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Abstract: Simultaneously analyzing multivariate time series provides an insight into underlying
interaction mechanisms of cardiovascular system and has recently become an increasing focus of
interest. In this study, we proposed a new multivariate entropy measure, named multivariate
fuzzy measure entropy (mvFME), for the analysis of multivariate cardiovascular time series.
The performances of mvFME, and its two sub-components: the local multivariate fuzzy entropy
(mvFEL) and global multivariate fuzzy entropy (mvFEG), as well as the commonly used multivariate
sample entropy (mvSE), were tested on both simulation and cardiovascular multivariate time
series. Simulation results on multivariate coupled Gaussian signals showed that the statistical
stability of mvFME is better than mvSE, but its computation time is higher than mvSE. Then, mvSE
and mvFME were applied to the multivariate cardiovascular signal analysis of R wave peak (RR)
interval, and first (S1) and second (S2) heart sound amplitude series from three positions of heart
sound signal collections, under two different physiological states: rest state and after stair climbing
state. The results showed that, compared with rest state, for univariate time series analysis, after
stair climbing state has significantly lower mvSE and mvFME values for both RR interval and S1
amplitude series, whereas not for S2 amplitude series. For bivariate time series analysis, all mvSE and
mvFME report significantly lower values for after stair climbing. For trivariate time series analysis,
only mvFME has the discrimination ability for the two physiological states, whereas mvSE does
not. In summary, the new proposed mvFME method shows better statistical stability and better
discrimination ability for multivariate time series analysis than the traditional mvSE method.

Keywords: multivariate sample entropy; multivariate fuzzy measure entropy; heart rate variability;
heart sound; amplitude variability; cardiovascular time series

1. Introduction

Short-term, beat-to-beat cardiovascular variability reflects the inherent interactions from different
components of the cardiovascular system and dynamic interplay between ongoing perturbations to
the circulation and compensatory response of neurally mediated regulatory mechanisms [1]. Analysis
of cardiovascular variability is a prerequisite for understanding the underlying signal generating
mechanisms and detecting the cardiovascular diseases [2,3]. There is also an increasing interest in the
application of cardiovascular variability monitoring to improve clinical outcomes [4].

Standard univariate time series analysis, typically as the heart rate variability (HRV), has been
applied in a large variety of physiological measurements and clinical evaluations. Univariate time
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series analysis is only applicable if all the time series are statistically independent or uncorrelated at
the very least, which is often not the case. It is well known that the human system is a complex system,
and its behavior depends on the interactions of its components [5]. Multivariate analysis approach
permits accounting for the dynamical relationships existing between variables [6–8]. The developments
in sensor technology have also enabled routine recording of multivariate time series. Thus, there
are substantial advantages in simultaneously analyzing multivariate time series observed from the
cardiovascular system [8,9].

In recent years, entropy-based measures, such as the typical approximate entropy (ApEn) [10]
and sample entropy (SampEn) [11], have been widely used in cardiovascular time series analysis.
Entropy refers to the degree of regularity or irregularity of a time series and is estimated by counting
how many ‘template’ patterns repeat. Repeated patterns imply increased regularity in the time series
and lead to low entropy values [11–14]. SampEn is regarded as a modified version of ApEn to solve
the shortcomings, such as bias and relative inconsistency [11]. The existing SampEn method was
designed for the analysis of univariate time series, and is not able to reveal the dynamics across the
channels measured in experimental and biological systems. When dealing with the multivariate time
series, SampEn treats them as a set of individual time series by considering each variable separately.
However, this is only applicable if all the data channels are statistically independent or uncorrelated
at the very least (which is often not the case) [7,8]. The typical example is that only measuring the
z coordinate of the Lorenz system cannot accurately reconstruct the dynamics of the Lorenz system
since it does not resolve the x–y symmetry [8,15]. Meanwhile, there are substantial advantages in
simultaneously analyzing several variables observed from the same phenomenon, especially if there
is a large degree of uncertainty and coupling underlying the system dynamics or data acquisition.
Thus, as the generalized form of SampEn, multivariate sample entropy (mvSE) was developed for the
analysis of multivariate time series with the multiscale extension [7,8]. The mvSE method has received
much attention in the biomedical and mechanical fields [16–18].

Although SampEn and its multivariate version of mvSE are powerful and popular algorithms,
when applied to short time series, the results may be undefined or unreliable. This is because the vector
similarity definitions in these two methods are based on Heaviside function, i.e., binary classification,
which makes the boundary very rigid. Only the vectors within the threshold r are treated equally,
whereas the vectors outside of this threshold r are ignored. This rigid boundary may induce abrupt
changes of entropy values when the threshold r changes slightly, and it may even fail to define the
entropy if no vector-matching could be found for the very small threshold r [11,19]. To enhance the
statistical stability, fuzzy entropy (FuzzyEn) has been developed for univariate time series analysis
by highlighting the notion of entropy with fuzzy theory [19,20]. FuzzyEn employed a fuzzy function
to substitute the Heaviside function to make a gradually varied entropy value when threshold r
monotonously changes. Its generalized multivariable form, multivariate fuzzy entropy (mvFE),
has also been developed for multivariate time series analysis [18,21]. However, no matter whether it is
for FuzzyEn or mvFE, the local vector similarity is exceedingly underlined [22]. Thus, both of them
might give inaccurate results for the slow change signals since they both neglected the signal global
characteristics. In our previous work, we developed a novel fuzzy measure entropy (i.e., FuzzyMEn)
that combined both the local and global similarity, and FuzzyMEn has shown better algorithm
discrimination ability than FuzzyEn [23,24]. In this study, we generalized the FuzzyMEn method
for multivariate time series analysis by analyzing both simulation and cardiovascular multivariate
time series. We defined the new multivariate entropy measure as multivariate fuzzy measure
entropy (mvFME).

