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Abstract:



In this manuscript, we prove the existence and uniqueness of solutions for local fractional differential equations (LFDEs) with local fractional derivative operators (LFDOs). By using the contracting mapping theorem (CMT) and increasing and decreasing theorem (IDT), existence and uniqueness results are obtained. Some examples are presented to illustrate the validity of our results.
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1. Introduction


Differential equations (DEs) with fractional order are generalizations of ordinary differential equations to non-integer order. Indeed, fractional differential equations have been subjected to many studies due to their frequent occurrence in different applications in physics, fluid mechanics, physiology, engineering, electrochemistry, and signals [1,2,3,4,5,6,7,8]. Therefore, numerical and analytical techniques have been developed to deal with fractional differential equations [9,10,11].



The existence and uniqueness of solutions of differential equations with the Riemann-Liouville fractional derivative and the Caputo fractional derivative using the Schauder fixed point theorem, the lower and upper solution method, the contracting mapping principle and the Leray-Schauder theory have been investigated in some papers [12,13,14,15].



Very recently in [16], the author studied the existence and uniqueness of solutions of some classes of differential equations with local fractional derivative operators. In this paper, we are interested in the existence and uniqueness of DEs with LFDOs of the form:


[image: there is no content]



(1)






[image: there is no content]



(2)




and a system of DEs with LFDOs of the form


[image: there is no content]



(3)




where


[image: there is no content]








and [image: there is no content], and [image: there is no content] are the LFDOs of order [image: there is no content], and [image: there is no content] respectively and [image: there is no content]. By using a variety of tools including the (CMT) and (IDT), existence and uniqueness results are obtained.



The rest of this paper is organized as follows. In Section 2, we give some necessary notations, definitions, and theorems. In Section 3, we study the existence and uniqueness of solutions of local fractional differential Equations (1)–(3) by using the contracting mapping theorem. Examples are given to illustrate our results in Section 4. Finally, in Section 5 we outline the main conclusions.




2. Basic Definitions and Preliminaries


In this section, we present some basic definitions and theorems that are used to prove our new results (see [16]).



Definition 1.

Let us consider that [image: there is no content] is LF continuous. We say that [image: there is no content] satisfies a Lipschitz continuous (LC) if exists [image: there is no content] such that for all [image: there is no content]


[image: there is no content]













Definition 2.

A generalized normed linear space on [image: there is no content] of fractional dimension [image: there is no content] is a mapping [image: there is no content] if it satisfies the following properties:

	1. 

	
[image: there is no content] & [image: there is no content] if and only if [image: there is no content]




	2. 

	
[image: there is no content]




	3. 

	
[image: there is no content], for [image: there is no content] and [image: there is no content]











Definition 3.

Let [image: there is no content] be a generalized Banach space (GBS), and let [image: there is no content] be a map. If a number [image: there is no content] and


[image: there is no content]








for [image: there is no content]. Then [image: there is no content] is called contraction mapping (CM) on GBS [image: there is no content].





Definition 4.

Let [image: there is no content] be a GBS and let [image: there is no content]. If [image: there is no content] and [image: there is no content], then [image: there is no content] is called a fixed point (FP) of [image: there is no content].





Theorem 1.

(CMT): A contracting mapping [image: there is no content] defined on a complete GBS [image: there is no content] has a unique FP.





Proof. 

See [14].





Theorem 2.

Assume that [image: there is no content] ([image: there is no content] is called a LF continuous set) and [image: there is no content] ([image: there is no content] is called a LF derivative set). Then a point [image: there is no content] with


[image: there is no content]













Proof. 

See [14].





Theorem 3.

(Increasing and Decreasing Theorem)

	
If [image: there is no content] on [image: there is no content], then [image: there is no content] is an increasing on that interval.



	
If [image: there is no content] on [image: there is no content], then [image: there is no content] is a decreasing on that interval.










Proof. 

See in [14].






3. Main Results


Here, we investigate the existence and uniqueness of solutions of the LFDEs (1), (2) and (3). First, we prove the existence and uniqueness of solutions of the LFDEs by applying (the CMT).



Theorem 4.

