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Abstract:



The mean of data on the unit circle is defined as the minimizer of the average squared Euclidean distance to the data. Based on Hoeffding’s mass concentration inequalities, non-asymptotic confidence sets for circular means are constructed which are universal in the sense that they require no distributional assumptions. These are then compared with asymptotic confidence sets in simulations and for a real data set.
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1. Introduction


In applications, data assuming values on the circle, i.e., circular data, arise frequently, examples being measurements of wind directions, or time of the day that patients are admitted to a hospital unit. We refer to the literature, e.g., [1,2,3,4,5], for an overview of statistical methods for circular data, in particular the ones described in this section.



Here, we will concern ourselves with the arguably simplest statistic, the mean. However, given that a circle does not carry a vector space structure, i.e., there is neither a natural addition of points on the circle nor can one divide them by a natural number, what should the meaning of “mean” be?



In order to simplify the exposition, we specifically consider the unit circle in the complex plane, S1={z∈C:|z|=1}, and we assume the data can be modelled as independent random variables [image: there is no content] which are identically distributed as the random variable Z taking values in [image: there is no content]. In the literature, however, the circle is often taken to lie in the real plane [image: there is no content], i.e., while we denote the point on the circle corresponding to an angle [image: there is no content] by [image: there is no content] one may take it to be [image: there is no content].



Of course, C is a real vector space, so the Euclidean sample mean [image: there is no content] is well-defined. However, unless all [image: there is no content] take identical values, it will (by the strict convexity of the closed unit disc) lie inside the circle, i.e., its modulus [image: there is no content] will be less than 1. Though [image: there is no content] cannot be taken as a mean on the circle, if [image: there is no content], one might say that it specifies a direction; this leads to the idea of calling [image: there is no content] the circular sample mean of the data.



Observing that the Euclidean sample mean is the minimiser of the sum of squared distances, this can be put in the more general framework of Fréchet means [6]: define the set of circular sample means to be


μ^n=argminζ∈S1∑k=1n|Zk−ζ|2,



(1)




and analoguously define the set of circular population means of the random variable Z to be


μ=argminζ∈S1E|Z−ζ|2.



(2)







Then, as usual, the circular sample means are the circular population means with respect to the empirical distribution of [image: there is no content].



The circular population mean can be related to the Euclidean population mean [image: there is no content] by noting that [image: there is no content] (in statistics, this is called the bias-variance decomposition), so that


[image: there is no content]



(3)




is the set of points on the circle closest to [image: there is no content]. It follows that μ is unique if and only if [image: there is no content] in which case it is given by [image: there is no content], the orthogonal projection of [image: there is no content] onto the circle; otherwise, i.e., if [image: there is no content], the set of circular population means is all of [image: there is no content]. We consider the information of whether the circular population mean is not unique, e.g., but not exclusively because Z is uniformly distributed over the circle, to be relevant; it thus should be inferred from the data as well. Analogously, [image: there is no content] is either all of [image: there is no content] or uniquely given by [image: there is no content] according to whether [image: there is no content] is 0 or not. Note that [image: there is no content] a.s. if Z is continuously distributed on the circle, even if [image: there is no content]. [image: there is no content] is what is known as the vector resultant, while [image: there is no content] is sometimes referred to as the mean direction.



The expected squared distances minimised in Equation (2) are given by the metric inherited from the ambient space C; therefore, μ is also called the set of extrinsic population means. If we measured distances intrinsically along the circle, i.e., using arc-length instead of chordal distance, we would obtain what is called the set of intrinsic population means. We will not consider the latter in the following, see e.g., [7] for a comparison and [8,9] for generalizations of these concepts.



Our aim is to construct confidence sets for the circular population mean μ that form a superset of μ with a certain (so-called) coverage probability that is required to be not less than some pre-specified significance level [image: there is no content] for [image: there is no content].