For multivariate cardiovascular time series analysis, existing studies included: the evaluation of
the differences between HRV and blood pressure variability [3], the differences between systolic and
diastolic interval variability [25], the relationship among the R wave peak (RR) interval, systolic and
diastolic interval time series variability [26], the coupling between cardiac and respiratory systems
through frequency analysis [27], the multi-site pulse oximeter data analysis [28], HRV, systolic interval
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variability and pulse transit time variability [29], the heart sound morphological variability [30], etc.
Heart sounds, also termed as phonocardiogram (PCG), carry information about the mechanical activity
of the cardiovascular system. Auscultation of the heart sounds is an essential part of the physical
examination and is usually used as one of the first steps in evaluating the cardiovascular system in
clinical practice [31,32]. Unlike the wide studies of HRV, there are few variability studies for heart sound
signals. Xiao et al. used the regularity of the first (S1) heart sound amplitude to evaluate the practical
cardiac contractility variability [33]. They also explored the variability of the S1 and second (S2) heart
sound amplitude ratio (S1/S2) [34]. However, the interpretation of the heart sound amplitude changes
within different physiological states and the simultaneous monitoring of multivariate cardiovascular
time series variability is still an open problem. Thus, in this study, we performed the multivariate
analysis for three cardiovascular time series: the RR interval time series from electrocardiogram (ECG)
and the S1 and S2 amplitude series from PCG, by using both the traditional mvSE method and newly
developed mvFME method.

The rest of the paper is organized as follows. Section 2 gives the definition of mvSE and mvFME
to allow the detailed comparison and inspection of these two multivariate entropy measures to be
observed. Section 3 discusses the experimental design where the multivariate simulation signals and
cardiovascular time series (RR interval, S1 and S2 amplitude series) from 20 healthy subjects were
constructed for the multivariate entropy analysis. In Section 4, the results for both simulation and
cardiovascular time series are provided. Finally, Section 5 draws the discussions and identifies the
future work.

2. Multivariate Entropy Measures

In this section, we first give a brief introduction to mvSE, and then describe the definition
of mvFME.

2.1. Multivariate Sample Entropy (mvSE)

Since introduced by Richman and Moorman in 2000 [11], the SampEn method has been widely
applied for the univariate short-term physiological time series analysis. Recently, Ahmed and Mandic
developed SampEn for the multivariate analysis and produced the mvSE method. The mvSE analysis
is performed through the following steps [8,9]:

(1) For a p-variate time series
{

xk,i
}N

i=1, k = 1, 2, · · · , p, where N is the number of samples in each
variate, firstly normalize each time series for k = 1, 2, · · · , p, and then form the composite delay
vector using a composite delay factor based on the multivariate embedded reconstruction:

Xm
i =

[
x1,i, x1,i+τ1 , · · · , x1,i+(m1−1)τ1

, x2,i, x2,i+τ2 , · · · , x2,i+(m2−1)τ2
, · · · , xp,i, xp,i+τp , · · · , xp,i+(mp−1)τp

]
, (1)

where M =
[
m1, m2, · · · , mp

]
is the embedding vector, τ =

[
τ1, τ2, · · · , τp

]
is the time

lag vector, and Xm
i ∈ Rm is the m dimension composite delay vector with m = ∑

p
k=1 mk,

and i = 1, 2, · · · , N − n with n = max (M)×max (τ).
(2) Define the distance dm

i,j between any two composite delay vectors Xm
i and Xm

j as the maximum
norm, that is,

dm
i,j = d[Xm

i , Xm
j ] = max

l=1,2,··· ,m
(|x (i + l − 1)− x (j + l − 1)|). (2)

(3) For a given vector Xm
i and a threshold r, count the number of instances Pi where dm

i,j ≤ r, j 6= i,

and then calculate the frequency of occurrence, Bm
i (r) = (N − n− 1)−1 Pi, and define a global

quantity Bm (r) = (N − n)−1 ∑N−n
i=1 Bm

i (r).
(4) Extend the dimensionality of the multivariate delay vector in Equation (1) from m to m + 1.

This can be performed in p different ways, as the system can evolve to any space with
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M =
[
m1, m2, · · · , mk + 1, · · · , mp

]
(k = 1, 2, · · · , p). Thus, a total of p vectors Xm+1

i ∈ Rm+1 are
obtained. The k-th vector Xm+1

i is:

Xm+1
i = [x1,i, x1,i+τ1 , · · · , x1,i+(m1−1)τ1

, x2,i, x2,i+τ2 , · · · , x2,i+(m2−1)τ2
, · · · , xk,i, xk,i+τk

,

· · · , xk,i+(mk−1)τk
, xk,i+mkτk

, · · · , xp,i, xp,i+τp , · · · , xp,i+(mp−1)τp ].
(3)

(5) For a given Xm+1
i , count the number of instances Qi, where dm+1

i,j ≤ r, j 6= i, and

then calculate the frequency of occurrence, Bm+1
i (r) = (p (N − n)− 1)−1 Qi, and define

Bm+1 (r) = (p (N − n))−1 ∑
p(N−n)
i=1 Bm+1

i (r).
(6) Finally, mvSE is defined by

mvSE (M, τ, r, N) = −ln
[

Bm+1 (r)
Bm (r)

]
. (4)

2.2. Multivariate Fuzzy Measure Entropy (mvFME)

mvFME is generalised from the FuzzyMEn method [23,24]. The calculation process of mvFME
was summarized as follows:

