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Abstract:



This paper studies probability density estimation on the Siegel space. The Siegel space is a generalization of the hyperbolic space. Its Riemannian metric provides an interesting structure to the Toeplitz block Toeplitz matrices that appear in the covariance estimation of radar signals. The main techniques of probability density estimation on Riemannian manifolds are reviewed. For computational reasons, we chose to focus on the kernel density estimation. The main result of the paper is the expression of Pelletier’s kernel density estimator. The computation of the kernels is made possible by the symmetric structure of the Siegel space. The method is applied to density estimation of reflection coefficients from radar observations.
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1. Introduction


Various techniques can be used to estimate the density of probability measure in the Euclidean spaces, such as histograms, kernel methods, or orthogonal series. These methods can sometimes be adapted to densities in Riemannian manifolds. The computational cost of the density estimation depends on the isometry group of the manifold. In this paper, we study the special case of the Siegel space. The Siegel space is a generalization of the hyperbolic space. It has a structure of symmetric Riemannian manifold, which enables the adaptation of different density estimation methods at a reasonable cost. Convergence rates of the density estimation using kernels and orthogonal series were gradually generalized to Riemannian manifolds (see [1,2,3]).



The Siegel space appears in radar processing in the study of Toeplitz block Toeplitz matrices, whose blocks represent covariance matrices of a radar signal (see [4,5,6]). The Siegel also appears in statistical mechanics, see [7] and was recently used in image processing (see [8]). Information geometry is now a standard framework in radar processing (see [4,5,6,9,10,11,12,13]). The information geometry on positive definite Teoplitz block Teoplitz matrices is directly related to the metric on the Siegel space (see [14]). Indeed, Toeplitz block Toeplitz matrices can be represented by a symmetric positive definite matrix and a point laying in a product of Siegel disks. The metric considered on Toeplitz block Toeplitz matrices is induced by the product metric between a metric on the symmetric positive definite matrices and the Siegel disks metrics (see [4,5,6,9,14]).



One already encounters the problem of density estimation in the hyperbolic space for electrical impedance [15], networks [16] and radar signals [17]. In [18], a generalization of the Gaussian law on the hyperbolic space was proposed. Apart from [19], where authors propose a generalization of the Gaussian law, probability density estimation on the Siegel space has not yet been addressed.



The contributions of the paper are the following. We review the main non parametric density estimation techniques on the Siegel disk. We provide some rather simple explicit expressions of the kernels defined by Pelletier in [1]. These expressions make the kernel density estimation the most adapted method. We present visual results of estimated densities in the simple case where the Siegel disk reduces to the Poincaré disk.



The paper begins with an introduction to the Siegel space in Section 2. Section 3 reviews the main non-parametric density estimation techniques on the Siegel space. Section 3.3 contains the original results of the paper. Section 4 presents an application to radar data estimation.




2. The Siegel Space


This section presents facts about the Siegel space. The interested reader can find more details in [20,21]. The necessary background on Lie groups and symmetric space can be found in [22].



2.1. The Siegel Upper Half Space


The Siegel upper half space is a generalization of the Poincaré upper half space (see [23]) for a description of the hyperbolic space. Let [image: there is no content] be the space of real symmetric matrices of size [image: there is no content] and [image: there is no content] the set of real symmetric positive definite matrices of size [image: there is no content]. The Siegel upper half space is defined by




[image: there is no content]









[image: there is no content] is equipped with the following metric:


[image: there is no content]











The set of real symplectic matrices [image: there is no content] is defined by


[image: there is no content]








where


[image: there is no content]








and [image: there is no content] is the [image: there is no content] identity matrix. [image: there is no content] is a subgroup of [image: there is no content], the set of [image: there is no content] invertible matrices of determinant 1. Let [image: there is no content]. The metric [image: there is no content] is invariant under the following action of [image: there is no content],


[image: there is no content]











This action is transitive, i.e.,


[image: there is no content]











The stabilizer K of [image: there is no content] is the set of elements g of [image: there is no content] whose action leaves [image: there is no content] fixed. K is a subgroup of [image: there is no content] called the isotropy group. We can verify that


