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Abstract:



This paper is devoted to studying the existence and uniqueness of weak solutions for an initial boundary problem of a nonlinear fourth-order parabolic equation with variable exponent [image: there is no content]. By applying Leray-Schauder’s fixed point theorem, the existence of weak solutions of the elliptic problem is given. Furthermore, the semi-discrete method yields the existence of weak solutions of the corresponding parabolic problem by constructing two approximate solutions.
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1. Introduction


We mainly study the following fourth-order parabolic equations with variable exponents:


vt+div(|∇▵v|p(x)−2∇▵v)−|▵v|q(x)−2▵v=g(x,v),(x,t)∈ΩT,



(1)






v(x,t)=▵v(x,t)=0,(x,t)∈ΓT,



(2)






v(x,0)=v0(x),x∈Ω,



(3)




where Ω is an open, bounded domain in [image: there is no content], [image: there is no content]. Define [image: there is no content] and [image: there is no content]. If p is a constant (especially [image: there is no content] and [image: there is no content]), the Equation (1) has the structure of the classical Cahn–Hilliard problem, which is often used to describe the evolution of a conserved concentration field during phase separation in physics. It is also related to the thin-film equation if [image: there is no content] becomes [image: there is no content], which can analyze the motion of a very thin layer of viscous incompressible fluids along an include plane.



There have been some results related to the existence, uniqueness and properties of solutions to the fourth-order degenerate parabolic equations (see [1,2]). The paper [3] has studied the existence of the Cahn–Hilliard equation and the reader may refer to [4] to obtain its physical background. For the constant exponent case of (1), the paper [5] has given the existence and uniqueness of weak solutions. For the problems in variable exponent spaces, the papers [6,7,8] have studied the existence of some fourth-order parabolic equations with a variable exponent, and [9] has given the Fujita type conditions for fast diffusion equation.



For the research of the existence and long-time behavior of the fourth-order partial differential equations, the entropy functional method is often applied in order to obtain the necessary estimates and to show the entropy dissipation. The large time behavior of solutions of the thin film equation [image: there is no content] was addressed in [10,11] by the entropy function method. For [image: there is no content], [12] proved the existence of (1) in the distributional sense and obtained the exponentially fast convergence in [image: there is no content]-norm via the entropy method of a regularized problem. We apply the idea of the entropy method to deal with the corresponding problems with variable exponents.



In this paper, we apply the Leray-Schauder’s fixed point theorem to prove the existence of weak solutions of the corresponding elliptic problem of (1)–(3) in order to deal with the nonlinear source. Furthermore, the semi-discrete method yields the existence of weak solutions of the parabolic problem by constructing two approximate solutions. We will show the effect of the variable exponents and the second-order nonlinear diffusion to the degenerate parabolic Equation (1).



1.1. Preliminaries


We introduce some elementary concepts and lemmas related to the variable exponent spaces in this part.



Let [image: there is no content] be a continuous function in [image: there is no content] and we define the variable exponent space as follows:


[image: there is no content]








with the norm


[image: there is no content]











It is easy to check that the variable exponent space [image: there is no content] becomes the classical Lebesgue space [image: there is no content] when [image: there is no content] is a positive constant.



For convenience, we list some definitions and notations of the generalized Lebesgue–Sobolev space [image: there is no content]:


Wk,p(x)(Ω)=:v(x)∈Lp(x)(Ω):Dαv∈Lp(x)(Ω),|α|≤k,∥v∥Wk,p(x)=:∑|α|≤k|Dαv|p(x),E1=:{v∈W01,p(x)(Ω)∩W2,p(x)(Ω)∩W2,q(x)(Ω)|▵v∈W01,p(x)(Ω)},E2=:{v∈H01(Ω)∩W01,p(x)(Ω)∩W2,p(x)(Ω)∩W2,q(x)(Ω)|▵v∈W01,p(x)(Ω)},Lp′(x)(Ω) denotes the dual space with1p′(x)+1p(x)=1.











Moreover, [image: there is no content] denotes the closure of [image: there is no content] in [image: there is no content]-norm, [image: there is no content] denotes the dual space of [image: there is no content]. For any positive continuous function [image: there is no content], we define


[image: there is no content]











Throughout the paper, C and [image: there is no content] denote the general positive constants independent of solutions and may change from line to line.



In the following, we list some known results for the variable exponent spaces (see [13,14]).



