On Macrostates in Complex Multi-Scale Systems
Abstract
:1. Introduction
1.1. Complex Systems
1.2. Defining Complexity
1.3. Organization of the Article
2. Partitions of State Spaces
2.1. Contextual Emergence of Macrostates
2.2. Equilibrium Macrostates: Temperature
- A KMS state μ is stationary (or invariant) with respect to a subset A of the state space X and with respect to a flow Φ on X, . Then, the continuous functions assigned to μ, representing its observables, have stationary expectation values and higher statistical moments.
- A KMS state μ is structurally stable under small perturbations of relevant parameters if it is ergodic under the flow Φ if an invariant set A has either measure oor one: (Haag et al. [70]). Otherwise, if , then μ is non-ergodic and generally not structurally stable.
- A KMS state μ has no memory of temporal correlations, i.e., it is mixing: for for all measurable subsets A and B. This can be rephrased in terms of vanishing correlations between observables (Luzzatto [72]).
2.3. Non-Equilibrium Macrostates: Laser
3. Partitions Based on Dynamics
3.1. Generating Partitions
3.2. Almost Invariant Sets as Macrostates
3.3. Mental Macrostates from Neurodynamics
4. Meaningful Macrostates
4.1. Stability and Relevance
4.2. Meaningful Information and Statistical Complexity
Complexity in a very broad sense is a difficulty of a meaningful task. More precisely, the complexity of a pattern, a machine, an algorithm, etc. is the difficulty of the most important task related to it. . . . As a consequence of our insistence on meaningful tasks, the concept of complexity becomes subjective. We really cannot speak of the complexity of a pattern without reference to the observer. . . . A unique definition (of complexity) with a universal range of applications does not exist. Indeed, one of the most obvious properties of a complex object is that there is no unique most important task related to it.
4.3. Pragmatic Information in Non-Equilibrium Systems
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cowan, G.A.; Pines, D.; Meltzer, D. (Eds.) Complexity—Metaphors, Models, and Reality; Addison-Wesley: Reading, MA, USA, 1994.
- Cohen, J.; Stewart, I. The Collapse of Chaos; Penguin: New York, NY, USA, 1994. [Google Scholar]
- Auyang, S.Y. Foundations of Complex-System Theories; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Scott, A. (Ed.) Encyclopedia of Nonlinear Science; Routledge: London, UK, 2005.
- Shalizi, C.R. Methods and techniques of complex systems science: An overview. In Complex System Science in Biomedicine; Dreisboeck, T.S., Kresh, J.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 33–114. [Google Scholar]
- Gershenson, C.; Aerts, D.; Edmonds, B. (Eds.) Worldviews, Science, and Us: Philosophy and Complexity; World Scientific: Singapore, 2007.
- Nicolis, G.; Nicolis, C. Foundations of Complex Systems; World Scientific: Singapore, 2007. [Google Scholar]
- Mitchell, M. Complexity: A Guided Tour; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Hooker, C. (Ed.) Philosophy of Complex Systems; Elsevier: Amsterdam, The Netherlands, 2011.
- Von Bertalanffy, L. General System Theory; Braziller: New York, NY, USA, 1968. [Google Scholar]
- Wiener, N. Cybernetics, 2nd ed.; MIT Press: Cambridge, UK, 1961. [Google Scholar]
- Von Foerster, H. Principles of Self-Organization; Pergamon: New York, NY, USA, 1962. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature, 3rd ed.; Freeman: San Francisco, CA, USA, 1983. [Google Scholar]
- Haken, H. Synergetics; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Nicolis, G.; Prigogine, I. Self-Organization in Non-Equilibrium Systems; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Maturana, H.; Varela, F. Autopoiesis and Cognition; Reidel: Boston, MA, USA, 1980. [Google Scholar]
- Hopcroft, J.E.; Ullmann, J.D. Introduction to Automata Theory, Languages, and Computation; Addison-Wesley: Reading, MA, USA, 1979. [Google Scholar]
- Wolfram, S. Theory and Applications of Cellular Automata; World Scientific: Singapore, 1986. [Google Scholar]
- Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Modern Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef]
- Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U. Complex networks: Structure and dynamics. Phys. Rep. 2006, 424, 175–308. [Google Scholar] [CrossRef]
- Newman, M.; Barabási, A.; Watts, D. The Structure and Dynamics of Networks; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Ali, S.A.; Cafaro, C.; Kim, D.-H.; Mancini, S. The effect of microscopic correlations on the information geometric complexity of Gaussian statistical models. Physica A 2010, 389, 3117–3127. [Google Scholar] [CrossRef]
- Cafaro, C.; Mancini, S. Quantifying the complexity of geodesic paths on curved statistical manifolds through information geometric entropies and Jacobi fields. Physica D 2011, 240, 607–618. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Zurek, W.H. (Ed.) Complexity, Entropy, and the Physics of Information; Addison-Wesley: Reading, MA, USA, 1990.