[image: there is no content]











A symmetric space is a Riemannian manifold, where the reversal of the geodesics is well defined and is an isometry. Formally, [image: there is no content] is an isometry for each p on the manifold, where u is a vector in the tangent space at p, and [image: there is no content] the Riemannian exponential application at p. In other words, the symmetry around each point is an isometry. [image: there is no content] is a symmetric space (see [20]). The structure of a symmetric space can be studied through its isometry group and the Lie algebra of its isometry group. The present work will make use of the Cartan and Iwasawa decompositions of the Lie algebra of [image: there is no content] (see [22]). Let [image: there is no content] be the Lie algebra of [image: there is no content]. Given A, B and C three real [image: there is no content] matrices, let denote [image: there is no content]. We have


sp(n,R)=(A,B,C)|BandCsymmetric.











The Cartan decomposition of [image: there is no content] is given by


[image: there is no content]








where


t=(A,B,−B)|BsymmetricandAskew-symmetric,










p=(A,B,B)|A,B,symmetric.



(1)







The Iwasawa decomposition is given by


[image: there is no content]








where


a=(H,0,0)|Hdiagonal,










n=(A,B,0)|Auppertriangularwith0onthediagonal,Bsymmetric.











It can be shown that


[image: there is no content]



(2)




where [image: there is no content] is the adjoint representation of [image: there is no content].




2.2. The Siegel Disk


The Siegel disk [image: there is no content] is the set of complex matrices [image: there is no content], where ≥ stands for the Loewner order (see [24] for details on the Loewner order). Recall that for A and B two Hermitian matrices, [image: there is no content] with respect to the Loewner order means that [image: there is no content] is positive definite. The transformation


[image: there is no content]








is an isometry between the Siegel upper half space and the Siegel disk. Let [image: there is no content]. The application [image: there is no content] identifies the set of isometries of [image: there is no content] and of [image: there is no content]. Thus, it can be shown that a matrix [image: there is no content] acts isometrically on [image: there is no content] by


[image: there is no content]








where [image: there is no content] stands for the conjugate of A. The point [image: there is no content] in [image: there is no content] is identified with the null matrix noted 0 in [image: there is no content]. Let [image: there is no content]. There exists P a diagonal matrix with decreasing positive real entries and U a unitary matrix such that [image: there is no content]. Let [image: there is no content] be such that


P=th(τ1)⋱th(τn).











Let


A0=ch(τ1)⋱ch(τn),B0=sh(τ1)⋱sh(τn)








and


[image: there is no content]











It can be shown that


gZ∈Sp(n,C)andgZ.0=Z.



(3)







We provide now a correspondence between the elements of [image: there is no content] and the elements of [image: there is no content] defined in Equation (1). Let


HZ=τ1⋱τn−τ1⋱−τn∈a,



(4)




and


aZ=eτ1⋱eτne−τ1⋱e−τn∈A=exp(a).











It can be shown that there exists [image: there is no content] such that


[image: there is no content]








or equivalently


[image: there is no content]











Recall that Equation (2) gives [image: there is no content] and [image: there is no content]. The distance between Z and 0 in [image: there is no content] is given by


[image: there is no content]



(5)




(see p. 292 in [20] ).





3. Non Parametric Density Estimation on the Siegel Space


Let Ω be a space, endowed with a σ-algebra and a probability measure p. Let X be a random variable [image: there is no content]. The Riemannian measure of [image: there is no content] is called [image: there is no content] and the measure on [image: there is no content] induced by X is noted [image: there is no content]. We assume that [image: there is no content] has a density, noted f, with respect to [image: there is no content], and that the support of X is a compact set noted [image: there is no content]. Let [image: there is no content] be a set of draws of X.