Lemma 1.

Letting [image: there is no content], one has


(1)∥f∥p(x)<1(=1;>1)⟺Tp(.)(f)<1(=1;>1);(2)∥f∥p(x)<1⟹∥f∥p(x)p+≤Tp(.)(f)≤∥f∥p(x)p−;∥f∥p(x)≥1⟹∥f∥p(x)p−≤Tp(.)(f)≤∥f∥p(x)p+;(3)∥f∥p(x)→0⟺Tp(.)(f)→0;∥f∥p(x)→∞⟺Tp(.)(f)→∞.













Lemma 2.

(Poincaré’s inequality) Letting [image: there is no content], there exists a positive constant C such that [image: there is no content]





Lemma 3.

(Hölder’s inequality) Letting [image: there is no content] and [image: there is no content], one has [image: there is no content]






1.2. Results


In (1), we require that [image: there is no content] and [image: there is no content] are two continuous functions in [image: there is no content] and [image: there is no content]. Besides, the nonlinear source term [image: there is no content] satisfies the growth condition:


|g(x,v)|≤K|v|l(x)+s(x),v∈(−∞,+∞),x∈Ω,



(4)




where K is a positive constant, [image: there is no content] is a continuous function in [image: there is no content] and [image: there is no content]. Furthermore, by letting [image: there is no content], we require that


[image: there is no content]



(5)







The corresponding steady-state problem of (1)–(3) has the form:


[image: there is no content]



(6)






[image: there is no content]



(7)







The weak solution is defined in the following sense.



Definition 1.

A function [image: there is no content] is said to be a weak solution of (6) and (7) provided that


[image: there is no content]



(8)




for each [image: there is no content] and [image: there is no content].





The following theorem gives the existence of solutions.



Theorem 1.

Let [image: there is no content]. There exists at least a weak solution of (6) and (7) satisfying Definition 1.





For the evolution equation case, we define the weak solution of (1)–(3) as following.



Definition 2.

A function v is said to be a weak solution of (1)–(3) provided that

	(i)

	
[image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] a.e. in Ω;




	(ii)

	
For any [image: there is no content], one has


[image: there is no content]



















The existence of solutions is the following theorem.



Theorem 2.

Let [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. There exists at least a weak solution of (1)–(3).



Moreover, the solution of (1)–(3) is unique when [image: there is no content] where μ is a constant and [image: there is no content].





This paper is organized as follows. In Section 2, we prove the existence and uniqueness of weak solution to the steady-state problem by using Leray-Schauder’s fixed point theorem. In Section 3, we prove the existence of the solution to an evolution equation by applying the semi-discrete method with necessary uniform estimates.





2. Steady-State Problem


In order to apply the fixed point theorem, we consider a steady-state problem with the source [image: there is no content]:


[image: there is no content]



(9)






[image: there is no content]



(10)







By constructing an energy functional and obtaining its minimizer, we have the following existence of weak solutions.



Lemma 4.

Let [image: there is no content]. There exists a unique weak solution [image: there is no content] of (9) and (10) satisfying


−∫Ω|∇▵v|p(x)−2∇▵v∇▵ϕdx−∫Ω|▵v|q(x)−2▵v▵ϕdx=∫Ωg(x)▵ϕdx



(11)




for any [image: there is no content].





Proof. 

Introduce a functional


[image: there is no content]



(12)




For the last term, Hölder’s inequality, the Young inequality, the Sobolev embedding theorem (see [15]) and the [image: there is no content]-theory of the second-order elliptic equation (see [16]) gives


|∫Ωg▵vdx|≤∥g∥p′(x)∥▵v∥p(x))≤C1εmax∥g∥p′(x)p′−,∥g∥p′(x)p′++ε∫Ω|▵v|p(x)dx≤Cmax∥g∥p′(x)p′−,∥g∥p′(x)p′++12∫Ω1p(x)|∇▵v|p(x)dx.



(13)







On the other hand, (12) implies


[image: there is no content]











Hence there exists a sequence [image: there is no content] such that


[image: there is no content]



(14)




Equations (13) and (14) give


[image: there is no content]








which implies that [image: there is no content] is bounded and thus Lemmas 1–3 yield


[image: there is no content]








and


[image: there is no content]











It shows that [image: there is no content] belongs to the space [image: there is no content] uniformly, and then there exists a function [image: there is no content] such that


[image: there is no content]











Furthermore, since [image: there is no content] is weakly lower semi-continuous on [image: there is no content], we have


[image: there is no content]








i.e., v is a minimizer of [image: there is no content] and [image: there is no content] It guarantees that v is a weak solution of (9) and (10).