- Atmanspacher, H.; Scheingraber, H. (Eds.) Information Dynamics; Plenum: New York, NY, USA, 1991.
- Kornwachs, K.; Jacoby, K. (Eds.) Information—New Questions to a Multidisciplinary Concept; Akademie: Berlin, Germany, 1996.
- Marijuàn, P.; Conrad, M. (Eds.) Proceedings of the Conference on Foundations of Information Science, from computers and quantum physics to cells, nervous systems, and societies, Madrid, Spain, July 11–15, 1994. BioSystems 1996, 38, 87–266. [PubMed]
- Boffetta, G.; Cencini, M.; Falcioni, M.; Vulpiani, A. Predictability—A way to characterize complexity. Phys. Rep. 2002, 356, 367–474. [Google Scholar] [CrossRef]
- Crutchfield, J.P.; Machta, J. Introduction to Focus Issue on “Randomness, Structure, and Causality: Measures of Complexity from Theory to Applications”. Chaos 2011, 21, 03710. [Google Scholar] [CrossRef] [PubMed]
- Stewart, I. Does God Play Dice? Penguin: New York, NY, USA, 1990. [Google Scholar]
- Lasota, A.; Mackey, M.C. Chaos, Fractals, and Noise; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Kaneko, K. (Ed.) Theory and Applications of Coupled Map Lattices; Wiley: New York, NY, USA, 1993.
- Kaneko, K.; Tsuda, I. Complex Systems: Chaos and Beyond; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Lind, D.; Marcus, B. Symbolic Dynamics and Coding; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Bak, P. How Nature Works: The Science of Self-Organized Criticality; Copernicus: New York, NY, USA, 1996. [Google Scholar]
- Shalizi, C.R.; Crutchfield, J.P. Computational mechanics: Pattern and prediction, structure and simplicity. J. Stat. Phys. 2001, 104, 817–879. [Google Scholar] [CrossRef]
- Cafaro, C.; Ali, S.A.; Giffin, A. Thermodynamic aspects of information transfer in complex dynamical systems. Phys. Rev. E 2016, 93, 022114. [Google Scholar] [CrossRef] [PubMed]
- Solomonoff, R.J. A formal theory of inductive inference. Inf. Control 1964, 7, 224–254. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Three approaches to the quantitative definition of complexity. Probl. Inf. Transm. 1965, 1, 3–11. [Google Scholar]
- Chaitin, G.J. On the length of programs for computing finite binary sequences. J. ACM 1966, 13, 145–159. [Google Scholar] [CrossRef]
- Martin-Löf, P. The definition of random sequences. Inf. Control 1966, 9, 602–619. [Google Scholar] [CrossRef]
- Lindgren, K.; Nordahl, M. Complexity measures and cellular automata. Complex Syst. 1988, 2, 409–440. [Google Scholar]
- Grassberger, P. Problems in quantifying self-generated complexity. Helv. Phys. Acta 1989, 62, 489–511. [Google Scholar]
- Grassberger, P. Randomness, information, complexity. arXiv, 2012; arXiv:1208.3459. [Google Scholar]
- Wackerbauer, R.; Witt, A.; Atmanspacher, H.; Kurths, J.; Scheingraber, H. A comparative classification of complexity measures. Chaos Solitons Fractals 1994, 4, 133–173. [Google Scholar] [CrossRef]
- Lloyd, S. Measures of complexity: A nonexhaustive list. IEEE Control Syst. 2001, 21, 7–8. [Google Scholar] [CrossRef]
- Young, K.; Crutchfield, J.P. Fluctuation spectroscopy. Chaos Solitons Fractals 1994, 4, 5–39. [Google Scholar] [CrossRef]
- Atmanspacher, H. Cartesian cut, Heisenberg cut, and the concept of complexity. World Futures 1997, 49, 333–355. [Google Scholar] [CrossRef]