The Dirac measure at a point [image: there is no content] is denoted [image: there is no content]. Let [image: there is no content] denotes the empirical measure of the set of draws. This section presents four non-parametric techniques of estimation of the density f from the set of draws [image: there is no content]. The estimated density at x in [image: there is no content] is noted f^k(x)=f^(x,x1,...,xk). The relevance of a density estimation technique depends on several aspects. When the space allows it, the estimation technique should equally consider each direction and location. This leads to an isotropy and a homogeneity condition. In the kernel method, for instance, a kernel density function [image: there is no content] is placed at each observation [image: there is no content]. Firstly, in order to treat directions equally, the function [image: there is no content] should be invariant under the isotropy group of [image: there is no content]; Secondly, for another observation [image: there is no content], functions [image: there is no content] and [image: there is no content] should be similar up to the isometries that send [image: there is no content] on [image: there is no content]. These considerations strongly depend on the geometry of the space: if the space is not homogeneous and the isotropy group is empty, these indifference principles have no meaning. Since the Siegel space is symmetric, it is homogeneous and has a non empty isotropy group. Thus, the density estimation technique should be chosen accordingly.



The convergence of the different estimation techniques is widely studied. Results were first obtained in the Euclidean case, and are gradually extended to the probability densities on manifold (see [1,2,15,25]).



The last relevant aspect is computational. Each estimation technique has its own computational framework that presents pros and cons given the different applications. For instance, the estimation by orthogonal series needs an initial pre-processing, but provides a fast evaluation of the estimated density in compact manifolds.



3.1. Histograms


The histogram is the simplest density estimation method. Given a partition of the space Dn=∪iAi, the estimated density is given by


[image: there is no content]








where [image: there is no content] stands for the indicator function of [image: there is no content]. Following the considerations of the previous sections, the elements of the partition should firstly be as isotropic as possible, and secondly as similar as possible to each other. Regarding the problem of histograms, the case of the Siegel space is similar to the case of the hyperbolic space. There exist various uniform polygonal tilings on the Siegel space that could be used to compute histograms. However, there are ratio [image: there is no content] for which there is no homothety. Thus, it is not always possible to adapt the size of the bins to a given set of draws of the random variable. Modifying the size of the bins can require a change of the structure of the tiling. This is why the study of histograms has not been deepened.




3.2. Orthogonal Series


The estimation of the density f can be made out of the estimation of the scalar product between f and a set of “orthonormal” functions [image: there is no content]. The most standard choice for [image: there is no content] is the eigenfunctions of the Laplacian. When the variable X takes its values in [image: there is no content], this estimation technique becomes the characteristic function method. When the underlying space is compact, the spectrum of the Laplacian operator is countable, while when the space is non-compact, the spectrum is uncountable. In the first case, the estimation of the density f is made through the estimation of a sum, while in the second case is made through the estimation of an integral. In practice, the second situation presents a larger computational complexity. Unfortunately, eigenfunctions of the Laplacian operator are known on [image: there is no content] but not on compact sub-domains. This is why the study of this method has not been deepened.




3.3. Kernels


Let [image: there is no content] be a map which verifies the following properties:

	(i)

	
[image: there is no content];




	(ii)

	
[image: there is no content];




	(iii)

	
[image: there is no content];




	(iv)

	
[image: there is no content].









Let [image: there is no content]. Generally, given a point p on a Riemannian manifold, [image: there is no content] defines an injective application only on a neighborhood of 0. On the Siegel space, [image: there is no content] is injective on the whole space. When the tangent space [image: there is no content] is endowed with the local scalar product,


[image: there is no content]








where [image: there is no content] is the Euclidean distance associated with the local scalar product and [image: there is no content] is the Riemannian distance. The corresponding Lebesgue measure on [image: there is no content] is noted [image: there is no content]. Let [image: there is no content] denote the push-forward measure of [image: there is no content] by [image: there is no content]. The function [image: there is no content] defined by:


[image: there is no content]



(6)




is the density of the Riemannian measure on [image: there is no content] with respect to the Lebesgue measure [image: there is no content] after the identification of [image: there is no content] and [image: there is no content] induced by [image: there is no content] (see Figure 1).


Figure 1. [image: there is no content] is a Riemannian manifold, and [image: there is no content] is its tangent space at x. The exponential application induces a volume change [image: there is no content] between [image: there is no content] and [image: there is no content].