The uniqueness is obvious and we omit the details. ☐





Now, we consider the problem (6) and (7) with the nonlinear source [image: there is no content].



Lemma 5.

Letting [image: there is no content] be a weak solution of (6) and (7), one has [image: there is no content].





Proof. 

Multiplying (8) by v gives


∫Ω|∇▵v|p(x)dx+∫Ω|▵v|q(x)dx=−∫Ωg(x,v)▵vdx≤2∥g∥p′(x)∥▵v∥p(x)≤C∥g∥p′(x)∥∇▵v∥p(x)≤14∫Ω|∇▵v|p(x)dx+Cmax{∥g∥p′(x)p′−,∥g∥p′(x)p′+}.



(15)







By Lemmas 2 and 3 and [image: there is no content]-estimate (see [16]), we conclude that


∫Ω|g(x,v)|p′(x)dx≤C∫Ω(K|v|l(x)+s(x))p′(x)dx≤CMp′+∫Ω|v|l(x)p′(x)dx+C∫Ω|s(x)|p′(x)dx+C≤C∥v∥W1,p(x)l(x)p′(x)+C≤C∥▵v∥p(x)l(x)p′(x)+C≤C∥∇▵v∥p(x)l(x)p′(x)+C,



(16)




and thus


max{∥g∥p′(x)p′−,∥g∥p′(x)p′+}≤Cmax{∥∇▵v∥p(x)π+,∥∇▵v∥p(x)π−}+C≤14∫Ω|∇▵v|p(x)dx+C.



(17)




Equations (15)–(17) yield


[image: there is no content]



(18)







It completes the proof of Lemma 5. ☐





Proof of Theorem 1.

Letting [image: there is no content] and [image: there is no content] where we choose [image: there is no content] such that [image: there is no content] is compact, we consider the auxiliary problem


[image: there is no content]











Lemma 4 ensures its existence and so we can define the fixed point operator


[image: there is no content]








and [image: there is no content].



If [image: there is no content] satisfies [image: there is no content], we can check that [image: there is no content] where [image: there is no content] is independence of ω and δ from the idea of Lemma 5. The compact embedding [image: there is no content] can ensure that T is a continuous and compact operator. Leray-Schauder’s fixed point theorem yields the existence of solutions of (6) and (7). ☐






3. Evolution Equation


In this section, we study the existence solutions of (1)–(3). For this purpose, we establish a semi-discrete problem at first:


1h(vk−vk−1)+div(|∇▵vk|p(x)−2∇▵vk)−|▵vk|q(x)−2▵vk=g(x,vk−1),x∈Ω,



(19)






vk(x,t)=▵vk(x,t)=0,x∈∂Ω,



(20)




where [image: there is no content], [image: there is no content] and [image: there is no content].



Lemma 6.

Assume [image: there is no content]. (19) and (20) admits a unique weak solution [image: there is no content] satisfying


∑k=1i∫Ω|∇vk|2dx+h∑k=1i∫Ω|∇▵vk|p(x)dx+h∑k=1i∫Ω|▵vk|q(x)dx≤∑k=1i∫Ω|∇vk−1|2dx+h2∑k=1i∫Ω|∇▵vk−1|p(x)dx+CT,



(21)




and


∫Ω|∇vi|2dx+h2∑k=1i∫Ω|∇▵vi|p(x)dx+h2∫Ω|∇▵vi|p(x)dx+h∑k=1i∫Ω|▵vk|q(x)dx≤∫Ω|∇v0|2dx+h2∫Ω|∇▵v0|p(x)dx+CT.



(22)









Proof. 

According to the argument of the Section 2, we conclude that the problem (19) and (20) has a unique weak solution [image: there is no content] satisfying


[image: there is no content]



(23)




for any [image: there is no content]. Letting [image: there is no content] in (23), we have


1h∫Ω|∇vk|2dx+∫Ω|∇▵vk|p(x)dx+∫Ω|▵vk|q(x)dx=1h∫Ω∇vk·∇vk−1dx−∫Ωg(x,vk−1)▵vkdx≤12h∫Ω|∇vk−1|2dx+12h∫Ω|∇vk|2dx−∫Ωg(x,vk−1)▵vkdx.



