1M[image: there is no content]m). Moreover, we say that the collection [image: there is no content] jointly contains a spanning tree if its union digraph [image: there is no content] has a spanning tree.

Consider a multi-agent system consisting of n agents. The dynamics of each agent is



[image: there is no content]



(1)




where [image: there is no content] is the state of agent i, [image: there is no content] is a nonlinear function describing the self-dynamics of agent i, and [image: there is no content] is the control input.

Assumption 1. 
The nonlinear function [image: there is no content] satisfies the Lipschitz condition with the Lipschitz constant ρ, i.e.,



|f(x2,t)-f([image: there is no content],t)|≤ρ|x2-[image: there is no content]|,∀[image: there is no content],x2∈R,t≥0.











Assumption 2. 
The switching topologies [image: there is no content] jointly contain a spanning tree.



For system Equation (1), we consider the following control input for the ith agent:



[image: there is no content](t)=-k∑j∈Niαij[image: there is no content](xi-xj).



(2)




Hence, the closed-loop system can be rewritten in compact form as



x˙(t)=-kL[image: there is no content]x(t)+f(x,t),



(3)




where x(t)=[[image: there is no content](t),x2(t),…,xn(t)]T and f(x,t)=[f([image: there is no content],t),f(x2,t),…,f(xn,t)]T.
Here, we introduce a state transformation for system Equation (3)



[image: there is no content]








where E=[-1n-1In-1] so that system Equation (3) can be rewritten in the following reduced-order form with respect to ξ


ξ˙(t)=-kL¯[image: there is no content]ξ(t)+f¯



(4)




where L¯[image: there is no content]=EL[image: there is no content]F, F=[0n-1In-1] and f¯=[f(x2,t)-f([image: there is no content],t),f(x3,t)-f([image: there is no content],t),…,f(xN,t)-f([image: there is no content],t)]T.

Definition 1. 
The consensus error [image: there is no content] is uniformly ultimately bounded (UUB) if there exists a bound B and a time [image: there is no content], which are independent of [image: there is no content], such that ||ξ(t)||≤Bfor∀t≥t0+tf.




Remark 1. 
From the structure of transformation matrix E, we know that ξ is the indicator of the consensus performance of multi-agent system Equation (1). That is, the system Equation (1) achieves consensus if and only if [image: there is no content] of Equation (4) is asymptotically stable. In what follows, ξ is called the consensus error of the system. When [image: there is no content] is UUB, [image: there is no content] is bounded within a bounded neighborhood of [image: there is no content](t) for [image: there is no content] and [image: there is no content]. Thus, this depicts an intuitive notion of “close enough" consensus.




Lemma 1. 
[22] Let [image: there is no content] be the Laplacian matrices associated with the digraphs [image: there is no content], respectively, then [image: there is no content] is Hurwitz stable if and only if the union of digraph [image: there is no content] of these graphs contains a spanning tree.




Lemma 2. 
[36] For any two real vectors x,y∈[image: there is no content] and positive definite matrix Φ∈[image: there is no content], we have



[image: there is no content]












3. Main Results

In this section, we first design a stabilizing switching law for multi-agent system Equation (1). Then, the main result of this paper will be presented with the help of the above preliminary knowledge.


3.1. Switching Law Design

Define average matrix



[image: there is no content]








and [image: there is no content] is Hurwitz. As a result, the following Lyapunov equation


[image: there is no content]



(5)




has a positive definite solution Q.
Define auxiliary matrices L¯m(m∈[image: there is no content]) as follows:



[image: there is no content]








For initial state [image: there is no content], let



[image: there is no content]



(6)




where [image: there is no content] stands for the index which reaches the maximum among [image: there is no content]. If there is more than one index, we choose the minimum index.
Then, we define the switching instant and index sequences recursively by



[image: there is no content]=inf{t>[image: there is no content]:ξT(t)L¯σ([image: there is no content])ξ(t)<rσ([image: there is no content])ξT(t)ξ(t),||ξ(t)||>ϖ}σ([image: there is no content])=[image: there is no content]{ξ([image: there is no content])TL¯1ξ([image: there is no content]),…,ξ([image: there is no content])TL¯Mξ([image: there is no content])},c=1,2,…,



(7)




where [image: there is no content]

Lemma 3. 
The switching signal [image: there is no content] is well-defined, i.e., [image: there is no content].