Let us consider that [image: there is no content] is a map on the complete GBS [image: there is no content] such that for some [image: there is no content] is contracting. Then [image: there is no content] has a unique FP.





Proof. 

Since [image: there is no content] is CM on [image: there is no content], then we have [image: there is no content] has a unique FP [image: there is no content]


‖Tξα−ξα‖α=‖Tm+1ξα−Tmξα‖α=‖Tm(Tξα)−Tm(ξα)‖α≤βα‖Tξα−ξα‖α








Moreover, since [image: there is no content], then [image: there is no content] in other words, [image: there is no content] Therefore, [image: there is no content] is FP of [image: there is no content]. For uniqueness, assume that [image: there is no content] are FPs of [image: there is no content] such that [image: there is no content] then [image: there is no content] FPs of [image: there is no content]. Therefore [image: there is no content]





Theorem 5.

Assume that [image: there is no content] is LF continuous map. Then [image: there is no content] is LC.





Proof. 

Since [image: there is no content] is LF continuous, then it attains a maximum value, denoted by


[image: there is no content]













Now, let us consider [image: there is no content].



Using Theorem 2, there is a point [image: there is no content] such that:


[image: there is no content]











Theorem 6.

If [image: there is no content] closed interval, [image: there is no content] and [image: there is no content] is an LF continuous function and satisfies a LC, then the LFDE:


[image: there is no content]



(4)




subject to the initial conditions


[image: there is no content]



(5)




has a unique solution in [image: there is no content]





Proof. 

Let the map [image: there is no content] be defined by


[image: there is no content]



(6)




and [image: there is no content]



We first prove by induction that


‖Tnζ1(χ)−Tnζ2(χ)‖α≤ηnα |χ−υ|2nαΓn(1+2α)‖ζ1(χ)−ζ2(χ)‖α≤ηnα |ω−σ|2nαΓn(1+2α)‖ζ1(χ)−ζ2(χ)‖α ,                    n=1 , 2 , ......



(7)







In fact, for [image: there is no content], we obtain


‖Tζ1(χ)−Tζ2(χ)‖α=|Tζ1(χ)−Tζ2(χ)|=|1Γ(1+α)∫υχ(χ−τ)αΓ(1+α)[Ω(τ,ζ1(τ))−Ω(τ,ζ2(τ))] (dτ)α|≤|1Γ(1+α)∫υχ(χ−τ)αΓ(1+α)ηα|ζ1(χ)−ζ2(χ)| (dτ)α|≤ηα‖ζ1(χ)−ζ2(χ)‖α |1Γ(1+α)∫υχ(χ−τ)αΓ(1+α)(dτ)α|≤ηα |χ−υ|2αΓ(1+2α)‖ζ1(χ)−ζ2(χ)‖α ≤ηα |ω−σ|2αΓ(1+2α)‖ζ1(χ)−ζ2(χ)‖α 











For [image: there is no content],


‖T2ζ1(χ)−T2ζ2(χ)‖α=|T2ζ1(χ)−T2ζ2(χ)|=|1Γ(1+α)∫υχ(χ−τ)αΓ(1+α)[Ω(τ,Tζ1(τ)−Ω(τ,Tζ2(τ))] (dτ)α|≤|1Γ(1+α)∫υχ(χ−τ)αΓ(1+α)ηα|Tζ1(χ)−Tζ2(χ)| (dτ)α|≤η2α |χ−υ|2αΓ(1+2α)‖ζ1(χ)−ζ2(χ)‖α |1Γ(1+α)∫υχ(χ−τ)αΓ(1+α)(dτ)α|≤η2α |χ−υ|4αΓ2(1+2α)‖ζ1(χ)−ζ2(χ)‖α ≤η2α |ω−σ|4αΓ2(1+2α)‖ζ1(χ)−ζ2(χ)‖α











We suppose the desired inequality holds for [image: there is no content].