[image: Entropy 18 00396 g001]






Given [image: there is no content] and a positive radius r, the estimator of f proposed by [1] is defined by:


[image: there is no content]



(7)







The corrective factor [image: there is no content] is necessary since the kernel [image: there is no content] originally integrates to one with respect to the Lebesgue measure and not with respect to the Riemannian measure. It can be noticed that this estimator is the usual kernel estimator in the case of Euclidean space. When the curvature of the space is negative, which is the case of the Siegel space, the distribution placed over each sample [image: there is no content] has [image: there is no content] as intrinsic mean. The following theorem provides convergence rate of the estimator. It is a direct adaptation of Theorem 3.1 of [1].



Theorem 1.

Let [image: there is no content] be a Riemannian manifold of dimension n and μ its Riemannian volume measure. Let X be a random variable taking its values in a compact subset C of [image: there is no content]. Let [image: there is no content], where [image: there is no content] is the infimum of the injectivity radius on C. Assume the law of X has a twice differentiable density f with respect to the Riemannian volume measure. Let [image: there is no content] be the estimator defined in Equation (7). There exists a constant [image: there is no content] such that


[image: there is no content]



(8)







If [image: there is no content],


[image: there is no content]



(9)









Proof. 

See Appendix A. ☐





It can be checked that on the Siegel space [image: there is no content] and that, for an isometry α, we have:


[image: there is no content]








Each location and direction are processed as similarly as possible. This density estimator can be used for data classification on Riemannian manifolds, see [26].



In order to obtain the explicit expression of the estimator, one must have the explicit expression of the Riemannian exponential, of its inverse, and of the function [image: there is no content] (see Equations (6) and (7)). These expressions are difficult and sometimes impossible to obtain for general Riemannian manifolds. In the case of the Siegel space, the symmetric structure makes the computation possible. Since the space is homogeneous, the computation can be made at the origin [image: there is no content] or [image: there is no content] and transported to the whole space. In the present work, the random variable lays in [image: there is no content]. However, in the literature, the Cartan and Iwasawa decompositions are usually given for the isometry group of [image: there is no content]. Thus, our computation starts in [image: there is no content] before moving to [image: there is no content].



The Killing form on the Lie algebra [image: there is no content] of the isometry group of [image: there is no content] induces a scalar product on [image: there is no content]. This scalar product can be transported on [image: there is no content] by left multiplication. This operation gives [image: there is no content] a Riemannian structure. It can be shown that on this Riemannian manifold, the Riemannian exponential at the identity coincides with the group exponential. Furthermore,


ϕ:exp(p)→Hng↦g.iI



(10)




is a bijective isometry, up to a scaling factor. Since the volume change [image: there is no content] is invariant under rescaling of the metric, this scaling factor has no impact. Thus, [image: there is no content] can be identified with [image: there is no content] and [image: there is no content] with [image: there is no content]. The expression of the Riemannian exponential is difficult to obtain in general; however, it boils down to the group exponential in the case of symmetric spaces. This is the main element of the computation of [image: there is no content]. The Riemannian volume measure on [image: there is no content] is noted [image: there is no content]. Let


ψ:K×a→p(k,H)↦Adk(H).











Let [image: there is no content] be the diagonal matrices with strictly decreasing positive eigenvalues. Let [image: there is no content] be the set of positive roots of [image: there is no content] as described in p. 282 in [20],


[image: there is no content]








where [image: there is no content] is the i-th diagonal term of the diagonal matrix H. Let [image: there is no content] be the set of continuous compactly supported functions on the space E. In [27], at page 73, it is given that for all [image: there is no content], there exists [image: there is no content] such that


[image: there is no content]



(11)




where [image: there is no content] is a Lebesgue measure on the coefficients of Y. Let [image: there is no content]. [image: there is no content] never vanishes on [image: there is no content] and [image: there is no content] has a null measure. Thus,


[image: there is no content]



(12)




where [image: there is no content] is the point in [image: there is no content] such that there exists k in K such that [image: there is no content]. Calculation in p. 73 in [27] also gives that for all [image: there is no content], there exists [image: there is no content], such that


[image: there is no content]



(13)




where [image: there is no content] is the Haar measure on [image: there is no content] and


J(H)=∏λ∈Λ+eλ(H)−e−λ(H)=2|Λ+|∏λ∈Λ+sinh(λ(H)).