Proof. 
Assume [image: there is no content] and [image: there is no content] are two consecutive switching time instants. By the property of the protocol that we design the switching instants, we have


	(1)

	ξT([image: there is no content])L¯σ([image: there is no content])ξ([image: there is no content])=maxi∈Λ{ξT([image: there is no content])L¯iξ([image: there is no content])}.



	(2)

	ξT([image: there is no content])L¯σ([image: there is no content])ξ([image: there is no content])≤rσ([image: there is no content])ξT([image: there is no content])ξ([image: there is no content]).



	(3)

	∥ξ([image: there is no content])∥≥ϖ.





As [image: there is no content], item (1) also implies that


	(4)

	ξT([image: there is no content])L¯σ([image: there is no content])ξ([image: there is no content])≥ξT([image: there is no content])ξ([image: there is no content]).







Firstly, let us consider the case



∥ξ(t)∥≤ϑ∥ξ([image: there is no content])∥ϑ>1and∀t∈[[image: there is no content],[image: there is no content]].



(8)




Here, we define an auxiliary function



w(t)=-ξT(t)L¯σ([image: there is no content])ξ(t)+ξT(t)ξ(t).



(9)




It follows from (2) and (4) that



w([image: there is no content])≤0andw([image: there is no content])≥(1-rσ([image: there is no content]))ξT([image: there is no content])ξ([image: there is no content]).








Calculating the derivative of [image: there is no content] along time, we get



dw(t)dt=-kξT[L¯σ([image: there is no content])T(-L¯σ([image: there is no content])+[image: there is no content])+(-L¯σ([image: there is no content])+[image: there is no content])L¯σ([image: there is no content])]ξ+2f¯T(-L¯σ([image: there is no content])+[image: there is no content])ξ.



(10)




Now, we denote



ν1=∥Lσ([image: there is no content])T(-L¯σ([image: there is no content])+[image: there is no content])+(-L¯σ([image: there is no content])+[image: there is no content])Lσ([image: there is no content])∥,








and


ν2=supt∈[[image: there is no content],[image: there is no content]]∥f¯∥andν3=∥-L¯σ([image: there is no content])+[image: there is no content]∥.








Combining with (3) yields



∥dw(t)dt∥≤(kϑ2ν1+2ϑ2ν2ν3ϖ)∥ξ([image: there is no content])∥2,








which together with the fact that (kϑ2ν1+2ϑ2ν2ν3ϖ)∥ξ([image: there is no content])∥2([image: there is no content]-[image: there is no content])≥ω([image: there is no content])-ω([image: there is no content])≥(1-rσ([image: there is no content]))∥ξ([image: there is no content])∥2 implies that


(kϑ2ν1+ϑ2ν2ν3ϖ)([image: there is no content]-[image: there is no content])≥1-rσ([image: there is no content]),








thus


[image: there is no content]-[image: there is no content]≥1-rσ([image: there is no content])kϑ2ν1+2ϑ2ν2ν3ϖ.








Next, suppose that Equation (8) does not hold, which means that there is a t*∈[[image: there is no content],[image: there is no content]) satisfying



∥ξ(t*)∥>ϑ∥ξ([image: there is no content])∥.



(11)




From the system Equation (5), we have



ξ([image: there is no content])=ξ(t*)eLσ([image: there is no content])([image: there is no content]-[image: there is no content])+∫t*[image: there is no content]eLσ([image: there is no content])([image: there is no content]-s)f¯(s)ds,



(12)




which is equivalent to


ξ(t*)=ξ([image: there is no content])eLσ([image: there is no content])(t*-[image: there is no content])-∫t*[image: there is no content]eLσ([image: there is no content])(t*-s)f¯(s)ds.