- Crutchfield, J.P.; Young, K. Inferring statistical complexity. Phys. Rev. Lett. 1989, 63, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Scheibe, E. The Logical Analysis of Quantum Mechanics; Pergamon: Oxford, UK, 1973; pp. 82–88. [Google Scholar]
- Atmanspacher, H. Complexity and meaning as a bridge across the Cartesian cut. J. Conscious. Stud. 1994, 1, 168–181. [Google Scholar]
- Weaver, W. Science and complexity. Am. Sci. 1968, 36, 536–544. [Google Scholar]
- Grassberger, P. Toward a quantitative theory of self-generated complexity. Int. J. Theor. Phys. 1986, 25, 907–938. [Google Scholar] [CrossRef]
- Balatoni, J.; Rényi, A. Remarks on entropy. Publ. Math. Inst. Hung. Acad. Sci. 1956, 9, 9–40. [Google Scholar]
- Halsey, T.C.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.; Shraiman, B.I. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 1986, 33, 1141–1151. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. A new metric invariant of transitive dynamical systems and automorphisms in Lebesgue spaces. Dokl. Akad. Nauk SSSR 1958, 119, 861–864. [Google Scholar]
- Bates, J.E.; Shepard, H. Measuring complexity using information fluctuations. Phys. Lett. A 1993, 172, 416–425. [Google Scholar] [CrossRef]
- Tononi, G.; Sporns, O.; Edelman, G.M. A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. USA 1994, 91, 5033–5037. [Google Scholar] [CrossRef] [PubMed]
- Atmanspacher, H.; Räth, C.; Wiedenmann, G. Statistics and meta-statistics in the concept of complexity. Physica A 1997, 234, 819–829. [Google Scholar] [CrossRef]
- Bishop, R.C.; Atmanspacher, H. Contextual emergence in the description of properties. Found. Phys. 2006, 36, 1753–1777. [Google Scholar] [CrossRef]
- Primas, H. Chemistry, Quantum Mechanics, and Reductionism; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Primas, H. Emergence in exact natural sciences. Acta Polytech. Scand. 1998, 91, 83–98. [Google Scholar]
- Carr, J. Applications of Centre Manifold Theory; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Gaveau, B.; Schulman, L.S. Dynamical distance: Coarse grains, pattern recognition, and network analysis. Bull. Sci. Math. 2005, 129, 631–642. [Google Scholar] [CrossRef]
- Froyland, G. Statistically optimal almost-invariant sets. Physica D 2005, 200, 205–219. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data. An Introduction to Cluster Analysis; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Nagel, E. The Structure of Science; Harcourt, Brace & World: New York, NY, USA, 1961. [Google Scholar]
- Haag, R.; Hugenholtz, N.M.; Winnink, M. On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 1967, 5, 215–236. [Google Scholar] [CrossRef]
- Haag, R.; Kastler, D.; Trych-Pohlmeyer, E.B. Stability and equilibrium states. Commun. Math. Phys. 1974, 38, 173–193. [Google Scholar] [CrossRef]
- Kossakowski, A.; Frigerio, A.; Gorini, V.; Verri, M. Quantum detailed balance and the KMS condition. Commun. Math. Phys. 1977, 57, 97–110. [Google Scholar] [CrossRef]
- Luzzatto, S. Stochastic-like behaviour in nonuniformly expanding maps. In Handbook of Dynamical Systems; Hasselblatt, B., Katok, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 265–326. [Google Scholar]