The classical approach is to construct an asymptotic confidence interval where the coverage probability converges to [image: there is no content] when n tends to infinity. This can be done as follows: since Z is a bounded random variable, [image: there is no content] converges to a bivariate normal distribution when identifying C with [image: there is no content]. Now, assume [image: there is no content] so μ is unique. Then, the orthogonal projection is differentiable in a neighbourhood of [image: there is no content], so the δ-method (see e.g., [1] (p. 111) or [4] (Lemma 3.1)) can be applied and one easily obtains


nArg(μ−1μ^n)→DN0,E(Im(μ−1Z))2|EZ|2,



(4)




where [image: there is no content] denotes the argument of a complex number (it is defined arbitrarily at [image: there is no content]), while multiplying with [image: there is no content] rotates such that [image: there is no content] is mapped to [image: there is no content], see e.g., [4] (Proposition 3.1) or [7] (Theorem 5). Estimating the asymptotic variance and applying Slutsky’s lemma, one arrives at the asymptotic confidence set CA={ζ∈S1:|Arg(ζ−1μ^n)|<δA} provided [image: there is no content] is unique, where the angle determining the interval is given by


[image: there is no content]



(5)




with [image: there is no content] denoting the [image: there is no content]-quantile of the standard normal distribution [image: there is no content].



There are two major drawbacks to the use of asymptotic confidence intervals: firstly, by definition, they do not guarantee a coverage probability of at least [image: there is no content] for finite n, so the coverage probability for a fixed distribution and sample size may be much smaller. Indeed, Simulation 2 in Section 4 demonstrates that, even for [image: there is no content], the coverage probability may be as low as [image: there is no content] when constructing the asymptotic confidence set for [image: there is no content]. Secondly, they assume that [image: there is no content], so they are not applicable to all distributions on the circle. Since in practice it is unknown whether this assumption hold, one would have to test the hypothesis [image: there is no content], possibly again by an asymptotic test, and construct the confidence set conditioned on this hypothesis having been rejected, setting [image: there is no content] otherwise. However, this sequential procedure would require some adaptation taking the pre-test into account (cf. e.g., [10])—we come back to this point in Section 5—and it is not commonly implemented in practice.



We therefore aim to construct non-asymptotic confidence sets for μ, guaranteeing coverage with at least the desired probability for any sample size n, which in addition are universal in the sense that they do not make any distributional assumptions about the circular data besides them being independent and identically distributed. It has been shown in [7] that this is possible; however, the confidence sets that were constructed there were far too large to be of use in practice. Nonetheless, we start by varying that construction in Section 2 but using Hoeffding’s inequality instead of Chebyshev’s as in [7]. Considerable improvements are possible if one takes the variance [image: there is no content] “perpendicular to [image: there is no content]” into account; this is achieved by a second construction in Section 3. Of course, the latter confidence sets will still be conservative but Proposition 2(iv) shows that they are (for [image: there is no content]) only a factor [image: there is no content] longer than the asymptotic ones when the sample size n is large. We further illustrate and compare those confidence sets in simulations and for an application to real data in Section 4, discussing the results obtained in Section 5.




2. Construction Using Hoeffding’s Inequality


We will construct a confidence set as the acceptance region of a series of tests. This idea has been used before for the construction of confidence sets for the circular population mean [7] (Section 6); however, we will modify that construction by replacing Chebyshev’s inequality—which is too conservative here—by three applications of Hoeffding’s inequality [11] (Theorem 1): if [image: there is no content] are independent random variables taking values in the bounded interval [image: there is no content] with [image: there is no content] Then, [image: there is no content] with [image: there is no content] fulfills


PU¯n−ν≥t≤ν−aν−a+tν−a+tb−νb−ν−tb−ν−tnb−a



(6)




for any [image: there is no content]. The bound on the right-hand side—denoted [image: there is no content]—is continuous and strictly decreasing in t (as expected; see Appendix A) with [image: there is no content] and [image: there is no content] whence a unique solution [image: there is no content] to the equation [image: there is no content] exists for any [image: there is no content]. Equivalently, [image: there is no content] is strictly decreasing in [image: there is no content] Furthermore, [image: there is no content] is strictly increasing in ν (see Appendix A again), which is also to be expected. While there is no closed form expression for [image: there is no content], it can without difficulty be determined numerically.



Note that the estimate


[image: there is no content]



(7)




is often used and called Hoeffding’s inequality [11]. While this would allow to solve explicitly for t, we prefer to work with β as it is sharper, especially for ν close to b as well as for large t. Nonetheless, it shows that the tail bound [image: there is no content] tends to zero as fast as if using the central limit theorem which is why it is widely applied for bounded variables, see e.g., [12].