(1) For a p-variate time series
{

xk,i
}N

i=1, k = 1, 2, · · · , p, where N is the number of samples in each
variate, firstly normalize each time series for k = 1, 2, · · · , p, and then form the local composite
delay vector and global composite delay vector using a composite delay factor based on the
multivariate embedded reconstruction:

Xm
i =

[
x1,i, x1,i+τ1 , · · · , x1,i+(m1−1)τ1

, x2,i, x2,i+τ2 , · · · , x2,i+(m2−1)τ2
, · · · , xp,i, xp,i+τp , · · · , xp,i+(mp−1)τp

]
, (5)

=
X

m

i =
[
=
x1,i,

=
x1,i+τ1 , · · · ,

=
x1,i+(m1−1)τ1

,
=
x2,i,

=
x2,i+τ2 , · · · ,

=
x2,i+(m2−1)τ2

, · · · ,
=
x p,i,

=
x p,i+τp , · · · ,

=
x p,i+(mp−1)τp

]
, (6)

where the local composite delay vector Xm
i represents m consecutive values xk,i; however,

removing the local baseline of xk,i = xk,i − 1
mk

∑mk
t=1 xk,i+(t−1)τk

, the global composite

delay vector
=
X

m

i represents m consecutive values
=
xk,i but removing global mean value of

=
xk,i = xk,i − 1

N ∑N
t=1 xk,t, M =

[
m1, m2, · · · , mp

]
is the embedding vector, τ =

[
τ1, τ2, · · · , τp

]
is the time lag vector, m = ∑

p
k=1 mk, i = 1, 2, · · · , N − n and n = max (M)×max (τ).

(2) Define the distance dLm
i,j between any two local composite delay vectors Xm

i and Xm
j , and the

distance dGm
i,j between any two global composite delay vectors

=
X

m

i and
=
X

m

j , as the maximum
norm, that is,

dLm
i,j = d

[
Xm

i , Xm
j

]
= max

l=1,2,··· ,m
(|x (i + l − 1)− x (j + l − 1)|), (7)

dGm
i,j = d

[
=
X

m

i ,
=
X

m

j

]
= max

l=1,2,··· ,m

(∣∣∣=x (i + l − 1)− =
x (j + l − 1)

∣∣∣) , (8)

(3) Given the parameters’ local vector similarity weight nL, local tolerance threshold rL, global
vector similarity weight nG and global tolerance threshold rG, calculate the similarity degree
DLm

i,j (nL, rL) between the local composite delay vectors Xm
i and Xm

j by the fuzzy function
µL(dLm

i,j, nL, rL), as well as calculate the similarity degree DGm
i,j (nL, rL) between the global

composite delay vectors
=
X

m

i and
=
X

m

j by the fuzzy function µG(dGm
i,j, nG, rG):
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DLm
i,j (nL, rL) = µL

(
dLm

i,j, nL, rL

)
= exp

−
(

dLm
i,j

)nL

rL

 , (9)

DGm
i,j (nG, rG) = µG

(
dGm

i,j, nG, rG

)
= exp

−
(

dGm
i,j

)nG

rG

 . (10)

Define the function ∅Lm (nL, rL) and ∅Gm (nG, rG) as:

∅Lm (nL, rL) =
1

N − n ∑N−n
i=1 (

1
N − n− 1 ∑N−n

j=1,j 6=i DLm
i,j (nL, rL)), (11)

∅Gm (nG, rG) =
1

N − n ∑N−n
i=1 (

1
N − n− 1 ∑N−n

j=1,j 6=i DGm
i,j (nG, rG)). (12)

(4) Extend the dimensionality of the multivariate delay vectors in Equations (5) and (6) from m to
m + 1. This can be performed in p different ways, as the system can evolve to any space with
M =

[
m1, m2, · · · , mk + 1, · · · , mp

]
(k = 1, 2, · · · , p). Thus, a total of p vectors Xm+1

i ∈ Rm+1 and

a total of p vectors
=
X

m+1

i ∈ Rm+1 are obtained. The kth vectors Xm+1
i and

=
X

m+1

i are respectively:

Xm+1
i = [x1,i, x1,i+τ1 , · · · , x1,i+(m1−1)τ1

, x2,i, x2,i+τ2 , · · · , x2,i+(m2−1)τ2
, · · · , xk,i, xk,i+τk

,

· · · , xk,i+(mk−1)τk
, xk,i+mkτk

, · · · , xp,i, xp,i+τp , · · · , xp,i+(mp−1)τp ]
(13)

=
X

m+1

i = [
=
x1,i,

=
x1,i+τ1 , · · · ,

=
x1,i+(m1−1)τ1

,
=
x2,i,

=
x2,i+τ2 , · · · ,

=
x2,i+(m2−1)τ2

, · · · ,
=
xk,i,

=
xk,i+τk

,

· · · ,
=
xk,i+(mk−1)τk

,
=
xk,i+mkτk

, · · · ,
=
x p,i,

=
x p,i+τp , · · · ,

=
x p,i+(mp−1)τp ]

(14)

where xk,i and
=
xk,i have the same meanings as Equations (5) and (6).

