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Abstract:



The Koszul–Vinberg characteristic function plays a fundamental role in the theory of convex cones. We give an explicit description of the function and related integral formulas for a new class of convex cones, including homogeneous cones and cones associated with chordal (decomposable) graphs appearing in statistics. Furthermore, we discuss an application to maximum likelihood estimation for a certain exponential family over a cone of this class.
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1. Introduction


Let Ω be an open convex cone in a vector space [image: there is no content]. The cone Ω is said to be regular if Ω contains no straight line, which is equivalent to the condition [image: there is no content]. In this paper, we always assume that a convex cone is open and regular. The dual cone [image: there is no content] with respect to an inner product [image: there is no content] on [image: there is no content] is defined by:


Ω*:=ξ∈Z;(x|ξ)>0(∀x∈Ω¯\{0}).








Then, [image: there is no content] is again a regular open convex cone, and we have [image: there is no content]. The Koszul–Vinberg characteristic function [image: there is no content] defined by:


φΩ(x):=∫Ω*e−(x|ξ)dξ(x∈Ω)








plays a fundamental role in the theory of regular convex cones [1,2,3,4].



In particular, [image: there is no content] is an important function in the theory of convex programming [5], and it has also been studied recently in connection with thermodynamics [6,7]. There are several (not many) classes of cones for which an explicit formula of the Koszul–Vinberg characteristic function is known. Among them, the class of homogeneous cones [8,9,10] and the class of cones associated with chordal graphs [11] are particularly fruitful research objects. In this paper, we present a wide class of cones, including both of them, and give an explicit expression of the Koszul–Vinberg characteristic function (Section 3). Moreover, we get integral formulas involving the characteristic functions and the so-called generalized power functions, which are expressed as some product of powers of principal minors of real symmetric matrices (Section 4). After investigating the multiplicative Legendre transform of generalized power functions in Section 5, we study a maximum likelihood estimator for a Wishart-type natural exponential family constructed from the integral formula (Section 6).



A regular open convex cone [image: there is no content] is said to be homogeneous if the linear automorphism group GL(Ω):=α∈GL(Z);αΩ=Ω acts on Ω transitively. The cone [image: there is no content] of positive definite [image: there is no content] real symmetric matrices is a typical example of homogeneous cones. It is known [12,13,14,15,16] that every homogeneous cone is linearly isomorphic to a cone [image: there is no content] with an appropriate subspace [image: there is no content] of the vector space [image: there is no content] of all [image: there is no content] real symmetric matrices, where [image: there is no content] admits a specific block decomposition. Based on such results, our matrix realization method [15,17,18] has been developed for the purpose of the efficient study of homogeneous cones. In this paper, we present a generalization of matrix realization dealing with a wide class of convex cones, which turns out to include cones associated with chordal graphs. Actually, it was an enigma for the author that some formulas in [11,19] for the chordal graph resemble the formulas in [8,17] for homogeneous cones so much, and the mystery is now solved by the unified method in this paper to get the formulas. Furthermore, the techniques and ideas in the theory of homogeneous cones, such as Riesz distributions [8,20,21] and homogeneous Hessian metrics [4,18,22], will be applied to various cones to obtain new results in our future research.



Here, we fix some notation used in this paper. We denote by [image: there is no content] the vector space of [image: there is no content] real matrices. For a matrix A, we write tA for the transpose of A. The identity matrix of size p is denoted by [image: there is no content].




2. New Cones [image: there is no content] and [image: there is no content]


2.1. Setting


We fix a partition [image: there is no content] of a positive integer n. Let [image: there is no content] be a system of vector spaces [image: there is no content] satisfying

	(V1)

	
A∈Vlk⇒AtA∈RInl(1≤k<l≤r),




	(V2)

	
A∈Vlj,B∈Vkj⇒AtB∈Vlk(1≤j<k<l≤r).









The integer r is called the rank of the system [image: there is no content]. We denote by [image: there is no content] the dimension of [image: there is no content]. Note that some [image: there is no content] can be zero. Let [image: there is no content] be the space of real symmetric matrices [image: there is no content] of the form:


x=X11tX21⋯tXr1X21X22tXr2⋮⋱Xr1Xr2⋯XrrXkk=xkkInk,xkk∈R,k=1,⋯,rXlk∈Vlk,1≤k<l≤r,



(1)




and [image: there is no content] the subset of [image: there is no content] consisting of positive definite matrices. Then, [image: there is no content] is a regular open convex cone in [image: there is no content].



Example 1.