Now, for any [image: there is no content], we will test the hypothesis that ζ is a circular population mean. This hypothesis is equivalent to saying that there is some [image: there is no content] such that [image: there is no content]. Multiplication by [image: there is no content] then rotates [image: there is no content] onto the non-negative real axis: [image: there is no content].



Now, fix ζ and consider [image: there is no content], [image: there is no content] for [image: there is no content] which may be viewed as the projection of [image: there is no content] onto the line in the direction of ζ and onto the line perpendicular to it. Both are sequences of independent random variables taking values in [image: there is no content] with [image: there is no content] and [image: there is no content] under the hypothesis. They thus fulfill the conditions for Hoeffding’s inequality with [image: there is no content], [image: there is no content] and [image: there is no content] or 0, respectively.



We will first consider the case of non-uniqueness of the circular mean, i.e., [image: there is no content], or equivalently [image: there is no content]. Then, the critical value [image: there is no content] is well-defined for any [image: there is no content] and we get [image: there is no content], and also, by considering [image: there is no content], that [image: there is no content]. Analogously, [image: there is no content]. We conclude that


[image: there is no content]








Rejecting the hypothesis [image: there is no content], i.e., [image: there is no content], if [image: there is no content] thus leads to a test whose probability of false rejection is at most α (see Figure 1). Of course, one may work with [image: there is no content] and [image: there is no content] as criterions for rejection; however, we prefer working with [image: there is no content] since it is independent of the chosen [image: there is no content]


Figure 1. The construction for the test of the hypothesis [image: there is no content] or equivalently [image: there is no content]



[image: Entropy 18 00375 g001]






In the case of uniqueness of the circular mean, i.e., for the hypothesis [image: there is no content], we use the monotonicity of [image: there is no content] in ν and obtain


[image: there is no content]








as well. For the direction perpendicular to the direction of ζ (see Figure 2), however, we may now work with [image: there is no content], so for [image: there is no content]—which is well-defined whenever [image: there is no content] is since [image: there is no content]—we obtain


[image: there is no content]








Rejecting if [image: there is no content] or [image: there is no content], then, will happen with probability at most [image: there is no content] under the hypothesis [image: there is no content]. In case that we already rejected the hypothesis [image: there is no content], i.e., if [image: there is no content], ζ will not be rejected if and only if [image: there is no content] and [image: there is no content] which is then equivalent to [image: there is no content] (see Figure 3).


Figure 2. The construction for the test of the hypothesis [image: there is no content] with [image: there is no content].



[image: Entropy 18 00375 g002]





Figure 3. The critical [image: there is no content] regarding the rejection of ζ. [image: there is no content] bounds the angle between [image: there is no content] and any accepted [image: there is no content]



[image: Entropy 18 00375 g003]






Define [image: there is no content] as all ζ which we could not reject, i.e.,


CH=S1,if α≤2−n+2 or |Z¯n|≤2s0,ζ∈S1:|Arg(ζ−1μ^n)|<δHotherwise.



(8)







Then, we obtain the following result:



Proposition 1.

Let [image: there is no content] be random variables taking values on the unit circle [image: there is no content][image: there is no content], and let [image: there is no content] be defined as in Equation (8).

	(i) 

	
[image: there is no content] is a [image: there is no content]-confidence set for the circular population mean set. In particular, if [image: there is no content], i.e., the circular population mean set equals [image: there is no content], then [image: there is no content] with probability at most [image: there is no content] so indeed [image: there is no content] with probability at least [image: there is no content]




	(ii) 

	
[image: there is no content] and [image: there is no content] are of order [image: there is no content].




	(iii) 

	
If [image: there is no content] then [image: there is no content] in probability and the probability of obtaining the trivial confidence set, i.e., [image: there is no content], goes to 0 exponentially fast.











Proof. 

(i) holds by construction.