(13)




Based on the property of exponential function and norm, there is a positive number [image: there is no content] such that



∥eLσ([image: there is no content])t∥≤ϑ-12∀t∈[-[image: there is no content],0].








Suppose that



[image: there is no content]-t*=min([image: there is no content],ϖ(2ϑ-1)ν2).








As a result,



∥ξ(t*)∥≤(ϑ-12)∥ξ([image: there is no content])∥+(ϑ-12)([image: there is no content]-t*)ν2≤ϑ∥ξ([image: there is no content])∥,








which contradicts the inequality Equation (11). Hence, we get


∥[image: there is no content]-[image: there is no content]∥≥[image: there is no content]-t*>min([image: there is no content],ϖ(2ϑ-1)ν2).








Combining the above discussions shows that for any consecutive switching time instants [image: there is no content] and [image: there is no content], we have



[image: there is no content]-[image: there is no content]≥min(1-rσ([image: there is no content])kϑ2ν1+2ϑ2ν2ν3ϖ,[image: there is no content],ϖ(2ϑ-1)ν2)>0,



(14)




which imposes a lower bound for the dwell time of switching signal. This means the switching signals are well-defined. ☐

Remark 2. 
According to [35], a “good” switching signal should guarantee a positive dwell time and avoid fast switching. In the switching law Equation (6) and Equation (7), we fix a threshold value ϖ for switching, which can prevent the switching signal [image: there is no content] from chattering. However, there is a trade-off between the precise of consensus and frequency of switching due to such a threshold value. Specifically, a smaller ϖ may lead to a smaller dwell time, which implies high frequency switching, while a larger ϖ may bring about a larger consensus error which is undesirable. Similarly , there is also a trade-off between the control gain and frequency of switching due to parameters [image: there is no content] in Equation (6) and Equation (7). Specifically, smaller [image: there is no content] may result in larger control gain, which can be seen in the upcoming Theorem 1, while larger [image: there is no content] may bring about high frequency switching. The existence of these two trade-offs suggests that the choice of these parameters should achieve a balanced interplay between consensus performance and feasibility of control protocols.





3.2. Consensus Analysis


Theorem 1. 
Consider the multi-agent system Equation (1) under Assumptions 1 and 2. Adopt the designed switching law in Equation (6) and Equation (7). Then, by employing control protocol Equation (2) and selecting control gain such that



[image: there is no content]



(15)




where [image: there is no content] denotes the maximum eigenvalue of Q and [image: there is no content], the consensus error [image: there is no content] is UUB. That is, all agents reach consensus with a bounded error ϖ.



Proof. 
As the switching topologies jointly contain a spanning tree, [image: there is no content] is Hurwitz stable by Lemma 1, and the switching law is well-defined in Equation (6) and Equation (7). Here, we consider the Lyapunov function candidate as [image: there is no content]. In case of [image: there is no content], by calculating the derivative of [image: there is no content] along the trajectory of system Equation (4), we have



dV(t)dt=ξ˙TQξ+ξTQξ˙=-kξT(L¯[image: there is no content]TQ+QL¯[image: there is no content])ξ+2ξTQf¯≤-kr[image: there is no content]ξTξ+ξTQξ+f¯Qf¯≤-krξTξ+ξTQξ+λ¯(Q)ρξTξ≤-(kr-λ¯(Q)ρ-λ¯(Q))ξTξ<0.



(16)






Therefore, [image: there is no content] is strictly decreasing during each time interval. This, together with the fact that [image: there is no content] is continuous, implies the consensus error satisfies [image: there is no content], which means the consensus error [image: there is no content] is UUB. This completes the proof. ☐


Remark 3. 
In [21], first-order nonlinear multi-agent system was investigated, where general algebraic connectivity needs to be calculated to design the control parameter. However, the general algebraic connectivity of a graph is not easy to obtain, especially when the network size is large. Here, we provide a novel method to design the control parameter to realize consensus. In addition, we allow the underlying topology to be disconnected all the time, which cannot be analyzed by the technique in [21].