(5) Similarly, define the function ∅Lm+1 (nL, rL) for the local composite delay vectors Xm+1
i and

Xm+1
j and the function ∅Gm+1 (nG, rG) for the global composite delay vectors

=
X

m+1

i and
=
X

m+1

j as:

∅Lm+1 (nL, rL) =
1

p (N − n) ∑p(N−n)
i=1 (

1
p (N − n)− 1 ∑p(N−n)

j=1,j 6=i DLm+1
i,j (nL, rL)), (15)

∅Gm+1 (nG, rG) =
1

p (N − n) ∑p(N−n)
i=1 (

1
p (N − n)− 1 ∑p(N−n)

j=1,j 6=i DGm+1
i,j (nG, rG)). (16)

(6) Then, the local multivariate fuzzy entropy (mvFEL) and global multivariate fuzzy entropy
(mvFEG) are defined by:

mvFEL (M, τ, nL, rL, N) = −ln
[
∅Lm+1 (nL, rL) /∅Lm (nL, rL)

]
, (17)

mvFEG (M, τ, nG, rG, N) = −ln
[
∅Gm+1 (nG, rG)

∅Gm (nG, rG)

]
. (18)

(7) Finally, mvFME is defined by

mvFME (M, τ, nL, rL, nG, rG, N) = mvFEL (M, τ, nL, rL, N) + mvFEG (M, τ, nG, rG, N). (19)
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In this study, we used the following parameter setting as suggested in our previous studies [22,35]:
the local similarity weight nL = 2 and global vector similarity weight nG = 2, and the local tolerance
threshold rL was set equal to the global threshold rG, i.e., rL = rG = r. Thus, Equation (19) becomes:

mvFME (M, τ, r, N) = mvFEL (M, τ, r, N) + mvFEG (M, τ, r, N) . (20)

For both mvSE and mvFME, the entropy results were only based on the four parameters:
embedding dimension vector M, time lag vector τ, tolerance threshold r and time series length
N. In addition, if we set p = 1, the multivariate entropy method becomes the univariate analysis.
Thus, mvSE is the same as the traditional SampEn method and mvFME is the same as the
traditional FuzzyMEn method.

3. Experiment Design

To test the practical applications for these two multivariate entropy measures mvSE and mvFME,
we compared their performances on both simulation and real cardiovascular signals. Since the mvFME
is the sum of two independent sub-components: mvFEL (considering only the local composite vectors)
and mvFEG (considering only the global composite vectors), we also included the performances of
these two measures: mvFEL and mvFEG.

3.1. Simulation Signals

Coupled Gaussian noises were used as the simulation multivariate time series. The coupled
Gaussian noise model described in [36] was used. Firstly, four independent Gaussian noises n1, n2, n3

and n4 were generated. Then, the Gaussian noise n1 was used as the public sector and the three other
Gaussian noises n2, n3 and n4 were mixed with the Gaussian noise n1 as private sectors into three
coupled Gaussian noises x, y and z by

x = c× n1 + (1− c)× n2

y = c× n1 + (1− c)× n3,

z = c× n1 + (1− c)× n4

(21)

where c is the coupling degree parameter. c = 0 means the three multivariate time series x, y and z are
totally independent and c = 1 means that they are the same Gaussian noise n1.

3.2. Cardiovascular Signals

To test the practical applications of the multivariate entropy measures, we compared their
performances on the multivariate cardiovascular time series: RR interval, S1 and S2 heart sound
amplitude series. Twenty healthy young male subjects (24.2 ± 1.9 years) were enrolled in this study.
All subjects gave their written informed consent to participate in the study, and confirmed that they
had not participated in any other “clinical trial” within the previous three months. The study obtained
a full approval from the Clinical Ethics Committee of the Second Hospital of Dalian Medical University
(201203267), and all clinical investigations were conducted according to the principles of expressed in
the Declaration of Helsinki. Table 1 depicts the details for the involved subjects.

Data collection was performed in a quiet room. For each subject, three PCG signals were
simultaneously recorded with the standard limb lead-I ECG using microphone sensors (MLT201,
AD instrument, Bella Vista, Australia) at three common auscultation positions: aortic area, mitral area
and tricuspid area [37,38]. The signal sample rate was 2000 Hz. ECG and PCG signals were firstly
recorded for about 5 min at rest state. Then, the subject was asked to do the activity of stair climbing
for 120 stairs in an office building from the seventh floor to the twelfth floor. The stair climbing usually
lasts about 100–120 s. After stair climbing, the subject was asked immediately to lay on his back in an
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examination bed and start the signal recording for another 5 min. The multivariate entropy values
were compared between these two physiological states, i.e., rest state and after stair climbing state.

Table 1. Basic clinical characteristics of all 20 subjects.

Variable Value

Age (year) 24.2 ± 1.9
Height (cm) 174 ± 4
Weight (kg) 64 ± 7

Heart rate (beats/min) 69 ± 9
Systolic blood pressure (mmHg) 121 ± 9
Diastolic blood pressure (mmHg) 65 ± 7

Note: data are expressed as mean ± standard deviation (SD).

Before signal recording, each subject had a rest for 10 min to permit the cardiovascular stabilization.
Heart rate (HR) and blood pressure (BP) values of each subject, including systolic blood pressure (SBP)
and diastolic blood pressure (DBP), were measured by an automatic electronic sphygmomanometer
(HEM-7200, OMRON, Osaka, Japan) at the left brachial artery three times, i.e., before the signal
recording, during the gap between the rest state and after stair climbing state measurements, and after
the signal recording. HR and BP values from the three measurements were averaged to obtain the final
results for each subject (see Table 1).