(24)







Similar to the proof of (16) and (17), we get


−∫Ωg(x,vk−1)▵vkdx≤12∫Ω|∇▵vk|p(x)dx+C∫Ω|g(x,vk−1)|p′(x)dx≤12∫Ω|∇▵vk|p(x)dx+14∫Ω|∇▵vk−1|p(x)dx+C.



(25)







By (24) and (25), one has


12h∫Ω|∇vk|2dx+12∫Ω|∇▵vk|p(x)dx+∫Ω|▵vk|q(x)dx≤12h∫Ω|∇vk−1|2dx+14∫Ω|∇▵vk−1|p(x)dx+C.



(26)







Hence, for any [image: there is no content], we obtain


∑k=1i∫Ω|∇vk|2dx+h∑k=1i∫Ω|∇▵vk|p(x)dx+h∑k=1i∫Ω|▵vk|q(x)dx≤∑k=1i∫Ω|∇vk−1|2dx+h2∑k=1i∫Ω|∇▵vk−1|p(x)dx+CT.



(27)







It completes the proof of (21) and (22) obtained from (21). ☐





Now, we are in the position to define the first approximate solution of (1)–(3)


[image: there is no content]



(28)




where [image: there is no content] is the characteristic function over the interval [image: there is no content] for [image: there is no content]. For this approximate solution, we have the following uniform estimates.



Lemma 7.

One has


[image: there is no content]



(29)









Proof. 

By Lemma 6 and


[image: there is no content]



(30)




we have the estimate


[image: there is no content]



(31)







On the other hand, we have


[image: there is no content]



(32)







Letting [image: there is no content] in (22), we get


∫0T∫Ω|∇▵ϖ(n)|p(x)dxdt+∫0T∫Ω|▵ϖ(n)|q(x)dxdt=h∑k=1n∫Ω|∇▵vk|p(x)dx+h∑k=1n∫Ω|▵vk|q(x)dx≤C.








☐





Another approximate solution is defined as follows:


[image: there is no content]



(33)




where


[image: there is no content]











We also obtain some uniform estimates for this approximate solution.



Lemma 8.

One has


[image: there is no content]



(34)









Proof. 

By (33), we get


[image: there is no content]



(35)




and then


∫0T∥∂v(n)∂t∥W−1,p′(x)(Ω)p′−dt≤∫0T|∂v(n)∂t,ψ|p′−dt≤C∫0T|∑k=1nχk(t)∫Ω|∇▵vk|p(x)−2∇▵vk∇ψdx|p′−dt+C∫0T|∑k=1nχk(t)∫Ωg(x,vk−1)ψdx|p′−dt+C∫0T|∑k=1nχk(t)∫Ω|▵vk|q(x)−2▵vkψdx|p′−dt≤C∥∇▵ϖ(n)∥Lp′−(ΩT)p′−+C∥g(x,vk−1)∥Lp′−(ΩT)p′−≤C,








for any [image: there is no content] with [image: there is no content]. It follows from (22) and (33) that


∥v(n)∥Lm(0,T;H01(Ω))m≤Cm∫0T∫Ω|∇v(n)|2dxm2dt=Cm∫0T∫Ω|∑k=1nχk(t)[ϑk(t)∇vk(x)+(1−ϑk(t))∇vk−1(x)]|2dxm2dt=Cm∑k=1n∫(k−1)h(kh)∫Ω|[ϑk(t)∇vk(x)+(1−ϑk(t))∇vk−1(x)]|2dxm2dt≤Cm∑k=1nh∫Ω(|∇vk(x)|2+|∇vk−1(x)|2)dxm2≤Cm+m2T








with [image: there is no content] independent of m. Perform the limit [image: there is no content] to get


[image: there is no content]








☐





Proof of Theorem 2.

By (29), we can seek a subsequence of [image: there is no content] (still denoted by itself) and two functions [image: there is no content] such that


ϖ(n)⇀vweakly*inL∞(0,T;H01(Ω)),▵ϖ(n)⇀▵vweaklyinLp−(0,T;W01,p(Ω)),|∇▵ϖ(n)|p(x)−2∇▵ϖ(n)⇀νweaklyinLp′(x)(ΩT),|▵ϖ(n)|q(x)−2▵ϖ(n)⇀ν′weaklyinLq′(x)(ΩT),








as [image: there is no content].