Remark 4. 
In [18,22,23], consensus problems of multi-agent systems with nonlinear dynamics under switching topologies were considered. However, a common assumption of these works on the switching topologies is all the topologies are required to be connected or having a spanning tree. In [17], this assumption is relaxed where consensus of multi-agent systems was achieved without requiring the topology having a spanning tree all the time. However, these results are quite conservative in the sense that the underlying topology of the system switches without concerning the current states of the multi-agent systems. In this paper, another perspective to solve the consensus problem without requiring each possible topology containing a spanning tree is provided. The designed topology switching law arranges the underlying topology by taking states of agents into consideration, which is efficient.




Remark 5. 
When the consensus of the systems is achieved, the state of agents in the system is determined by the nonlinear function. Therefore, denoting the consensus state of the system by [image: there is no content] (i.e., the trajectory of [image: there is no content]), which can be any desired state: an equilibrium point, a nontrivial periodic orbit, or even a chaotic orbit in some applications.






4. Numerical Simulations

In this section, we present numerical simulations to demonstrate the effectiveness of theoretical results. For simplicity, we only consider the multi-agent systems consisting of ten agents labeled 1 through 10 and assume all weights of edges between agents are 0 or 1.

Consider the consensus of multi-agent system Equation (1) with the communication topology switching in a collection [image: there is no content], as shown in Figure 1. Note that each digraph in Figure 1 does not contain a spanning tree, but the union digraph of them contains a spanning tree. The inherent nonlinear dynamics is given as [image: there is no content]. By Theorem 1, when the feedback gain [image: there is no content], the consensus of the system is achieved uniformly ultimately bounded under the designed state-controlled switching topologies. Figure 2 shows the states of the closed-loop system with [image: there is no content] and [image: there is no content]. We can see that the ten agents achieve convergence with bounded error although none of digraph [image: there is no content] contains a spanning tree. Figure 3 and Figure 4 present the switching signal and the consensus error [image: there is no content], respectively.

Figure 1. Possible interaction topologies between agents.



[image: Entropy 18 00029 g001 1024]





Figure 2. State [image: there is no content] under the state-controlled switching topologies with a threshold [image: there is no content].



[image: Entropy 18 00029 g002 1024]





Figure 3. The state-controlled switching signal [image: there is no content] with a threshold [image: there is no content].



[image: Entropy 18 00029 g003 1024]





Figure 4. Consensus error [image: there is no content] under the state-controlled switching topologies with a threshold [image: there is no content].



[image: Entropy 18 00029 g004 1024]













To demonstrate the merit of fixing a threshold for switching, we also consider the case that [image: there is no content] under the same setting as stated above. The states of agents, switching signal and consensus error are shown in Figure 5, Figure 6 and Figure 7, respectively. From this comparison simulation, we can find that the multi-agent system reaches consensus precisely, while the interaction topology switches much more times than the case with [image: there is no content].

Figure 5. State [image: there is no content] under the state-controlled switching topologies without a threshold.



[image: Entropy 18 00029 g005 1024]





Figure 6. The state-controlled switching signal [image: there is no content] without a threshold.



[image: Entropy 18 00029 g006 1024]





Figure 7. Consensus error [image: there is no content] under the state-controlled switching topologies without a threshold.



[image: Entropy 18 00029 g007 1024]













5. Conclusions

In this paper, we have investigated the leaderless consensus problem with two practical constraints: (i) The system includes intrinsic nonlinear dynamics; (ii) The switching topology may not contain a spanning tree at any time. We introduced a variable transformation to facilitate the consensus analysis, which shows great potential in solving the considered consensus problem. By designing a state-controlled switching law, the consensus problem has been solved under the assumption that the switching topologies jointly contain a spanning tree. The choice of parameters in the switching law allows us to balance the consensus performance with the feasibility of control protocols. Nevertheless, the nonlinearities in this work are assumed to be Lipschitz-type, which bring about some conservations. In addition, another drawback of this work is that some global information is used in the designed switching law. We believe that the results of this paper could be largely improved if general nonlinearities are considered and the topology switching law depends only on local information, which is still an open issue and will be the object of our future work.
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