Signal processing was performed offline. ECG signal was firstly filtered using a 0.05–40 Hz
band-pass filter. The Pan and Tompkins method [39] was used to locate the R peaks, and thus the RR
interval time series were constructed. RR intervals with ectopic beats were detected and excluded
using the combination method [40]. PCG signals were firstly filtered using a 20–200 Hz band-pass
filter. Then, Springer’s hidden semi-Markov model (HSMM) segmentation method [41] was used to
segment each PCG signal to generate the time durations for S1 and S2 heart sounds. Figure 1 shows
waveform examples of the recorded ECG and PCG signals, and the corresponding R peak location,
S1 and S2 heart sounds segmentation results. S1 and S2 heart sound amplitude series were constructed
by calculating the PCG signal amplitudes in each S1 and S2 heart sound state. Figure 2 shows examples
of RR intervals, and S1 and S2 amplitude series from the ECG and aortic PCG signals, from both rest
and after stair climbing states. For each time series, only the first 200 beats were shown.
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Figure 1. Simultaneously recorded electrocardiogram (ECG) and three phonocardiogram (PCG) signals
(from top to bottom are ECG and PCGs recorded from aortic, mitral and tricuspid areas, respectively).
The detected R-wave peaks are denoted as “ ”, the S1 and S2 heart sounds were identified using
Springer’s hidden semi-Markov model (HSMM) method.



Entropy 2016, 18, 430 8 of 15

Entropy 2016, 18, 430  7 of 15 

 

Signal processing was performed offline. ECG signal was firstly filtered using a 0.05–40 Hz 
band-pass filter. The Pan and Tompkins method [39] was used to locate the R peaks, and thus the 
RR interval time series were constructed. RR intervals with ectopic beats were detected and 
excluded using the combination method [40]. PCG signals were firstly filtered using a 20–200 Hz 
band-pass filter. Then, Springer’s hidden semi-Markov model (HSMM) segmentation method [41] 
was used to segment each PCG signal to generate the time durations for S1 and S2 heart sounds. 
Figure 1 shows waveform examples of the recorded ECG and PCG signals, and the corresponding R 
peak location, S1 and S2 heart sounds segmentation results. S1 and S2 heart sound amplitude series 
were constructed by calculating the PCG signal amplitudes in each S1 and S2 heart sound state. 
Figure 2 shows examples of RR intervals, and S1 and S2 amplitude series from the ECG and aortic 
PCG signals, from both rest and after stair climbing states. For each time series, only the first 200 
beats were shown. 

 

Figure 1. Simultaneously recorded electrocardiogram (ECG) and three phonocardiogram (PCG) 
signals (from top to bottom are ECG and PCGs recorded from aortic, mitral and tricuspid areas, 
respectively). The detected R-wave peaks are denoted as “●”, the S1 and S2 heart sounds were 
identified using Springer’s hidden semi-Markov model (HSMM) method. 

 
Figure 2. Examples of R wave peak (RR) interval, S1 and S2 amplitude series from the ECG and 
aortic PCG signals. Sub-figures (A1–A3) show the three cardiovascular time series from the rest 
state; and sub-figures (B1–B3) show the corresponding time series after stair climbing. For each time 
series, only the first 200 beats were shown. 

−0.5

0

0.5

E
C

G
 (

m
V

)

−10

0

10 S1 S2

ao
rt

ic
 P

C
G

 (
a.

u.
)

−10

0

10

m
itr

al
 P

C
G

 (
a.

u.
)

5 6 7 8 9 10
−10

0

10

tr
ic

us
pi

d 
PC

G
 (

a.
u.

)

Time (s)

−4

−2

0

2

4(A1)

R
R

 in
te

rv
al

 (
a.

u.
)

−4

−2

0

2

4(A2)

S1
 a

m
pl

itu
de

 (
a.

u.
)

0 50 100 150 200
−4

−2

0

2

4(A3)

S2
 a

m
pl

itu
de

 (
a.

u.
)

Beat number

−4

−2

0

2

4(B1)

R
R

 in
te

rv
al

 (
a.

u.
)

−4

−2

0

2

4(B2)

S1
 a

m
pl

itu
de

 (
a.

u.
)

0 50 100 150 200
−4

−2

0

2

4(B3)

S2
 a

m
pl

itu
de

 (
a.

u.
)

Beat number

Figure 2. Examples of R wave peak (RR) interval, S1 and S2 amplitude series from the ECG and
aortic PCG signals. Sub-figures (A1–A3) show the three cardiovascular time series from the rest state;
and sub-figures (B1–B3) show the corresponding time series after stair climbing. For each time series,
only the first 200 beats were shown.

3.3. Statistical Analysis

Mean ± standard deviation (SD) of the four multivariate entropy measures were obtained across
all 20 subjects. The results of mvSE, mvFEL, mvFEG and mvFME were firstly tested as normal
distribution by the Kolmogorov–Smirnov test. If the entropy results met the normal distribution,
the paired t-test was used to test the statistical difference between the rest and after climb states.
If not, non-parametric test was used. All statistical analyses were performed using the SPSS software
(Version 20, IBM, New York, NY, USA). Statistical significance was set a priori at p < 0.05.

4. Results

4.1. Results on Simulation Signals

First, we tested the change of multivariate entropy measures mvSE, mvFEL, mvFEG and mvFME
values with the increase of coupling degree parameter c by using different numbers of coupled
Gaussian noises, i.e., univariate analysis (p = 1) using time series x only, bivariate analysis (p = 2)
using time series x and y, and trivariate analysis (p = 3) using time series x, y and z. For p from
1 to 3, the settings for M are M = [2], M = [2, 2] and M = [2, 2, 2], for τ are τ = [1], τ = [1, 1]
and τ = [1, 1, 1] , respectively. The setting for r is r = 0.15 for all situations. Simulation time series
length is set as N = 300. To eliminate the influence of random factor, for each coupling degree c under
each multivariate analysis, 100 realizations were generated and the mean values were used as the
final results.