‖Tkζ1(χ)−Tkζ2(χ)‖α≤ηkα |χ−υ|2kαΓn(1+2α)‖ζ1(χ)−ζ2(χ)‖α≤ηkα |ω−σ|2kαΓn(1+2α)‖ζ1(χ)−ζ2(χ)‖α 











Then,


‖Tk+1ζ1(χ)−Tk+1ζ2(χ)‖α=|Tk+1ζ1(χ)−Tk+1ζ2(χ)|=|1Γ(1+α)∫υχ(χ−τ)αΓ(1+α)[Ω(τ,Tkζ1(τ)−Ω(τ,Tkζ2(τ))] (dτ)α|≤|1Γ(1+α)∫υχ(χ−τ)αΓ(1+α)ηα|Tkζ1(χ)−Tkζ2(χ)| (dτ)α|≤|1Γ(1+α)∫υχ(χ−τ)αΓ(1+α)ηα‖Tkζ1(χ)−Tkζ2(χ)‖α (dτ)α|≤η(k+1)α |χ−υ|2kαΓk(1+2α)‖ζ1(χ)−ζ2(χ)‖α |1Γ(1+α)∫υχ(χ−τ)αΓ(1+α)(dτ)α|≤η(k+1)α |χ−υ|2(k+1)αΓk+1(1+2α)‖ζ1(χ)−ζ2(χ)‖α ≤η(k+1)α |ω−σ|2(k+1)αΓk+1(1+2α)‖ζ1(χ)−ζ2(χ)‖α 











Hence, the estimates (7) hold.



Now, we have


[image: there is no content]











So far [image: there is no content] sufficiently large


[image: there is no content]








and Tn is a contraction on [image: there is no content]



Therefore [image: there is no content] has a unique fixed point in [image: there is no content] which gives a unique solution to the local fractional differential.





Theorem 7.

If [image: there is no content], [image: there is no content] and [image: there is no content] is a local fractional continuous function and satisfies a Lipschitz continuous, then the local fractional differential equation:


[image: there is no content]



(8)






[image: there is no content]



(9)




has a unique solution in [image: there is no content]





Proof. 

Let the map [image: there is no content] be defined by


[image: there is no content]



(10)




and [image: there is no content]



We claim that for all [image: there is no content],


‖Tnζ1(χ)−Tnζ2(χ)‖α≤ηnα |χ−υ|3nαΓn(1+3α)‖ζ1(χ)−ζ2(χ)‖α ≤ηnα |ω−σ|3nαΓn(1+3α)‖ζ1(χ)−ζ2(χ)‖α ,                    n=1 , 2 , ......



(11)







The case is [image: there is no content] has already shown. The induction step is as follows:


‖Tn+1ζ1(χ)−Tn+1ζ2(χ)‖α=|Tn+1ζ1(χ)−Tn+1ζ2(χ)|=|1Γ(1+α)∫υχ(χ−τ)2αΓ(1+2α)[Ω(τ,Tnζ1(τ)−Ω(τ,Tnζ2(τ))] (dτ)α|≤|1Γ(1+α)∫υχ(χ−τ)2αΓ(1+2α)ηα|Tnζ1(χ)−Tnζ2(χ)| (dτ)α|≤|1Γ(1+α)∫υχ(χ−τ)2αΓ(1+2α)ηα‖Tnζ1(χ)−Tnζ2(χ)‖α (dτ)α|≤η(n+1)α |χ−υ|3nαΓn(1+3α)‖ζ1(χ)−ζ2(χ)‖α |1Γ(1+α)∫υχ(χ−τ)2αΓ(1+2α)(dτ)α|≤η(n+1)α |χ−υ|3(n+1)αΓn+1(1+3α)‖ζ1(χ)−ζ2(χ)‖α ≤η(k+1)α |ω−σ|3(n+1)αΓn+1(1+3α)‖ζ1(χ)−ζ2(χ)‖α 











Hence, the estimates (11) hold.



Now, we have


[image: there is no content]











So far [image: there is no content] is sufficiently large


[image: there is no content]








and Tn is a contraction on [image: there is no content]



Therefore [image: there is no content] has a unique fixed point in [image: there is no content] This gives an unique solution to the local fractional differential.



Next, we apply the increasing and decreasing test to prove the uniqueness of the solution of the system of LFDEs.





Theorem 8.