- Graham, R.; Haken, H. Laser light—First example of a phase transition far away rom equilibrium. Z. Phys. 1970, 237, 31–46. [Google Scholar] [CrossRef]
- Hepp, K.; Lieb, E.H. Phase transition in reservior driven open systems, with applications to lasers and superconductors. Helv. Phys. Acta 1973, 46, 573–603. [Google Scholar]
- Ali, G.; Sewell, G.L. New methods and structures in the theory of the Dicke laser model. J. Math. Phys. 1995, 36, 5598–5626. [Google Scholar] [CrossRef]
- Sewell, G.L. Quantum Mechanics and Its Emergent Macrophysics; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Haken, H. Analogies between higher instabilities in fluids and lasers. Phys. Lett. A 1975, 53, 77–78. [Google Scholar] [CrossRef]
- Atmanspacher, H.; Scheingraber, H. Deterministic chaos and dynamical instabilities in a multimode cw dye laser. Phys. Rev. A 1986, 34, 253–263. [Google Scholar] [CrossRef]
- Cornfeld, I.P.; Fomin, S.V.; Sinai, Y.G. Ergodic Theory; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Crutchfield, J.P. Observing complexity and the complexity of observation. In Inside Versus Outside; Atmanspacher, H., Dalenoort, G.J., Eds.; Springer: Berlin, Germany, 1994; pp. 235–272. [Google Scholar]
- Sinai, Y.G. On the notion of entropy of a dynamical system. Dokl. Akad. Nauk SSSR 1959, 124, 768–771. [Google Scholar]
- Sinai, Y.G. Markov partitions and C-diffeomorphisms. Funct. Anal. Appl. 1968, 2, 61–82. [Google Scholar] [CrossRef]
- Bowen, R.E. Markov partitions for axiom A diffeomorphisms. Am. J. Math. 1970, 92, 725–747. [Google Scholar] [CrossRef]
- Ruelle, D. The thermodynamic formalism for expanding maps. Commun. Math. Phys. 1989, 125, 239–262. [Google Scholar] [CrossRef]
- Viana, R.L.; Pinto, S.E.; Barbosa, J.R.R.; Grebogi, C. Pseudo-deterministic chaotic systems. Int. J. Bifurcat. Chaos 2003, 13, 3235–3253. [Google Scholar] [CrossRef]
- Allefeld, C.; Atmanspacher, H.; Wackermann, J. Mental states as macrostates emerging from EEG dynamics. Chaos 2009, 19, 015102. [Google Scholar] [CrossRef] [PubMed]
- Deuflhard, P.; Weber, M. Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl. 2005, 398, 161–184. [Google Scholar] [CrossRef]
- Atmanspacher, H.; beim Graben, P. Contextual emergence of mental states from neurodynamics. Chaos Complex. Lett. 2007, 2, 151–168. [Google Scholar]
- Metzinger, T. Being No One; MIT Press: Cambridge, UK, 2003. [Google Scholar]
- Fell, J. Identifying neural correlates of consciousness: The state space approach. Conscious. Cogn. 2004, 13, 709–729. [Google Scholar] [CrossRef] [PubMed]
- Harbecke, J.; Atmanspacher, H. Horizontal and vertical determination of mental and neural states. J. Theor. Philos. Psychol. 2011, 32, 161–179. [Google Scholar] [CrossRef]
- Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. From data mining to knowledge discovery in databases. AI Mag. 1996, 17, 37–54. [Google Scholar]
- Aggarwal, C.C. Data Mining; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Calude, C.R.; Longo, G. The deluge of spurious correlations in big data. Found. Sci. 2016, in press. [Google Scholar] [CrossRef]
- Miller, J.E. Interpreting the Substantive Significance of Multivariable Regression Coefficients. In Proceedings of the American Statistical Association, Denver, CO, USA, 3–7 August 2008.