Figure 3 shows the mean ± SD results of mvSE, mvFEL, mvFEG and mvFME from 100 repeats
when coupling degree c increases. For univariate series analysis, the coupling degree parameter c does
not influence the entropy results of the time series x since x is the superposition of two independent
Gaussian noises and is still a pure Gaussian noise. Thus, the mvSE, mvFEL, mvFEG and mvFME
results do not change with the increase of coupling degree c. In this case, mvSE, mvFEL, mvFEG and
mvFME all measure the inherent complexity of the Gaussian noise. It is clear that the SD values in
mvFEL, mvFEG and mvFME are much lower than those in mvSE, indicating the statistical stability
of the fuzzy function-based entropy method. For bivariate and trivariate analyses, all mvSE, mvFEL,
mvFEG and mvFME results show increase trends with the increase of c. However, the increases in
mvFEL, mvFEG and mvFME are strictly monotonous and the trend curves are smooth, whereas mvSE
shows ups and downs with the local increase of c. Again, the SD values in mvFEL, mvFEG and mvFME
are much lower than those in mvSE, confirming the statistical stability of the new proposed mvFME
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method. It is also worth noting that for analyzing the bivariate and trivariate Gaussian time series,
with the increase of coupling degree c, the monotonous increase trend in mvFME is much more obvious
than those in mvFEL and mvFEG, confirming the benefit of combining both the local (in mvFEL) and
global (in mvFEG) vector similarity to make the new mvFME method and again verifying the better
algorithm discrimination ability of mvFME than the single versions of mvFEL and mvFEG.

Table 2 shows the computation time for the four multivariate entropy measures (mvSE, mvFEL,
mvFEG and mvFME). The results from the 100 realizations of Gaussian time series for all varied
coupling degree c situations. mvSE reports the smallest computation time for each of the three
multivariate types (univariate, bivariate and trivariate). As expected, mvFEL and mvFEG have similar
computation times, and the computation time of mvFME method is the sum of mvFEL and mvFEG
methods. The calculation was performed using MATLAB software (Version R2009a) on Windows XP
platform (CPU: Intel Core i5, 2.66 GHz).

Table 2. Comparison of the computation time for the four multivariate entropy measures (multivariate
Sample Entropy (mvSE), local multivariate fuzzy entropy (mvFEL), global multivariate fuzzy entropy
(mvFEG) and multivariate fuzzy measure entropy (mvFME)) on simulation Gaussian time series.

Gaussian Time Series
Time (s)

mvSE mvFEL mvFEG mvFME

Univariate analysis 6.58 16.67 16.61 33.28
Bivariate analysis 19.42 51.20 51.03 102.23
Trivariate analysis 44.01 108.84 108.47 217.31
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Figure 3. Dependence of the multivariate entropy measures (multivariate Sample Entropy (mvSE),
local multivariate fuzzy entropy (mvFEL), global multivariate fuzzy entropy (mvFEG) and multivariate
fuzzy measure entropy (mvFME)) on the coupling degree c when applied to the coupled Gaussian
noise signals. (A) univariate analysis using time series x only; (B) bivariate analysis using time series x
and y; and (C) trivariate analysis using time series x, y and z.

4.2. Results on Cardiovascular Signals

We set p = 1 to measure the univariate results of mvSE, mvFEL, mvFEG and mvFME for the RR
interval, S1 amplitude and S2 amplitude series, respectively, set p = 2 to measure the bivariate mvSE,
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mvFEL, mvFEG and mvFME for any two combinations of these three time series, and set p = 3 to
measure the trivariate mvSE, mvFEL, mvFEG and mvFME for three series. The settings of M, τ and r
are the same as Section 3.1. Time series length is the actual beat number from the 5-min measurement.

All mvSE, mvFEL, mvFEG and mvFME results, from both rest and after stair climbing states,
had normal distribution from the Kolmogorov–Smirnov test. Figure 4 gives their statistical plots
by analyzing the univariate, bivariate and trivariate cardiovascular time series, respectively. Table 3
shows the numerical values for mvSE and mvFME methods. For cardiovascular time series from
ECG and aortic PCG signals, paired t-test results showed that all mvSE and mvFME values in the
after stair climbing state were significantly lower than those in the rest state (all p < 0.01, except mvSE
of univariate S2 amplitude series with p = 0.1 and mvSE of trivariate RR interval and S1 amplitude
and S2 amplitude series with p = 0.8). The results from ECG and mitral PCG signals, and from ECG
and tricuspid PCG signals, show similar results compared with the results from ECG and aortic PCG
signals. The difference is only that the decreases in mvFME in after stair climbing state were not
statistically significant for univariate S2 amplitude series (p = 0.1 and p = 0.3, respectively). It is worth
noting that the differences between the rest and after stair climbing states in trivariate RR interval
and S1 amplitude and S2 amplitude series from each of the three different position PCG signals were
identified as statistically significant by mvFME, whereas not by mvSE. The mean mvSE and mvFME
values decreased from using univariate to multivariate time series for both rest and after stair climbing
states. In addition, the mvFEL and mvFEG reported similar trends with the mvFME method.
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Figure 4. Statistical results of mvSE, mvFEL, mvFEG and mvFME between the rest and after stair
climbing states by analyzing the multivariate cardiovascular time series, i.e., univariate analysis for RR
interval, S1 and S2 amplitude series, respectively, bivariate analysis for each two of the three time series
and trivariate analysis for the three time series. (A) PCG signal from aortic area; (B) PCG signal from
mitral area; and (C) PCG signal from the tricuspid area. Rest: rest state; Climb: after stair climbing
state; RR: RR interval time series; S1: S1 heart sound amplitude series; S2: S2 heart sound amplitude
series; *: statistical significance p < 0.05; **: statistical significance p < 0.01.
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Table 3. Statistical results of mvSE and mvFME between the rest and after stair climbing states by
analyzing the univariate, bivariate and trivariate cardiovascular time series from electrocardiogram
(ECG) and three phonocardiogram (PCG) signals, respectively.