Let [image: there is no content], and set V21:=a0;a∈R,V31:=0a;a∈R, and [image: there is no content]. Then, [image: there is no content] is the space of symmetric matrices x of the form:


[image: there is no content]



(2)




We shall see later that the cone [image: there is no content] is not homogeneous in this case, but admits various integral formulas, as well as explicit expression of the Koszul–Vinberg characteristic function.






2.2. Inductive Description of [image: there is no content]


If the system [image: there is no content] satisfies (V1) and (V2), any subsystem [image: there is no content] with [image: there is no content] also satisfies the same conditions. In particular, the cone corresponding to the subsystem [image: there is no content] will play an important role in this paper. Let us define [image: there is no content] by [image: there is no content]. Then, [image: there is no content] is a system of rank [image: there is no content]. Any [image: there is no content] is written as:


x=x11In1tUUx′(x11∈R,U∈W,x′∈ZV′),



(3)




where:


W:=U=X21⋮Xr1;Xl1∈Vl1(1<l≤r).



(4)




If [image: there is no content], then we have:


x11In1tUUx′=In1x11−1UIn−n1x11In1x′−x11−1UtUIn1x11−1tUIn−n1.



(5)




Note that UtU belongs to [image: there is no content] thanks to (V1) and (V2). Thus, we deduce the following lemma immediately from (5).



Lemma 1.

(i) Let [image: there is no content] as in (3). Then, [image: there is no content] if and only if [image: there is no content] and x′−x11−1UtU∈PV′.



(ii) For [image: there is no content], there exist unique [image: there is no content] and [image: there is no content] for which:


x=In1U˜In−n1x11In1x˜′In1tU˜In−n1=x11In1x11tU˜x11U˜x˜′+x11U˜tU˜.



(6)







(iii) The closure [image: there is no content] of the cone [image: there is no content] is described as:


PV¯:=x11In1x11tU˜x11U˜x˜′+x11U˜tU˜;x11≥0,U˜∈W,x˜′∈PV′¯.














2.3. The Dual Cone [image: there is no content]


We define an inner product on the space [image: there is no content] by (A|B)Vlk:=nl−1trAtB for [image: there is no content]. Then, we see from (V1) that:


AtB+BtA=2(A|B)VlkInl.








Gathering these inner products [image: there is no content], we introduce the standard inner product on the space [image: there is no content] defined by:


[image: there is no content]



(7)




for [image: there is no content] of the form (1). When [image: there is no content] (and only in this case), the standard inner product above equals the trace inner product tr(xx′).



Let W˜k(k=1,⋯,r) be the vector space of [image: there is no content] of the form:


W=0n1+⋯+nk−1,nkXkkXk+1,k⋮Xrk(Xkk=xkkInk,xkk∈R,Xlk∈Vlk,l>k).








Clearly, the space [image: there is no content] is isomorphic to [image: there is no content], which implies [image: there is no content] with [image: there is no content]. Gathering orthogonal bases of [image: there is no content]’s, we take a basis of [image: there is no content], so that we have an isomorphism [image: there is no content], where the first component [image: there is no content] of w is assumed to be [image: there is no content]. Let us introduce a linear map [image: there is no content] defined in such a way that:


(WtW|ξ)=twϕk(ξ)w(ξ∈ZV,W∈W˜k,w=vect(W)∈R1+qk).



(8)




It is easy to see that [image: there is no content] for [image: there is no content].



Theorem 1.

The dual cone [image: there is no content] of [image: there is no content] with respect to the standard inner product is described as:


PV*=ξ∈ZV;ϕk(ξ)is positive definite for all k=1,⋯,r=ξ∈ZV;detϕk(ξ)>0for all k=1,⋯,r.



(9)









Proof. 

We shall prove the statement by induction on the rank r. When [image: there is no content], we have [image: there is no content] and [image: there is no content]. Thus, (9) holds in this case.



Let us assume that (9) holds when the rank is smaller than r. In particular, the statement holds for [image: there is no content], that is,


PV′*=ξ′∈ZV′;ϕk′(ξ′)is positive definite for allk=1,⋯,r−1=ξ′∈ZV′;detϕk′(ξ′)>0for allk=1,⋯,r−1,








where [image: there is no content] is defined similarly to (8) for [image: there is no content]. On the other hand, if:


ξ=ξ11In1tVVξ′(ξ11∈R,V∈W,ξ′∈ZV′),



(10)




we observe that:


ϕk(ξ)=ϕk−1′(ξ′)(k=2,⋯,r).








Therefore, in order to prove (9) for [image: there is no content] of rank r, it suffices to show that:


PV*=ξ∈ZV;ξ′∈PV′* and ϕ1(ξ)is positive definite=ξ∈ZV;ξ′∈PV′* and detϕ1(ξ)>0.