For (ii), recall Equation (7), from which we obtain the estimates [image: there is no content] resp. [image: there is no content], implying that [image: there is no content] and [image: there is no content] are of order [image: there is no content] the same holds stochastically for [image: there is no content] since [image: there is no content] a.s. Regarding the second statement of (iii), if μ is unique, consider [image: there is no content]; then, [image: there is no content] and [image: there is no content] is eventually less than [image: there is no content] and also [image: there is no content] eventually. Hence, the probability of obtaining the trivial confidence set [image: there is no content] is eventually bounded by [image: there is no content], and thus will go to zero exponentially fast as n tends to infinity. ☐




3. Estimating the Variance


From the central limit theorem for [image: there is no content] in case of unique μ, cf. Equation (4), we see that the aymptotic variance of [image: there is no content] gets small if [image: there is no content] is close to 1 (then [image: there is no content] is close to the boundary [image: there is no content] of the unit disc, which is possible only if the distribution is very concentrated) or if the variance [image: there is no content] in the direction perpendicular to μ is small (if the distribution were concentrated on [image: there is no content], this variance would be zero and [image: there is no content] would equal μ with large probability). While [image: there is no content] ([image: there is no content] being the denominator of its sine) takes the former into account, the latter has not been exploited yet. To do so, we need to estimate [image: there is no content].



Consider [image: there is no content] that is under the hypothesis that the corresponding ζ is the unique circular population mean has expectation [image: there is no content]. Now, [image: there is no content] is the mean of n independent random variables taking values in [image: there is no content] and having expectation [image: there is no content]. By another application of Equation (6), we obtain [image: there is no content] for [image: there is no content], the latter existing if [image: there is no content]. Since [image: there is no content] increases with [image: there is no content], there is a minimal [image: there is no content] for which [image: there is no content] holds and becomes an equality; we denote it by [image: there is no content]. Inserting into Equation (6), it by construction fulfills


α4=1−σ2^1−Vn1−Vnσ2^VnVnn.



(9)







It is easy to see that the right-hand side depends continuously on and is strictly decreasing in [image: there is no content] (see Appendix A), thereby traversing the interval [image: there is no content] so that one can again solve the equation numerically. We then may, with an error probability of at most [image: there is no content], use [image: there is no content] as an upper bound for [image: there is no content]. Note that [image: there is no content] exists if [image: there is no content] The latter is fulfilled for any [image: there is no content] since Equation (9) is equivalent to


α4=(1−σ2^)n11−Vn︸>11−σ2^1−Vn−Vn︸>1σ2^VnVn︸>1n.








For [image: there is no content], let [image: there is no content] be the trivial bound.



With such an upper bound on its variance, we now can get a better estimate for [image: there is no content]. Indeed, one may use another inequality by Hoeffding [11] (Theorem 3): the mean [image: there is no content] of a sequence [image: there is no content] of independent random variables taking values in [image: there is no content], each having zero expectation as well as variance [image: there is no content] fulfills


PW¯n≥w≤1+wρ2−ρ2−w1−ww−1n1+ρ2,



(10)






≤exp(−nt[(1+ρ2t)ln(1+tρ2)−1]).



(11)




for any [image: there is no content] Again, an elementary calculation (analogous to Lemma A1) shows that the right-hand side of Equation (10) is strictly decreasing in w, continuously ranging between 1 and [image: there is no content] as w varies in [image: there is no content], so that there exists a unique [image: there is no content] for which the right-hand side equals γ, provided [image: there is no content]. Moreover, the right-hand side increases with [image: there is no content] (as expected), so that [image: there is no content] is increasing in [image: there is no content], too (cf. Appendix A).



Therefore, under the hypothesis that the corresponding ζ is the unique circular population mean, [image: there is no content]. Now, since [image: there is no content], setting [image: there is no content] we get [image: there is no content]. Note that [image: there is no content] increases with [image: there is no content], so in case [image: there is no content] exists, [image: there is no content] implies [image: there is no content], i.e., the existence of [image: there is no content].



Following the construction for [image: there is no content] from Section 2, we can again obtain a confidence set for μ with coverage probability at least [image: there is no content] as shown in our previous article [13]. In practice however, this confidence set is hard to calculate since [image: there is no content] has to be calculated for every [image: there is no content] Though these confidence sets can be approximated by using a grid as in [13], we suggest using a simultaneous upper bound for the variance of [image: there is no content].



We obtain a (conservative) connected, symmetric confidence set [image: there is no content] by testing [image: there is no content] with [image: there is no content] as a common upper bound for the variance perpendicular to any [image: there is no content]. Note that [image: there is no content] can be obtained as the solution of Equation (9) with


[image: there is no content]








Furthermore, we can shorten [image: there is no content] by iteratively redefining [image: there is no content] and recalculating [image: there is no content] (see Algorithm 1). The resulting opening angle will be denoted by [image: there is no content]



	Algorithm 1: Algorithm for computation of [image: there is no content].