It is easy to check that there exists a positive integer r such that [image: there is no content] and thus the embedding [image: there is no content], the uniform estimate (34) and the Aubin lemma [17] yield the existence of a subsequence of [image: there is no content] and a function ϱ such that, as [image: there is no content],


∂v(n)∂t⇀∂ϱ∂tweaklyinLp′−(0,T;W−1,p(x)(Ω)),v(n)⇀ϱweakly*inL∞(0,T;H01(Ω)),v(n)→ϱstronglyinC([0,T];L2(Ω)),v(n)→ϱa.e.inΩT.











Moreover, (23) gives, for any [image: there is no content],


|∫0T∫Ω(ϖ(n)−v(n))ϕdxdt|=|∫0T∫Ω∑k=1nχk(t)(1−ϑk(t))(vk−vk−1)ϕdxdt|=|∫0Th∑k=1nχk(1−ϑk)∫Ω(|∇▵vk|p(x)−2∇▵vk∇ϕ+|▵vk|q(x)−2▵vkϕ+g(x,vk−1)ϕ)dxdt|≤h∫0T(|∫Ω|∇▵ϖ(n)|p(x)−2∇▵ϖ(n)∇ϕdx|+|∫Ω|▵ϖ(n)|q(x)−2▵ϖ(n)ϕdx|+|∫Ωg(x,ϖ(n))ϕdx|+|∫Ωg(x,v0)ϕdx|)dt≤Ch→0,








as [image: there is no content].



By the continuity of g and [image: there is no content] a.e. in [image: there is no content], we have [image: there is no content] a.e. in [image: there is no content]. Furthermore, the estimate (see Lemma 7) [image: there is no content] gives


g(x,ϖ(n))⇀g(x,v)weaklyinLp′(x)(ΩT).











Applying (23) and (35), we obtain, for any test function ϕ,


∫0T∂v(n)∂t,ϕdt=∫0T∫Ω|∇▵ϖ(n)|p(x)−2∇▵ϖ(n)∇ϕdxdt+∫0T∫Ω|▵ϖ(n)|q(x)−2▵ϖ(n)ϕdxdt+∫0T∫Ωg(x,ϖ(n))ϕdxdt+h∫Ωg(x,v0)ϕ(x,0)dx−∫(n−1)hT∫Ωg(x,vn)ϕdxdt.











By taking [image: there is no content], we have


[image: there is no content]











It remains to prove [image: there is no content] and [image: there is no content]. By using v as a test function in (23) and integrating by part, we get


12∫Ω|∇v(x,T)|2dx−12∫Ω|∇v0|2dx+∫0T∫Ων∇▵vdxdt+∫0T∫Ων′▵vdxdt=−∫0T∫Ωg(x,v)▵vdxdt.



(36)







On the other hand, (23) implies


12∫Ω|∇ϖ(n)(x,T)|2dx−12∫Ω|∇v0|2dx+∫0T∫Ω|∇▵ϖ(n)|p(x)dxdt+∫0T∫Ω|▵ϖ(n)|q(x)dxdt≤−∫0T∫Ωg(x,ϖ(n))▵ϖ(n)dxdt−h∫Ωg(x,v0)v0dx+∫(n−1)hT∫Ωg(x,vn)vndxdt.



(37)







For any test functions [image: there is no content] and constant [image: there is no content], we have


[image: there is no content]



(38)




and


[image: there is no content]



(39)




where [image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content].



By (37)–(39), we arrive at


[image: there is no content]











Moreover, (36) gives


[image: there is no content]











By letting [image: there is no content], we obtain


[image: there is no content]











By letting [image: there is no content], we have


[image: there is no content]











The arbitrariness of ϕ yields [image: there is no content], a.e. in [image: there is no content]. Similarly, we can obtain [image: there is no content], a.e. in [image: there is no content]. ☐





Proof of Uniqueness.

Let [image: there is no content] and [image: there is no content] be two weak solutions to (1)–(3) and [image: there is no content]. By taking [image: there is no content] as the test function, we get


[image: there is no content]











It implies


[image: there is no content]








where we have used the fact [image: there is no content] for [image: there is no content] and [image: there is no content] (or [image: there is no content]). By Gronwall’s inequality, we obtain [image: there is no content] a.e. in [image: there is no content]. ☐
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