- Cilibrasi, R.L.; Vitànyi, P.M.B. The Google similarity distance. IEEE Trans. Knowl. Data Eng. 2007, 19, 370–383. [Google Scholar] [CrossRef]
- Rieger, B.B. On understanding understanding. Perception-based processing of NL texts in SCIP systems, or meaning constitution as visualized learning. IEEE Trans. Syst. Man Cybern. C 2004, 34, 425–438. [Google Scholar] [CrossRef]
- Atlan, H. Self creation of meaning. Phys. Scr. 1987, 36, 563–576. [Google Scholar] [CrossRef]
- Von Weizsäcker, E. Erstmaligkeit und Bestätigung als Komponenten der pragmatischen Information. In Offene Systeme I; Klett-Cotta: Stuttgart, Germany, 1974; pp. 83–113. [Google Scholar]
- Atmanspacher, H.; Scheingraber, H. Pragmatic information and dynamical instabilities in a multimode continuous-wave dye laser. Can. J. Phys. 1990, 68, 728–737. [Google Scholar] [CrossRef]
- Busemeyer, J.; Bruza, P. Quantum Models of Cognition and Decision; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Beckermann, A.; Flohr, H.; Kim, J. Emergence or Reduction? De Gruyter: Berlin, Germany, 1992. [Google Scholar]
- Gillett, C. The varieties of emergence: Their purposes, obligations and importance. Grazer Philos. Stud. 2002, 65, 95–121. [Google Scholar]
- Butterfield, J. Emergence, reduction and supervenience: A varied landscape. Found. Phys. 2011, 41, 920–960. [Google Scholar] [CrossRef]
- Chibbaro, S.; Rondoni, L.; Vulpiani, A. Reductionism, Emergence, and Levels of Reality; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Primas, H. Mathematical and philosophical questions in the theory of open and macroscopic quantum systems. In Sixty-Two Years of Uncertainty; Miller, A.I., Ed.; Plenum: New York, NY, USA, 1990; pp. 233–257. [Google Scholar]
- Schroer, B. Modular localization and the holistic structure of causal quantum theory, a historical perspective. Stud. Hist. Philos. Mod. Phys. 2015, 49, 109–147. [Google Scholar] [CrossRef]
- Primas, H. Knowledge and Time; Springer: Berlin/Heidelberg, Germany, 2017; in press. [Google Scholar]
- Crutchfield, J.P.; Packard, N.H. Symbolic dynamics of noisy chaos. Physica D 1983, 7, 201–223. [Google Scholar] [CrossRef]
- Yablo, S. Mental causation. Philos. Rev. 1992, 101, 245–280. [Google Scholar] [CrossRef]
- Hoel, E.P.; Albantakis, L.; Marshall, W.; Tononi, G. Can the macro beat the micro? Integrated information across spatiotemporal scales. Neurosci. Conscious. 2016. [Google Scholar] [CrossRef]
- Amati, G.; van Rijsbergen, K. Semantic information retrieval. In Information Retrieval: Uncertainty and Logics; van Rijsbergen, C.J., Crestani, F., Lalmas, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 189–219. [Google Scholar]
- Virgilio, R.; de Guerra, F.; Velegrakis, Y. (Eds.) Semantic Search over the Web; Springer: Berlin/Heidelberg, Germany, 2012.
- Berners-Lee, T.; Hendler, J.; Lassila, O. The semantic web. Sci. Am. 2001, 284, 29–37. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Physica D 1983, 9, 189–208. [Google Scholar] [CrossRef]
- Atmanspacher, H.; Filk, T. Complexity and non-commutativity of learning operations on graphs. BioSystems 2006, 85, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Crutchfield, J.P.; Whalen, S. Structural drift: The population dynamics of sequential learning. PLoS Comput. Biol. 2012, 8, e1002510. [Google Scholar] [CrossRef] [PubMed]
- Freeman, W. Origin, structure, and role of background EEG activity. Part 3. Neural frame classification. Clin. Neurophysiol. 2005, 116, 1118–1129. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atmanspacher, H. On Macrostates in Complex Multi-Scale Systems. Entropy 2016, 18, 426. https://doi.org/10.3390/e18120426
Atmanspacher H. On Macrostates in Complex Multi-Scale Systems. Entropy. 2016; 18(12):426. https://doi.org/10.3390/e18120426
Chicago/Turabian StyleAtmanspacher, Harald. 2016. "On Macrostates in Complex Multi-Scale Systems" Entropy 18, no. 12: 426. https://doi.org/10.3390/e18120426
APA StyleAtmanspacher, H. (2016). On Macrostates in Complex Multi-Scale Systems. Entropy, 18(12), 426. https://doi.org/10.3390/e18120426