(11)




If [image: there is no content], then any element [image: there is no content] is of the form:


ξ=ξ11In1ξ′,








which belongs to [image: there is no content] if and only if [image: there is no content] and [image: there is no content], so that (11) holds.



Assume [image: there is no content]. Keeping in mind that [image: there is no content] and [image: there is no content] by (4), we have for [image: there is no content] as in (10),


ϕ1(ξ)=ξ11tvvψ(ξ′)∈Sym(1+q1,R),



(12)




where [image: there is no content] and [image: there is no content] is defined in such a way that:


(UtU|ξ′)=tuψ(ξ′)u(ξ′∈ZV′,U∈W,u=vect(U)∈Rq1).



(13)




On the other hand, for [image: there is no content] as in (6), we have:


(x|ξ)=x11ξ11+2x11tu˜v+x11tu˜ψ(ξ′)u˜+(x˜′|ξ).



(14)




Owing to Lemma 1 (iii), the element [image: there is no content] belongs to [image: there is no content] if and only if the right-hand side is strictly positive for all x11≥0,U˜∈W and [image: there is no content] with [image: there is no content]. Assume [image: there is no content]. Considering the case [image: there is no content], we have [image: there is no content] for all [image: there is no content], which means that [image: there is no content]. Then, the quantity in (13) is strictly positive for non-zero U because UtU belongs to [image: there is no content]. Thus, [image: there is no content] is positive definite, and (14) is rewritten as:


(x|ξ)=x11(ξ11−tvψ(ξ′)−1v)+x11t(u˜+ψ(ξ′)−1v)ψ(ξ′)(u˜+ψ(ξ′)−1v)+(x˜′|ξ′).



(15)




Therefore, we obtain:


PV*=ξ∈ZV;ξ′∈PV′* and ξ11−tvψ(ξ′)−1v>0.



(16)




On the other hand, we see from (12) that:


ϕ1(ξ)=1tvψ(ξ′)−1Iq1ξ11−tvψ(ξ′)−1vψ(ξ′)1ψ(ξ′)−1vIq1.



(17)




Hence, we deduce (11) from (16) and (17). ☐





We note that, if [image: there is no content], the [image: there is no content]-component of the inverse matrix [image: there is no content] is given by:


(ϕ1(ξ)−1)11=(ξ11−tvψ(ξ′)−1v)−1



(18)




thanks to (17).





3. Koszul–Vinberg Characteristic Function of [image: there is no content]


We denote by [image: there is no content] the Koszul–Vinberg characteristic function of [image: there is no content]. In this section, we give an explicit formula of [image: there is no content].



Recall that the linear map [image: there is no content] plays an important role in the proof of Theorem 1. We shall introduce similar linear maps [image: there is no content] for k such that [image: there is no content]. Let [image: there is no content] be the subspace of [image: there is no content] consisting of [image: there is no content] for which [image: there is no content]. Then, clearly, [image: there is no content] and [image: there is no content]. If [image: there is no content], using the same orthogonal basis of [image: there is no content] as in the previous section, we have the isomorphism [image: there is no content]. Similarly to (8), we define [image: there is no content] by:


(WtW|ξ)=twψk(ξ)w(ξ∈ZV,W∈Wk,w=vect(W)∈Rqk).



(19)




Then, we have:


ϕk(ξ)=ξkktvkvkψk(ξ)(ξ∈ZV),



(20)




where [image: there is no content] is a vector corresponding to the [image: there is no content]-component of ξ. If [image: there is no content], we see from (19) that [image: there is no content] is positive definite. In this case, we have:


ϕk(ξ)=1tvkψk(ξ)−1Iqkξkk−tvkψk(ξ)−1vkψk(ξ)1ψk(ξ)−1vkIqk,



(21)




so that we get a generalization of (18), that is,


(ϕk(ξ)−1)11=(ξkk−tvkψk(ξ)−1vk)−1.



(22)




On the other hand, if [image: there is no content], then [image: there is no content].



We remark that [image: there is no content], and that some part of the argument above is parallel to the proof of Theorem 1.



Theorem 2.

The Koszul–Vinberg characteristic function [image: there is no content] of [image: there is no content] is given by the following formula:


φV(ξ)=CV∏k=1rϕk(ξ)−1111+qk/2∏qk>0(detψk(ξ))−1/2(ξ∈PV*),



(23)




where [image: there is no content] and [image: there is no content].





Proof. 

We shall show the statement by induction on the rank as in the proof of Theorem 1. Then, it suffices to show that:


[image: there is no content]



(24)




for [image: there is no content] as in (10), where [image: there is no content] is interpreted as:


[image: there is no content]











When [image: there is no content], we have:


φV(ξ)=∫0∞∫PV′e−x11ξ11e−(x′|ξ′)dx11dx′=ξ11−1φV′(ξ′),








which means (24).