	 [image: Entropy 18 00375 i001]








Proposition 2.

Let [image: there is no content] be random variables taking values on the unit circle [image: there is no content] and let [image: there is no content]

	(i) 

	
The set [image: there is no content] resulting from Algorithm 1 is a [image: there is no content]-confidence set for the circular population mean set. In particular, if [image: there is no content], i.e., the circular population mean set equals [image: there is no content], then [image: there is no content] with probability at most [image: there is no content] so indeed [image: there is no content] with probability of at least [image: there is no content]




	(ii) 

	
[image: there is no content] is of order [image: there is no content].




	(iii) 

	
If [image: there is no content] i.e., if the circular population mean is unique, then [image: there is no content] in probability, and the probability of obtaining a trivial confidence set, i.e., [image: there is no content], goes to 0 exponentially fast.




	(iv) 

	
If [image: there is no content], then


lim supn→∞δVδA≤−2lnα4q1−α2a.s.








with [image: there is no content] denoting the [image: there is no content]-quantile of the standard normal distribution [image: there is no content]











Proof. 

Again, (i) follows by construction, while (iii) is shown as in Proposition 1.





For (ii), note that [image: there is no content] since the bound in Equation (10) for [image: there is no content] agrees with the bound in Equation (6) for [image: there is no content][image: there is no content] and [image: there is no content] thus [image: there is no content] and [image: there is no content] are at least of the order [image: there is no content]



For (iv), we will use the estimate in Equation (11). Recall that [image: there is no content]; therefore, for large n and hence small [image: there is no content] a.s.


α4≤exp−nsV1+σmax2^sVsVσmax2^−sV22(σmax2^)2+o(sV2)−1=exp(−nsV2/2σmax2^+o(sV2)),








thus [image: there is no content] Additionally, [image: there is no content] for x close to 0 which gives [image: there is no content] a.s.



Furthermore, [image: there is no content] a.s. for [image: there is no content], and we obtain


lim supn→∞δVδA≤−2lnα4q1−α2a.s.








since


[image: there is no content]








(see Equation (5)). ☐




4. Simulation and Application to Real Data


We will compare the asymptotic confidence set [image: there is no content], the confidence set [image: there is no content] constructed directly using Hoeffding’s inequality in Section 2, and the confidence set [image: there is no content] resulting from Algorithm 1 by reporting their corresponding opening angles [image: there is no content], [image: there is no content], and [image: there is no content] in degrees (∘) as well as their coverage frequencies in simulations.



All computations have been performed using our own code based on the software package R (version 2.15.3) [14] .



4.1. Simulation 1: Two Points of Equal Mass at [image: there is no content]


First, we consider a rather favourable situation: [image: there is no content] independent draws from the distribution with [image: there is no content]. Then, we have [image: there is no content], implying that the data are highly concentrated, [image: there is no content] is unique, and the variance of Z in the direction of μ is 0; there is only variation perpendicular to μ, i.e., in the direction of the imaginary axis (see Figure 4).


Figure 4. Two points of equal mass at [image: there is no content] and their Euclidean mean.



[image: Entropy 18 00375 g004]






Table 1 shows the results based on 10,000 repetitions for a nominal coverage probability of [image: there is no content]: the average [image: there is no content] is about [image: there is no content] times larger than [image: there is no content], which is about twice as large as [image: there is no content]. As expected, the asymptotics are rather precise in this situation: [image: there is no content] did cover the true mean in about [image: there is no content] of the cases, which implies that the other confidence sets are quite conservative; indeed [image: there is no content] and [image: there is no content] covered the true mean in all repetitions. One may also note that the angles varied only a little between repetitions.



Table 1. Results for simulation 1 (two points of equal mass at [image: there is no content]) based on 10,000 repetitions with [image: there is no content] observations each: average observed [image: there is no content], [image: there is no content], and [image: there is no content] (with corresponding standard deviation), as well as frequency (with corresponding standard error) with which [image: there is no content] was covered by [image: there is no content], [image: there is no content], and [image: there is no content], respectively; the nominal coverage probability was [image: there is no content].