Thus, for all [image: there is no content],


[image: there is no content]



(14)




where [image: there is no content] is the invariant measure on [image: there is no content]. After identifying [image: there is no content] and [image: there is no content], the Riemannian measure on [image: there is no content] coincides with the invariant measure on [image: there is no content]. Thus, for all [image: there is no content],


[image: there is no content]



(15)







Using the notation [image: there is no content] of Equation (12),


[image: there is no content]



(16)







Combining Equations (15) and (16), we obtain that there exists [image: there is no content] such that


[image: there is no content]



(17)







The term [image: there is no content] can be extended by continuity on [image: there is no content]; thus,


[image: there is no content]



(18)







Let [image: there is no content] be the Lebesgue measure corresponding to the metric. Then, the exponential application does not introduce a volume change at [image: there is no content]. Since [image: there is no content] and [image: there is no content], we have [image: there is no content]. Let [image: there is no content] denote the inverse of the exponential application. We have


[image: there is no content]











Since ϕ from Equation (10) is an isometry up to a scaling factor, if [image: there is no content] and [image: there is no content], then


[image: there is no content]








where [image: there is no content] refers to the Lebesgue measure on the tangent space [image: there is no content] as in Equation (6). Given [image: there is no content], [image: there is no content] from Equation (4) verifies [image: there is no content] for some k in K. Thus,


[image: there is no content]











We have then


[image: there is no content]








where the [image: there is no content] are described in Section 2.2. Given [image: there is no content],


[image: there is no content]








where [image: there is no content] is defined in Equation (3). It is thus possible to use the density estimator defined in Equation (7). Indeed,


[image: there is no content]



(19)




where the [image: there is no content] are the diagonal elements of [image: there is no content]. Recall that when [image: there is no content], the Siegel disk corresponds to the Poincaré disk. Thus, we retrieve the expression of the kernel for the hyperbolic space,


[image: there is no content]



(20)









4. Application to Radar Processing


4.1. Radar Data


In space time adaptative radar processing (STAP), the signal is formed by a succession of matrices X representing the realization of a temporal and spatial process. Let [image: there is no content] be the set of positive definite block Teoplitz matrices composed of [image: there is no content] blocks of [image: there is no content] matrices (PD BT). For a stationary signal, the autocorrelation matrix R is PD BT (see [5,6,14]). Authors of [5,6,14] proposed a generalization of Verblunsky coefficients and defined a parametrization of PD BT matrices,


[image: there is no content]



(21)




in which the metric induced by the Kähler potential is the product metric of an affine invariant metric on [image: there is no content] and [image: there is no content] times the metric of the Siegel disk, up to a scaling factor. When the signal is not Gaussian, reflection/Verblunsky coefficients in Poincaré or Siegel Disks should be normalized as described in [28] by a normalized Burg algorithm. Among other references, positive definite block Teoplitz matrices have been studied in the context of STAP-radar processing in [4,5,6].




4.2. Marginal Densities of Reflection Coefficients


In this section, we show density estimation results of the marginal parameters [image: there is no content]. For the sake of visualization, only the Siegel disk [image: there is no content] is considered. Recall that [image: there is no content] coincides with the Poincaré disk. The results are partly extracted from the conference paper [17]. Data used in the experimental tests are radar observations from THALES X-band Radar, recorded during 2014 field trials campaign at Toulouse Blagnac Airport for European FP7 UFO study (Ultra-Fast wind sensOrs for wake-vortex hazards mitigation) (see [29,30]). Data are representative of Turbulent atmosphere monitored by radar. Figure 2 illustrates the density estimation of six coefficients on the Poincaré unit disk under a rainy environment. The densities are individually re-scaled for visualization purposes. For each environment, the dataset is composed of 120 draws. The densities of the coefficients [image: there is no content] are representative of the background. This information on the background is expected to ease the detection of interesting targets.