When [image: there is no content], the Euclidean measure [image: there is no content] equals 2q1/2x11q1dx11du˜dx˜′ by the change of variables in (6). Indeed, the coefficient [image: there is no content] comes from the normalization of the inner product on [image: there is no content] regarded as a subspace of [image: there is no content]. Then, we have by (15):


φV(ξ)=∫0∞∫Rq1∫PV′e−x11(ξ11−tvψ(ξ′)−1v)e−x11t(u˜+ψ(ξ′)−1v)ψ(ξ′)(u˜+ψ(ξ′)−1v)e−(x˜′|ξ′)×2q1/2x11q1dx11du˜dx˜′.








By the Gaussian integral formula, we have:


∫Rq1e−x11t(u˜+ψ(ξ′)−1v)ψ(ξ′)(u˜+ψ(ξ′)−1v)du˜=πq1/2x11−q1/2(detψ(ξ′))−1/2.








Therefore, we get:


φV(ξ)=(2π)q1/2(detψ(ξ′))−1/2∫0∞e−x11(ξ11−tvψ(ξ′)−1v)x11q1/2dx11∫PV′e−(x˜′|ξ′)dx˜′=(2π)q1/2(detψ1(ξ))−1/2Γ(1+q12)(ξ11−tvψ(ξ′)−1v)−1−qk/2φV′(ξ′),








which together with (18) leads us to (24). ☐





Example 2.

Let [image: there is no content] be as in Example 1. For:


[image: there is no content]



(25)




we have:


ϕ1(ξ)=ξ1ξ4ξ5ξ4ξ20ξ50ξ3,ϕ2(ξ)=ξ2ξ6ξ6ξ3,ϕ3(ξ)=ξ3,ψ1(ξ)=ξ200ξ3,ψ2(ξ)=ξ3.








The cone [image: there is no content] is described as:


PV*=ξ∈ZV;ξ1ξ4ξ5ξ4ξ20ξ50ξ3>0,ξ2ξ6ξ6ξ3>0,ξ3>0,








and its Koszul–Vinberg characteristic function [image: there is no content] is expressed as:


φV(ξ)=CVξ1ξ4ξ5ξ4ξ20ξ50ξ3/(ξ2ξ3)−2ξ2ξ6ξ6ξ3/ξ3−3/2ξ3−1·(ξ2ξ3)−1/2(ξ3)−1/2=CVξ1ξ4ξ5ξ4ξ20ξ50ξ3−2ξ2ξ6ξ6ξ3−3/2ξ23/2ξ33/2,








where [image: there is no content].



Suppose that the cone [image: there is no content] is homogeneous. Then, [image: there is no content], as well as [image: there is no content], is a homogeneous cone of rank 3, so that the Koszul–Vinberg characteristic function of [image: there is no content] has at most three irreducible factors (see [8]). However, we have seen that there are four irreducible factors in the function [image: there is no content]. Therefore, we conclude that neither [image: there is no content], nor [image: there is no content] is homogeneous.






4. Γ-Type Integral Formulas


For an [image: there is no content] matrix [image: there is no content] and [image: there is no content], we denote by [image: there is no content] the upper-left [image: there is no content] submatrix [image: there is no content] of A. Put Mk:=∑i=1knk(k=1,⋯,r). For [image: there is no content], we define functions [image: there is no content] on [image: there is no content] and [image: there is no content] on [image: there is no content] respectively by:


Δs̲V(x):=(detx[M1])s1/n1∏k=2r(detx[Mk]detx[Mk−1])sk/nk=(detx)sr/nr∏k=1r−1(detx[Mk])sk/nk−sk−1/nk−1(x∈PV),



(26)






δs̲V(ξ):=∏k=1r(ϕk(ξ)−1)11−sk=∏qk=0ξkksk∏qk>0(ξkk−tvkψk(ξ)−1vk)sk(ξ∈PV*).



(27)




Recall (22) for the second equality of (27).



For [image: there is no content], let [image: there is no content] denote the diagonal matrix defined by:


Da̲:=a1In1a2In2⋱arInr∈GL(n,R).








Then, the linear map [image: there is no content] preserves both [image: there is no content] and [image: there is no content], and we have:


Δs̲V(DaxDa)=(∏k=1rak2sk)Δs̲V(x)(x∈PV),



(28)






δs̲V(DaξDa)=(∏k=1rak2sk)δs̲V(ξ)(ξ∈PV).