	
Confidence Set

	
Mean δ (±s.d.)

	
Coverage Frequency (±s.e.)






	
[image: there is no content]

	
[image: there is no content] ([image: there is no content])

	
[image: there is no content] ([image: there is no content])




	
[image: there is no content]

	
[image: there is no content] ([image: there is no content])

	
[image: there is no content] ([image: there is no content])




	
[image: there is no content]

	
[image: there is no content] ([image: there is no content])

	
[image: there is no content] ([image: there is no content])











4.2. Simulation 2: Three Points Placed Asymmetrically


Secondly, we consider a situation which has been designed to show that even a considerably large sample size ([image: there is no content]) does not guarantee approximate coverage for the asymptotic confidence set [image: there is no content]: the distribution of Z is concentrated on three points, [image: there is no content], [image: there is no content] with weights [image: there is no content] chosen such that [image: there is no content] (implying a small variance and [image: there is no content]), [image: there is no content] and [image: there is no content], while [image: there is no content]. In numbers, [image: there is no content], [image: there is no content], and [image: there is no content] (in ∘) while [image: there is no content], and [image: there is no content] (see Figure 5).


Figure 5. Three points placed asymmetrically with different masses and their Euclidean mean.



[image: Entropy 18 00375 g005]






The results based on 10,000 repetitions are shown in Table 2 where a nominal coverage probability of [image: there is no content] was prescribed. Clearly, [image: there is no content] with its coverage probability of less than [image: there is no content] performs quite poorly while the others are conservative; [image: there is no content] still appears small enough to be useful in practice, though.



Table 2. Results for simulation 2 (three points placed asymmetrically) based on 10,000 repetitions with [image: there is no content] observations each: average observed [image: there is no content], [image: there is no content], and [image: there is no content] (with corresponding standard deviation), as well as frequency (with corresponding standard error) with which [image: there is no content] was covered by [image: there is no content], [image: there is no content], and [image: there is no content], respectively; the nominal coverage probability was [image: there is no content].







	
Confidence Set

	
Mean δ (±s.d.)

	
Coverage Frequency (±s.e.)






	
[image: there is no content]

	
[image: there is no content] ([image: there is no content])

	
[image: there is no content] ([image: there is no content])




	
[image: there is no content]

	
[image: there is no content] ([image: there is no content])

	
[image: there is no content] ([image: there is no content])




	
[image: there is no content]

	
[image: there is no content] ([image: there is no content])

	
[image: there is no content] ([image: there is no content])











4.3. Real Data: Movements of Ants


Fisher [3] (Example 4.4) describes a data set of the directions 100 ants took in response to an illuminated target placed at [image: there is no content] for which it may be of interest to know whether the ants indeed (on average) move towards that target (see [15] for the original publication). The data set is available as Ants_radians within the R package CircNNTSR [16].



The circular sample mean for this data set is about [image: there is no content]; for a nominal coverage probability of [image: there is no content], one gets [image: there is no content], [image: there is no content], and [image: there is no content] so that all confidence sets contain [image: there is no content] (see Figure 6). The data set’s concentration is not very high, however, so the circular population mean could—according to [image: there is no content]—also be [image: there is no content] or [image: there is no content].


Figure 6. Ant data (  [image: Entropy 18 00375 i002]) placed at increasing radii to visually resolve ties; in addition, the circular mean direction (  [image: Entropy 18 00375 i003]) as well as confidence sets [image: there is no content] (  [image: Entropy 18 00375 i004]), [image: there is no content] (  [image: Entropy 18 00375 i005]), and [image: there is no content] (  [image: Entropy 18 00375 i006]) are shown.



[image: Entropy 18 00375 g006]








5. Discussion


We have derived two confidence sets, [image: there is no content] and [image: there is no content], for the set of circular sample means. Both guarantee coverage for any finite sample size without making any assumptions on the distribution of the data (besides that they are independent and identically distributed) at the cost of potentially being quite conservative; they are non-asymptotic and universal in this sense. Judging from the simulations and the real data set, [image: there is no content]—which estimates the variance perpendicular to the mean direction—appears to be preferable over [image: there is no content] (as expected) and small enough to be useful in practice.