Signals Time Series
mvSE mvFME

Rest Climb p-Value Rest Climb p-Value

ECG + aortic PCG

RR 2.15 ± 0.38 1.11 ± 0.30 6 × 10−9 2.17 ± 0.34 0.93 ± 0.37 3 × 10−10

S1 2.26 ± 0.26 1.53 ± 0.37 6 × 10−7 2.60 ± 0.18 1.65 ± 0.50 3 × 10−7

S2 2.33 ± 0.32 2.16 ± 0.29 0.1 2.59 ± 0.23 2.32 ± 0.31 3 × 10−3

RR & S1 1.52 ± 0.20 1.13 ± 0.13 2 × 10−6 1.81 ± 0.13 1.16 ± 0.19 9 × 10−11

RR & S2 1.46 ± 0.19 1.22 ± 0.19 9 × 10−4 1.78 ± 0.19 1.32 ± 0.11 1 × 10−8

S1 & S2 1.60 ± 0.25 1.16 ± 0.22 6 × 10−6 2.00 ± 0.21 1.38 ± 0.30 2 × 10−9

RR & S1 & S2 1.04 ± 0.42 1.06 ± 0.09 0.8 1.50 ± 0.21 1.09 ± 0.16 1 × 10−8

ECG + mitral PCG

RR 2.15 ± 0.38 1.11 ± 0.30 6 × 10−9 2.17 ± 0.34 0.93 ± 0.37 3 × 10−10

S1 2.16 ± 0.42 1.66 ± 0.62 5 × 10−3 2.43 ± 0.25 1.81 ± 0.59 2 × 10−4

S2 2.27 ± 0.38 2.01 ± 0.57 0.1 2.50 ± 0.34 2.27 ± 0.48 0.1
RR & S1 1.52 ± 0.14 1.14 ± 0.16 2 × 10−8 1.80 ± 0.20 1.18 ± 0.20 3 × 10−11

RR & S2 1.44 ± 0.25 1.18 ± 0.15 5 × 10−4 1.76 ± 0.23 1.32 ± 0.14 3 × 10−6

S1 & S2 1.52 ± 0.26 1.20 ± 0.43 9 × 10−3 1.96 ± 0.27 1.46 ± 0.44 3 × 10−4

RR & S1 & S2 0.98 ± 0.27 1.06 ± 0.17 0.3 1.50 ± 0.25 1.12 ± 0.19 2 × 10−5

ECG + tricuspid PCG

RR 2.15 ± 0.38 1.11 ± 0.30 6 × 10−9 2.17 ± 0.34 0.93 ± 0.37 3 × 10−10

S1 2.19 ± 0.37 1.75 ± 0.48 7 × 10−3 2.47 ± 0.37 1.92 ± 0.49 2 × 10−3

S2 2.25 ± 0.29 2.05 ± 0.42 0.1 2.47 ± 0.32 2.37 ± 0.39 0.3
RR & S1 1.47 ± 0.23 1.17 ± 0.16 2 × 10−6 1.81 ± 0.22 1.22 ± 0.16 2 × 10−9

RR & S2 1.47 ± 0.18 1.16 ± 0.13 1 × 10−6 1.72 ± 0.21 1.33 ± 0.12 3 × 10−8

S1 & S2 1.54 ± 0.23 1.27 ± 0.34 9.9 × 10−3 1.93 ± 0.31 1.58 ± 0.33 2 × 10−3

RR & S1 & S2 1.09 ± 0.34 1.10 ± 0.14 0.97 1.47 ± 0.24 1.18 ± 0.15 1 × 10−4

Note: data are expressed as mean ± standard deviation (SD). Rest: rest state; Climb: after stair climbing state;
RR: RR interval time series; S1: S1 heart sound amplitude series; S2: S2 heart sound amplitude series.

5. Discussions

This study proposed a new multivariate entropy measure, named multivariate fuzzy measure
entropy (mvFME), for the analysis of cardiovascular multivariate time series. As an application,
the new proposed mvFME, as well as mvSE, has been applied for the multivariate cardiovascular
time series to detect their discrimination ability between two physiological states. Short-term,
beat-to-beat cardiovascular variability reflects the dynamic interplay between ongoing perturbations
to the circulation and the compensatory response of neurally mediated regulatory mechanisms.
While univariate time series analysis may be employed to quantify the variability itself, the bivariate
and trivariate time series analysis permits the dynamic characterization of the cardiovascular regulatory
mechanisms. Compared with univariate time series, bivariate and trivariate time series analysis may
be even more illuminating, as it can provide a quantitative characterization of the cardiovascular
regulatory mechanisms responsible for coupling the beat-to-beat variability between signals rather
than merely the variability that is elicited [22].