(29)







Assume [image: there is no content]. For [image: there is no content], we denote by [image: there is no content] the linear transform on [image: there is no content] given by:


τBx:=In1BIn−n1x11In1tUUx′In1tBIn−n1=x11In1tU+x11tBU+x11Bx′+UtB+BtU+x11BtB,








where [image: there is no content] is as in (3). Indeed, since:


UtB+BtU=(U+B)t(U+B)−UtU−BtB∈ZV′,








the matrix [image: there is no content] belongs to [image: there is no content]. Clearly, [image: there is no content] preserves [image: there is no content], and we have:


Δs̲V(τBx)=Δs̲V(x)(x∈PV).



(30)




The formula (5) is rewritten as:


τ−x11−1U(x)=x11In1x′−x11−1UtU,








which together with (30) tells us that:


Δs̲V(x)=x11s1Δs̲′V′(x′−x11−1UtU),



(31)




where [image: there is no content].



Let us consider the adjoint map [image: there is no content] of [image: there is no content] with respect to the standard inner product. Let [image: there is no content] be the vector corresponding to [image: there is no content]. For [image: there is no content] and [image: there is no content] as in (3) and (10), respectively, we observe that:


(τBx|ξ)=x11ξ11+2t(u+x11b)v+(x′+UtB+BtU+x11BtB|ξ′)=x11(ξ11+2tbv+tbψ(ξ′)b)+2tu(v+ψ(ξ′)b)+(x′|ξ′).








Thus, if we write:


ι(ξ11,v,ξ′):=ξ11In1tVVξ′,








we have:


τB*ι(ξ11,v,ξ′)=ι(ξ11+2tbv+tbψ(ξ′)b,v+ψ(ξ′)b,ξ′).



(32)




Furthermore, we see from (12) that [image: there is no content] equals:


ξ11+2tbv+tbψ(ξ′)btv+tbψ(ξ′)v+ψ(ξ′)bψ(ξ′)=1tbIq1ξ11tvvψ(ξ′)1bIq1,








so that we get for [image: there is no content]:


ϕ1(τB*ξ)=1tbIq1ϕ1(ξ)1bIq1.








Therefore:


[image: there is no content]








On the other hand, we have for [image: there is no content]:


δs̲V(ξ)=(ϕ1(ξ)−1)11−s1δs̲′V′(ξ′).



(33)




Thus, we conclude that:


[image: there is no content]



(34)







Theorem 3.

When [image: there is no content] for [image: there is no content], one has:


∫PVe−(x|ξ)Δs̲V(x)dx=CV−1γV(s̲)δ−s̲V(ξ)φV(ξ),



(35)




where [image: there is no content].





Proof. 

Recalling Theorem 2, we rewrite the right-hand side of (35) as:


[image: there is no content]








which is similar to the right-hand side of (23). Thus, the proof is parallel to Theorem 2. Namely, by induction on the rank, it suffices to show that:


∫PVe−(x|ξ)Δs̲V(x)dx=(2π)q1/2Γ(s1+1+q12)(ϕ1(ξ)−1)11s1+1+q1/2(detψ1(ξ))−sgn(q1)/2×∫PV′e−(x′|ξ)Δs̲′V′(x′)dx′



(36)




thanks to (33).



When [image: there is no content], we have [image: there is no content] and [image: there is no content]. Thus:


∫PVe−(x|ξ)Δs̲V(x)dx=∫0∞e−x11ξ11x11s1dx11×∫PV′e−(x′|ξ)Δs̲′V′(x′)dx′.








Since ∫0∞e−x11ξ11x11s1dx11=Γ(s1+1)ξ11−s1−1, we get (36).



When [image: there is no content], we use the change of variable (6). Since x˜′=x′−x11−1UtU, we have [image: there is no content] by (31). Therefore, by the same Gaussian integral formula as in the proof of Theorem 2, the integral ∫PVe−(x|ξ)Δs̲V(x)dx equals:


∫0∞∫W∫PV′e−x11(ξ11−tvψ(ξ′)−1v)e−x11t(u˜+ψ(ξ′)−1v)ψ(ξ′)(u˜+ψ(ξ′)−1v)e−(x˜′|ξ′)x11s1Δs̲′V′(x˜′)×2q1/2x11q1dx11du˜dx˜′=(2π)q1/2(detψ(ξ))−1/2∫0∞e−x11(ξ11−tvψ(ξ′)−1v)x11s1+q1/2dx11×∫PV′e−(x˜′|ξ′)Δs̲′V′(x˜′)dx˜′=(2π)q1/2(detψ(ξ))−1/2Γ(sk+1+q12)(ξ11−tvψ(ξ′)−1v)−sk−1−qk/2×∫PV′e−(x˜′|ξ′)Δs̲′V′(x˜′)dx˜′.