While the asymptotic confidence set’s opening angle is less than half (asymptotically about [image: there is no content] for [image: there is no content]) of the one for [image: there is no content] in our simulations and application, it has the drawback that even for a sample size of [image: there is no content], it may fail to give a coverage probability close to the nominal one; in addition, one has to assume that the circular population mean is unique. Of course, one could also devise an asymptotically justified test for the latter but this would entail a correction for multiple testing (for example working with [image: there is no content] each time), which would also render the asymptotic confidence set conservative.



Further improvements would require sharper “universal” mass concentration inequalities taking the first or the first two moments into account; however, this is beyond the scope of this article.
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Appendix A. Proofs of Monotonicity


Lemma A1.

β(t)=ν−aν−a+tν−a+tb−νb−ν−tb−ν−tnb−a is strictly decreasing in [image: there is no content]





Proof. 

We show the equivalent statement that β˜(t)=lnν−aν−a+tν−a+tb−νb−ν−tb−ν−t is strictly decreasing in t:


ddtβ˜(t)=ddtln(ν−a)−ln(ν−a+t)(ν−a+t)+ln(b−ν)−ln(b−ν−t)(b−ν−t)=ln(ν−a)−ln(ν−a+t)−1ν−a+t(ν−a+t)−ln(b−ν)+ln(b−ν−t)+1b−ν−t(b−ν−t)=lnb−ν−tb−ν︸<1·ν−aν−a+t︸<1<0.








Hence, [image: there is no content] and thus [image: there is no content] are strictly decreasing in [image: there is no content] ☐





Lemma A2.

Let [image: there is no content] be the solution to the equation [image: there is no content] Then, [image: there is no content] is strictly increasing in [image: there is no content]





Proof. 

t is the solution of the equation


[image: there is no content]



(A1)




The derivatives of the left-hand side of Equation (A1) w.r.t. ν and t exist and are continuous. Furthermore, the derivative w.r.t. t does not vanish for any [image: there is no content], cf. the proof of Lemma A1, whence the derivative [image: there is no content] exists by the implicit function theorem. When differentiating Equation (A1) with respect to [image: there is no content] one obtains


(1+t′)lnν−aν−a+t+(ν−a+t)1ν−a−1+t′ν−a+t−(1+t′)lnb−νb−ν−t+(b−ν−t)−1b−ν+1+t′b−ν−t=0,








or equivalently


[image: there is no content]








whence [image: there is no content] finishes the proof. ☐





Lemma A3.

The function


ξ(σ2^)=1−σ2^1−Vn1−Vnσ2^VnVnn








is strictly decreasing in [image: there is no content]





Proof. 

We show the equivalent statement that [image: there is no content] is strictly decreasing in [image: there is no content]


ddσ2^n−1lnξ(σ2^)=ddσ2^(1−Vn)(ln(1−σ2^)−ln(1−Vn))+Vn(ln(σ2^)−ln(Vn))=−1−Vn1−σ2^︸>1+Vnσ2^︸<1<0.








 ☐





Lemma A4.

Let [image: there is no content] be the solution of the equation


1+wρ2−ρ2−w1−ww−1n1+ρ2=γ.








Then, w is increasing in [image: there is no content].





Proof. 

w is the solution of the equation


[image: there is no content]



(A2)




The derivatives of the left-hand side of Equation (A2) w.r.t. [image: there is no content] and w exist and are continuous. Furthermore, the derivative w.r.t. w does not vanish for any [image: there is no content]: this derivative is


[image: there is no content]








vanishing if and only if [image: there is no content], i.e., if and only if [image: there is no content] which does not happen for [image: there is no content] Now, the derivative [image: there is no content] exists by the implicit function theorem. When differentiating Equation (A2) with respect to [image: there is no content] one obtains


(1+w′)(1+ρ2)−(ρ2+w)(1+ρ2)2ln1+wρ2(1+w′)(1+ρ2)−(ρ2+w)(1+ρ2)2ln+ρ2+w1+ρ2·w′ρ2−wρ41+wρ2︸w′ρ2−wρ2(1+ρ2)−w′(1+ρ2)+(1−w)(1+ρ2)2ln(1−w)−w′1+ρ2=0,








or equivalently


[image: there is no content]








Hence, [image: there is no content] if and only if [image: there is no content], which holds since [image: there is no content] finishing the proof. ☐
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