For the two multivariate entropy measures mvSE and mvFME, they are both based on the phase
space reconstruction theory and are defined as the negative natural logarithm of the conditional
probability that p-variate time series of length N, having similar patterns for m points composite
delay vector Xm

i within a boundary r, will also repeat for m + 1 points composite delay vector
Xm+1

i . The smaller values of mvSE and mvFME in univariate time series correspond to more regular
characteristics in the time series structure, while larger values indicate more complex characteristics
in their time series structure. As the examples show in Figure 2, the RR interval time series shows
an obvious upward tendency after the stair climbing. Thus, the complexity characteristic in the time
series reduces, and the time series structure becomes more regular. The same phenomenon exists
in the S1 amplitude series, which shows an obvious downward tendency after the stair climbing.
Thus, their univariate mvSE and mvFME values significantly decrease (see Table 3). However, the S2
amplitude series is not largely influenced by the stair climbing, and its univariate mvSE and mvFME
values do not decrease significantly for all three PCG signal observations, except the mvFME result
from ECG and aortic PCG signals. The change trend in RR interval time series is expected since the
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heart rate of the subject should decrease during the measurement process after the stair climbing,
inducing the obvious upward tendency in the RR interval time series. The decrease of the S1 heart
sound amplitude in the S1 amplitude series is also expected during the measurement process after
the stair climbing. With the cardiovascular stabilization, the cardiac contractility decrease. Precious
studies have shown that the relationship between the S1 amplitude and the cardiac contractility is
close [42,43]. The decrease of the cardiac contractility after the stair climbing induces the decrease of
the S1 heart sound amplitude since the previous study showed that S1 heart sound amplitude change
links to the change of cardiac contractility and cardiac reserve [33,34,44]. Unlike S1 amplitude, the S2
amplitude is regarded to be linked with the peripheral vascular resistance and arterial blood pressure
rather than the cardiac contractility and cardiac reserve [34,45]. Thus, there is no obvious amplitude
change in the S2 amplitude series after the stair climbing measurement.

For bivariate and trivariate time series, composite delay vector Xm
i consists of two or three signal

episodes from different time series. For the simulation Gaussian signals, as shown in Equation (21),
if c = 1, the composite delay vector Xm

i will consist of the same univariate time series as:

Xm
i =

[
x1,i, x1,i+τ1 , · · · , x1,i+(m1−1)τ1

, x1,i, x1,i+τ2 , · · · , x1,i+(m2−1)τ2
, · · · , x1,i, x1,i+τp , · · · , x1,i+(mp−1)τp

]
(22)

In this situation, the counted number of composite delay vector Xm
j that meet dm

i,j ≤ r increases.
Thus, the values of the defined Bm

i (r) and Bm (r) increase. When the dimensionality of the multivariate
delay vector is from m to m + 1, Bm+1 (r) also increases. However, compared with the situation
at dimensionality m, the increase at dimensionality m + 1 was divided by the much larger factor
of p (N − n) − 1, thus the ration of Bm+1 (r) /Bm (r) decreases. Therefore, the mvSE defined in
Equation (4) increases. The similar fact also exists in the calculation process of mvFME method
in spite of the fact that the true distance in the composite delay vectors, rather than the similarity
vector number, was used. Thus, the larger values in mvSE and mvFME indicate the more similar or
coupled components in the bivariate and trivariate time series since both mvSE and mvFME increase
with the increase of coupling degree parameter c as shown in Figure 3 for the simulation Gaussian
signals. For the practical cardiovascular time series analysis, whether using mvSE or using mvFME,
after stair climbing state output has significantly lower multivariate entropy values than the rest
state (see Table 3), suggesting that the coupled relationships between each two of the RR intervals,
S1 amplitude and S2 amplitude series, and also among these three time series, declines after the stair
climbing. The reason is because the obvious upward or downward tendency exists in the RR interval
or S1 amplitude series after the stair climbing, resulting in weak coupled relationships for the bivariate
and trivariate time series. From all of the three PCG signals results, we can find that the most statistical
differences between the rest and after stair climbing states are reported by the bivariate time series of
RR interval and S1 amplitude, further confirming that the decline of the coupled relationship in the
multivariate time series induces the decrease of multivariate entropy values.

Unlike mvSE, where the decision rule for composite delay vector similarity is based on Heaviside
function, mvFME uses fuzzy function (herein, the exponential function) to redefine the decision rule
for composite delay vector similarity. The difference between Heaviside and fuzzy functions is shown
in Equations (23) and (24). The rigid membership degree determination in Heaviside function could
induce the poor statistical stability in mvSE, which means that the entropy value may have a sudden
change when the threshold value r changes slightly. However, fuzzy function exhibits the gentle
boundary effect. This phenomenon has been reported in recent research studies [23,24,46–49]. In this
study, as shown in Figure 3, the smaller SD values of the new proposed mvFME method for the
100 Gaussian signal repeats confirm its better statistical stability than the mvSE method. In addition,
mvSE could not distinguish the two physiological states (rest and after stair climbing) for the trivariate
analysis of RR interval and S1 amplitude and S2 amplitude, whereas the new proposed mvFME method
can, again showing the improvement of mvFME and providing a potential solution to understand the
multivariate cardiovascular time series between different physiological states:
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For Heaviside function : Similarity(dm
i,j, r) =

{
1, i f dm

i,j ≤ r
0, i f dm

i,j > r
, (23)

For fuzzy function : Similarity(dm
i,j, r) = exp(−

(dm
i,j)

nx

r
), (24)

where dm
i,j means the distance of two composite delay vectors Xm

i and Xm
j , with r as the threshold value

and nx is the vector similarity weight.
In summary, this study demonstrated that compared with mvSE, mvFME has better statistical

stability and better discrimination ability for different physiological states, from the analysis of both
multivariate simulation and cardiovascular time series. In future experiments, we will include more
challenging examples for discriminating the different physiological/pathological states, rather than
only the discrimination between rest and stair climbing states in the current study. Moreover, we
expect that the newly proposed mvFME will be useful in the practical clinical applications for not
only multivariate cardiovascular signals but also other multivariate or multi-channel physiological
signals analysis.
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