Hence, we get (36) by (18). ☐





We shall obtain an integral formula over [image: there is no content] as follows.



Theorem 4.

When [image: there is no content] for [image: there is no content], one has:


∫PV*e−(x|ξ)δs̲V(ξ)φV(ξ)dξ=CVΓV(s̲)Δ−s̲V(x)(x∈PV),



(37)




where [image: there is no content].





Proof. 

Using (24), (31) and (33), we rewrite (37) as:


∫PV*e−(x|ξ)(ϕ1(ξ)−1)11−s1+1+q1/2(detψ1(ξ))−sgn(q1)/2δs̲′V′(ξ′)φV′(ξ′)dξ=CV′(2π)q1/2Γ(s1−q1/2)ΓV′(s̲′)x11−s1Δ−s̲′V′(x˜′),



(38)




where:


x˜′:=x′(q1=0),x′−x11−1UtU(q1>0).








Therefore, by induction on the rank, it suffices to show that the left-hand side of (38) equals:


(2π)q1/2Γ(s1−q1/2)x11−s1∫PV′*e−(x˜′|ξ′)δs̲′V′(ξ′)φV′(ξ′)dξ′.



(39)







When [image: there is no content], since [image: there is no content], the left-hand side of (38) equals:


∫0∞e−x11ξ11ξ11s1−1dξ11∫PV′*e−(x′|ξ′)δs̲′V′(ξ′)φV′(ξ′)dξ′,








which coincides with (39) in this case.



Assume [image: there is no content]. Keeping (16) and (18) in mind, we put ξ˜11:=ξ11−tvψ(ξ′)−1v=(ϕ1(ξ)−1)11−1>0. By the change of variables ξ=ι(ξ˜11+tvψ(ξ′)−1v,v,ξ′), we have dξ=2q1/2dξ˜11dvdξ′. On the other hand, we observe:


(x|ξ)=x11(ξ˜11+tvψ(ξ′)−1v)+2tuv+(x′|ξ′)=x11ξ˜11+x11t(v+x11−1ψ(ξ′)u)ψ(ξ′)−1(v+x11−1ψ(ξ′)u)+(x−x11−1UtU|ξ′).








Thus, the left-hand side of (39) equals:


∫0∞∫Rq1∫PV′*e−x11ξ˜11e−x11t(v+x11−1ψ(ξ′)u)ψ(ξ′)−1(v+x11−1ψ(ξ′)u)e−(x−x11−1UtU|ξ′)×ξ˜11s1−1−q1/2(detψ(ξ′))−1/2δs̲′V′(ξ′)φV′(ξ′)2q1/2dξ˜11dvdξ′.



(40)




By the Gaussian integral formula, we have:


∫Rq1e−x11t(v+x11−1ψ(ξ′)u)ψ(ξ′)−1(v+x11−1ψ(ξ′)u)dv=πq1/2x11−q1/2(detψ(ξ′))1/2,








so that (40) equals:


(2π)q1/2x11−q1/2∫0∞e−x11ξ˜11ξ˜11s1−1−q1/2dξ˜11∫PV′*e−(x−x11−1UtU|ξ′)δs̲′V′(ξ′)φV′(ξ′)dξ′,








which coincides with (39) because: ∫0∞e−x11ξ˜11ξ˜11s1−1−q1/2dξ˜11=Γ(s1−q1/2)x11−s1+q1/2. ☐





Example 3.

Let [image: there is no content] be as in Example 1, and let [image: there is no content] and [image: there is no content] be as in (2) and (25), respectively. Then, we have for [image: there is no content],


Δs̲V(x)=(x112)s1/2−s2x10x40x10x40x2s2−s3(detx)s3=x11s1−s2−s3x1x4x4x2s2−s3(detx)s3,








and:


δs̲V(ξ)=(ξ1−ξ42ξ2−ξ52ξ3)s1(ξ2−ξ62ξ3)s2ξ3s3=ξ1ξ4ξ5ξ4ξ20ξ50ξ3s1ξ2ξ6ξ6ξ3s2ξ2−s1ξ3s3−s1−s2.








When [image: there is no content] and [image: there is no content], the integral formula (35) holds with:


[image: there is no content]








Furthermore, when ℜs1>1,ℜs2>1/2 and [image: there is no content], the integral formula (37) holds with:


[image: there is no content]














5. Multiplicative Legendre Transform of Generalized Power Functions


For [image: there is no content], we see that [image: there is no content] is a strictly convex function on the cone [image: there is no content]. In fact, [image: there is no content] is defined naturally on [image: there is no content] as a product of powers of principal minors, and it is well known that such [image: there is no content] is strictly convex on the whole [image: there is no content]. In this section, we shall show that [image: there is no content] and [image: there is no content] are related by the Fenchel–Legendre transform.