Figure 2. Estimation of the density of six coefficients [image: there is no content] under rainy conditions. The expression of the used kernel is [image: there is no content]. Densities are rescaled for visual purposes.



[image: Entropy 18 00396 g002]







4.3. Radar Clutter Segmentation


Clutter refers to background Doppler signal related to meteorological conditions (e.g., wind in wooded areas, currents and breaking waves on water), which hinders detection of small and slow targets. At each range, a set of reflection coefficients are computed from the Doppler spectrum (see [31]). This set of coefficients is a point in the Poincaré poly-disk. From this set of points in the poly-disk, it is possible to estimate the underlying density. Segmenting clutter, i.e., determining zones of homogeneous Doppler characteristics (see Figure 3), enables the improvement of detection algorithms on each zone. The mean-shift algorithm enables segmentation of the space according to the kernel density estimation of a set of points. It was introduced by Fukunaga and Hostetler in 1975 (see [32]). It corresponds to a gradient ascent of the density estimator (see [33]) for a study of the statistical consistency of the gradient lines estimation. Each data point moves to a local mode of the density estimator, which yields as many clusters as modes. This algorithm has been generalized on manifolds in [34], and applied to radar images in [35]. It can thus be used to segment the set of points in the Poincaré poly-disk. Unfortunately, the mean-shift algorithm requires working with a kernel depending only on the distance to its barycenter, which is not the case of the kernel defined in Equation (19). Thus, the computations are performed without the use of the corrective term [image: there is no content]. It is possible to solve this problem by replacing the corrective term by its average at a given radius, which leads to a kernel depending only on the distance to its barycenter. Our future work will focus on the computation of these averages. Let


[image: there is no content]








where [image: there is no content] is a normalization constant. Let [image: there is no content].


Figure 3. Mean and width variability of sea clutter Doppler spectrum.



[image: Entropy 18 00396 g003]






The mean-shift is defined by


[image: there is no content]








where [image: there is no content] is in the tangent space at x. The algorithm moves from x to [image: there is no content] until convergence to a local maximum. The points of the space are segmented according to the local maxima to which they converge.



In order to assess the quality of unsupervised classification, we use the notion of Silhouette, see [36], which computes for each point a proximity criterion with respect to other points of the same cluster and other points of different clusters (see Figure 4). Let x be in the cluster A. We respectively define [image: there is no content] and [image: there is no content], the minimum distance to points of the same (resp. other) class(es). The Silhouette of x is


[image: there is no content]








which takes values between [image: there is no content] and 1, respectively, when the data point is considered “badly” and “well” clustered. The average of all the silhouettes provides an indication of the relevance of the classification. One can represent graphically the silhouette profile by plotting for each class horizontal segments of the length of the silhouette value (see Figure 5).


Figure 4. Intra and inter cluster distances.



[image: Entropy 18 00396 g004]





Figure 5. Example of silhouette.



[image: Entropy 18 00396 g005]






In order to test the Riemannian Mean Shift performance, we generate simple synthetic radar clutter data. Given 250 range cells, we generate 125 cells of ground clutter (wind) centered at 0 m·s−1, of spectral width 5 m·s−1, to which we add 125 cells of rain clutter, centered at 5 m·s−1, of spectral width 10 m·s−1. This clutter is sampled 10 times and the segmentation is performed on each simulation (see Figure 6, Figure 7 and Figure 8).


Figure 6. Autoregressive spectra.



[image: Entropy 18 00396 g006]





Figure 7. Classification results (one color per cluster).



[image: Entropy 18 00396 g007]





Figure 8. Silhouettes.



[image: Entropy 18 00396 g008]






It can be seen that, apart from a few outliers, the two clutters are well classified and that the algorithm was able to distinguish between two zones of different Doppler characteristics.



We then test our algorithm on real sea clutter data (see Figure 9, Figure 10 and Figure 11).


Figure 9. Autoregressive spectrum.



[image: Entropy 18 00396 g009]





Figure 10. Classification results for varying radii size in the density estimator (10 to 20 closest neighbours).



[image: Entropy 18 00396 g010]





Figure 11. Silhouettes.