If [image: there is no content], and [image: there is no content] is LF continuous and satisfies a Lipschitz continuous, then there is at most one solution [image: there is no content] of the local fractional differential system


[image: there is no content]



(12)




that satisfies a given initial condition [image: there is no content]





Proof. 

Suppose that [image: there is no content] satisfies the LC.


[image: there is no content]













For any [image: there is no content]. Let [image: there is no content] and [image: there is no content] be two solutions of (12) such that [image: there is no content]



Let [image: there is no content] then


dαdταϑ(τ)=∑i=1n2[χi(τ)−γi(τ)] [χi(α)(τ)−γi(α)(τ)]=∑i=1n2[χi(τ)−γi(τ)] [Φi(τ, X(τ)−Φi(τ, Y(τ)] =2[X(τ)−Y(τ)][Φ(τ, X(τ)−Φ(τ, Y(τ)]











Since [image: there is no content] we obtain


dαdταϑ(τ)≤2|Φ(τ, X(τ)−Φ(τ, Y(τ)| |X−Y|≤2‖Φ(τ, X)−Φ(τ, Y)‖α ‖X−Y‖α≤2ηα ‖X−Y‖α2=2ηαϑ(τ) .











Hence, we have


[image: there is no content]










[image: there is no content]










[image: there is no content]











Thus, [image: there is no content] is a decreasing function.



Therefore [image: there is no content][image: there is no content] for [image: there is no content].



Since [image: there is no content], we obtain [image: there is no content], for [image: there is no content]. Hence, [image: there is no content] for [image: there is no content].



Now, let us consider the case where [image: there is no content].



Since [image: there is no content] we have


[image: there is no content]










[image: there is no content]










[image: there is no content]










[image: there is no content]











So [image: there is no content] is an increasing function.



Therefore [image: there is no content][image: there is no content] for [image: there is no content].



Since [image: there is no content], we obtain [image: there is no content], for [image: there is no content].



Hence, [image: there is no content] for [image: there is no content].




4. Applications


To illustrate the application of our results, let us consider the following examples.



Example 1.

The local fractional IVP


[image: there is no content]



(13)




has a unique solution.



For this initial value problem, the integral operator [image: there is no content] is defined as


T ζ(χ)=1+1Γ(1+α)∫0χ(χ−η)αΓ(1+α)[ηαΓ(1+α)−ζ(η)] (dη)α=1+η3αΓ(1+3α)−1Γ(1+α)∫0χ(χ−η)αΓ(1+α) ζ(η)(dη)α











It is clear that [image: there is no content] is CM.



Now let [image: there is no content]. Then


T ζ(χ)=1+χ3αΓ(1+3α)−1Γ(1+α)∫0χ(χ−η)αΓ(1+α) [cosα(ηα)−sinα(ηα)−ηαΓ(1+α)] (dη)α=cosα(χα)−sinα(χα)−χαΓ(1+α)








In other words, [image: there is no content], so [image: there is no content] is a unique fixed point of [image: there is no content], which gives a unique solution to the local fractional IVP (13).





Example 2.

The LFDE


[image: there is no content]



(14)




has a unique solution.



For this initial value problem, the integral operator [image: there is no content] is defined as


[image: there is no content]











Then [image: there is no content] is a contracting map.



Now let [image: there is no content]



Therefore,


T ζ(χ)=1+2χαΓ(1+α)+χ2αΓ(1+2α)+1Γ(1+α)∫0χ(χ−η)2αΓ(1+2α)[Eα(ηα)+ηαΓ(1+α)−ηαΓ(1+α)] (dη)α=Eα(χα)+χαΓ(1+α)











In other words, [image: there is no content], so [image: there is no content] is a unique FP of [image: there is no content], which gives a unique solution to the LFDE (14).






5. Conclusions


We have presented some existence and uniqueness results for an initial value problem of local fractional differential equations (LFDEs) and a system of LFDEs with local fractional derivative operators. The proof of the existence and uniqueness of the solutions is proved by applying the contracting mapping theorem while the uniqueness of solutions for system of LFDEs is proved by applying the increasing and decreasing theorem. The present work can be extended to nonlinear differential equations with local fractional derivative operators.
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