For [image: there is no content], we denote by [image: there is no content] the minus gradient [image: there is no content] at x with respect to the inner product. Namely, [image: there is no content] is an element of [image: there is no content] for which:


(Is̲V(x)|y)=−ddtt=0logΔ−s̲(x+ty)(y∈ZV).








Similarly, [image: there is no content] is defined for [image: there is no content]. If [image: there is no content], then for any [image: there is no content], we have:


[image: there is no content]



(41)






[image: there is no content]



(42)




owing to (30) and (34), respectively.



Theorem 5.

For any [image: there is no content], the map [image: there is no content] gives a diffeomorphism from [image: there is no content] onto [image: there is no content], and [image: there is no content] gives the inverse map.





Proof. 

We shall prove the statement by induction on the rank. When [image: there is no content], we have [image: there is no content] for [image: there is no content]. Thus, the statement is true in this case.



When [image: there is no content], assume that the statement holds for the system of rank [image: there is no content]. Let [image: there is no content] be the subspace of [image: there is no content] defined by:


ZV0:=x11In100x′;x11∈R,x′∈ZV′.








By direct computation with (31) and (33), we have:


[image: there is no content]



(43)






[image: there is no content]



(44)




for x11,ξ11>0,x′∈PV′ and [image: there is no content]. By the induction hypothesis, we see that [image: there is no content] is bijective with the inverse map [image: there is no content].



If [image: there is no content], the statement holds because [image: there is no content]. Assume [image: there is no content]. Lemma 1 (ii) tells us that, for [image: there is no content], there exist unique [image: there is no content] and [image: there is no content] for which [image: there is no content]. Similarly, we see from (32) that, for [image: there is no content], there exist unique [image: there is no content] and [image: there is no content] for which [image: there is no content]. Therefore, we deduce from (41) and (42) that [image: there is no content] is a bijection with [image: there is no content] the inverse map. ☐





Proposition 1.

Let [image: there is no content]. For [image: there is no content], one has:


[image: there is no content]



(45)









Proof. 

We prove the statement by induction on the rank. When [image: there is no content], the equality (45) is verified directly. Indeed, the left-hand side of (45) is computed as (s1ξ11)s1=s1s1ξ11−s1.



When [image: there is no content], assume that (45) holds for a system of rank [image: there is no content]. We deduce from (31), (33), (43), (44) and the induction hypothesis that (45) holds for [image: there is no content]. Therefore, (45) holds for all [image: there is no content] by (30), (34) and (42). ☐





In general, for a non-zero function f, the function [image: there is no content] is called the multiplicative Legendre transform of f. Thanks to Theorem 5 and Proposition 1, we see that the multiplicative Legendre transform of [image: there is no content] is equal to [image: there is no content] on [image: there is no content] up to constant multiple. As a corollary, we arrive at the following result.



Theorem 6.

The Fenchel–Legendre transform of the convex function [image: there is no content] on [image: there is no content] is equal to the function [image: there is no content] of [image: there is no content] up to constant addition.






6. Application to Statistics and Optimization


Take [image: there is no content] for which sk>qk/2(k=1,⋯,r). We define a measure [image: there is no content] on [image: there is no content] by:


ρs̲V(dξ):=CV−1ΓV(s̲)−1δs̲V(ξ)φV(ξ)dξ(ξ∈PV*).



(46)




Theorem 4 states that:


∫PV*e−(x|ξ)ρs̲V(dξ)=Δ−s̲V(x)(x∈PV).








Then, we obtain the natural exponential family generated by [image: there is no content], that is a family [image: there is no content] of probability measures on [image: there is no content] given by:


[image: there is no content]








In particular, when [image: there is no content] for sufficiently large α, we have [image: there is no content]. We call [image: there is no content] the Wishart distributions on [image: there is no content] in general.



From a sample [image: there is no content], let us estimate the parameter [image: there is no content] in such a way that the likelihood function [image: there is no content] attains its maximum at the estimator [image: there is no content]. Then, we have the likelihood equation [image: there is no content], whereas Theorem 5 gives a unique solution by [image: there is no content].



The same argument leads us to the following result in semidefinite programming. For a fixed [image: there is no content] and [image: there is no content], a unique solution [image: there is no content] of the minimization problem of [image: there is no content] subject to [image: there is no content] is given by [image: there is no content], where [image: there is no content]. Note that [image: there is no content] is a rational map because [image: there is no content] is a product of powers of rational functions.