[image: Entropy 18 00396 g011]






The results are more difficult to interpret in that case. The Doppler spectra are varying quite a lot along the range axis. Even though it looks over-segmented, the first classification (kernel size defined by the distance to the 10th closest neighbor point) displays the highest average silhouette value.





5. Conclusions


Three non parametric density estimation techniques have been considered. The main advantage of histograms in the Euclidean context is their simplicity of use. This makes histograms an interesting tool despite the fact that they do not present optimal convergence rates. On the Siegel space, histograms lose their simplicity advantage. They were thus not deeply studied. The orthogonal series density estimation also presents technical disadvantages on the Siegel space. Indeed, the series become integrals, which make the numerical computation of the estimator more difficult than in the Euclidean case. On the other hand, the use of the kernel density estimator does not present major differences with the Euclidean case. The convergence rate obtained in [1] can be extended to compactly supported random variables on non compact Riemannian manifolds. Furthermore, the corrective term whose computation is required to use Euclidean kernels on Riemannian manifolds turns out to have a reasonably simple expression. Our future efforts will concentrate on the use of kernel density estimation on the Siegel space in radar signal processing. As the experimental section suggests, we strongly believe that the estimation of the densities of the [image: there is no content] will provide an interesting description of the different backgrounds. This non-parametric method of density estimation should be compared with parametric ones, as “Maximum Entropy Density” (Gibbs density) on homogenesous manifold as proposed in [37] based on the works of Jean-Marie Souriau. As proposed in [38], a median-shift approach might also be investigated.
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Appendix A. Demonstration of Theorem 1


Lemma A1.

Let [image: there is no content] be a Riemannian manifold, let C be a compact subset of M and let U be a relatively compact open subset of M containing C. Then, there is a compact Riemannian manifold [image: there is no content] such that U is an open subset of [image: there is no content], the inclusion [image: there is no content] is a diffeomorphism onto its image and [image: there is no content] on [image: there is no content].





Proof. 

We can assume that M is not compact. Let [image: there is no content] be a smooth function on M which tends to [image: there is no content] at infinity. Since [image: there is no content] is compact, [image: there is no content] contains [image: there is no content] for a large enough. By Sard Theorem, there exists a value [image: there is no content] such that [image: there is no content] contains no critical point of f and such that [image: there is no content] contains [image: there is no content]. It follows that [image: there is no content] is a submanifold with boundary of M. Since f tends to [image: there is no content] at infinity, N is compact as well as its boundary [image: there is no content].



Call [image: there is no content] the double of N. It is a compact manifold which contains N such that the inclusion [image: there is no content] is a diffeomorphism onto its image (see [39], Theorem 5.9 and Definition 5.10 ). Choose any metric [image: there is no content] on [image: there is no content]. Consider two open subsets [image: there is no content] and [image: there is no content] in [image: there is no content] and two smooth functions [image: there is no content] such that


[image: there is no content]








the interior of N,


[image: there is no content]








on [image: there is no content], vanishes outside of [image: there is no content], and


[image: there is no content]








outside [image: there is no content], and vanishes in [image: there is no content]. Define [image: there is no content] on [image: there is no content] by


[image: there is no content]








on N and


[image: there is no content]








outside of N. Since [image: there is no content], [image: there is no content] is positive definite everywhere on [image: there is no content]. Since [image: there is no content] vanishes outside of [image: there is no content], [image: there is no content] is smooth on [image: there is no content]. Finally, since [image: there is no content] and [image: there is no content] on [image: there is no content], [image: there is no content] on [image: there is no content]. ☐





We can now prove Theorem 1. Let X be a random variable as in Theorem 1. Following the notations of the theorem and the lemma, let [image: there is no content]. U is open, relatively compact and contains C. Let [image: there is no content] be as in the lemma. Let [image: there is no content] and [image: there is no content] be the kernel density estimators defined on M and [image: there is no content], respectively. Theorem 3.1 of [1] provides the desired results for [image: there is no content]. For [image: there is no content], the support and the values on the support of [image: there is no content] and [image: there is no content] coincide. Thus, the desired result also holds for [image: there is no content].
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