7. Special Cases


7.1. Matrix Realization of Homogeneous Cones


Let us assume that the system [image: there is no content] satisfies not only the conditions (V1) and (V2), but also the following:



(V3) A∈Vlk,B∈Vkj⇒AB∈Vlj(1≤j<k<l≤r).



Then, the set [image: there is no content] of lower triangular matrices T of the form:


T=T11T21T22⋮⋱Tr1Tr2⋯Trr








becomes a linear Lie group, and [image: there is no content] acts on the space [image: there is no content] by ρ(T)x:=TxtT(T∈HV,x∈ZV). The group [image: there is no content] acts on the cone [image: there is no content] simply transitively by this action ρ, so that [image: there is no content] is a homogeneous cone. Moreover, it is shown in [15] that every homogeneous cone is linearly isomorphic to such [image: there is no content] (see also [18]).



Let [image: there is no content] be the system given by [image: there is no content] and Vlk0=R((l,k)≠(2,1)). Then:


ZV0=x10x40x2x5x4x5x3;x1,⋯,x5∈R,








and [image: there is no content] is homogeneous because (V1)–(V3) are satisfied in this case. On the other hand, let [image: there is no content] be the system given by [image: there is no content] and Vlk1=R((l,k)≠(3,1)). Then:


ZV1=x1x40x4x2x50x5x3;x1,⋯,x5∈R.








Note that [image: there is no content] satisfies only (V1) and (V2), but [image: there is no content] is homogeneous because [image: there is no content] is isomorphic to the homogeneous cone [image: there is no content] via the map:


[image: there is no content]








This example tells us that our matrix realization of a convex cone is not unique and that the condition (V3) is merely a sufficient condition for the homogeneity of the cone.



Many ideas in this work are inspired by the theory of homogeneous cones. The notion of generalized power functions, as well as the Γ-type integral formulas are due to Gindikin [8] (see also [23]). The Wishart distributions for homogeneous cones are studied in [17,21,24,25].




7.2. Cones Associated with Chordal Graphs


If [image: there is no content], then [image: there is no content] equals either [image: there is no content] or [image: there is no content]. In this case, [image: there is no content] is the space of symmetric matrices with prescribed zero components. Such a space is described by using an undirected graph in the graphical model theory.



Let us recall some notion in the graph theory. Let G be a graph and [image: there is no content] the set of vertices of G. We assume that G has no multiple edge, that is, for any two vertices [image: there is no content], either there is one edge connecting them or there is no edge between them. These relations of the vertices i and j are denoted by [image: there is no content] and [image: there is no content], respectively. Assume further that G has no loop, which means that [image: there is no content] for [image: there is no content]. We define the edge set [image: there is no content] by:


EG:=(i,j)∈VG×VG;i∼j.








Since [image: there is no content] and [image: there is no content] have all of the information of G, the graph G is often identified with the pair [image: there is no content]. For a non-empty subset [image: there is no content] of [image: there is no content], put [image: there is no content]. The graph [image: there is no content] is called an induced subgraph of G. The graph G is said to be chordal or decomposable if G contains no cycle of length greater than three as an induced subgraph, and said to be [image: there is no content]-free if G contains no [image: there is no content] graph [image: there is no content] as an induced subgraph. Let ⪯ be a total order on the vertex set [image: there is no content], and for [image: there is no content], put VG[i]:=j∈VG;i∼j and i⪯j⊂VG. Then, ⪯ is said to be an eliminating order on the graph G if the induced subgraph with the vertex set [image: there is no content] is complete for each [image: there is no content]. It is known that there exists an eliminating order on G if and only if the graph G is chordal.



Let us identify the vertex set [image: there is no content] with [image: there is no content]. Let [image: there is no content] be the space of symmetric matrices [image: there is no content], such that, if [image: there is no content] and [image: there is no content], then [image: there is no content]. Define [image: there is no content]. We can show ([11] (Theorem 2.2), [26]) that the cone [image: there is no content] is homogeneous if and only if the graph G is chordal and [image: there is no content]-free. On the other hand, it is known in the graphical model theory as well as the sparse matrix linear algebra that even though [image: there is no content] is not homogeneous, various formulas still hold for [image: there is no content] if G is chordal.



The cone [image: there is no content] is expressed as [image: there is no content] with [image: there is no content] and:


[image: there is no content]








Then, the condition (V2) means exactly that the order ≤ is an eliminating order on G. Therefore, any cone [image: there is no content] with chordal G can be treated as [image: there is no content] in our framework. Most of the integral formulas for [image: there is no content] in [11,27] can be deduced from Theorems 3 and 4, while the Wishart distribution is a central object in the theory of graphical model. In [28], the analysis for generalized power functions associated with all eliminating orders is discussed for a specific graph [image: there is no content] by direct computations.
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