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Abstract: The paper discusses mathematical tools to evaluate novel noise spectroscopy based analysis
and describes, via physical similarity, the mathematical models expressing the quantitative character
of the modeled task. Using the Stefan–Boltzmann law, the authors indicate finding the spectral density
of the radiated power of a hemisphere, and, for the selected frequency interval and temperature,
they compare the simplified models with the expression of noise spectral density according to the
Johnson–Nyquist formula or Nyquist’s expression of the function of spectral density based on a
derivation of Planck’s law. The related measurements and evaluations, together with analyses of the
noise spectroscopy of periodic resonant structures, are also outlined in the given context.
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1. Introduction

When broadband signals [1] are used as an instrument to analyze periodic systems [2,3],
in applications such as noise spectroscopy or with micro-and nano-elements, it is difficult to evaluate
the quantitative values describing the electromagnetic field [1]. This condition is caused by the
broadband signal and its interaction with the measured element. Several related papers [4–9] introduce
and discuss various applications of noise spectroscopy, utilizing tests of periodic materials and
metamaterials. The research performed to date has nevertheless shown that, for evaluating and
comparing the quantitative values monitored during the assessment of properties of periodic structures
via noise spectroscopy, the approach based on the description of the frequency spectrum is considerably
ineffective and unclear. In this context, an effective solution seems to consist of using an analogy
of the characterization known from the propagation of white light; this procedure was previously
discussed by, for example, the authors of [4]. Similar methods can be traced within the evaluation of
broadband radiation sources within astronomy and telemetry, but these approaches to the problem
share a lack of compactness as related to the given portion of the electromagnetic field of broadband
signals. The present paper is also intended to outline, in a simple manner, the general perspectives of
employing mathematical tools to evaluate the quantitative values of broadband tasks, all based on the
analogies and similarities from the domain of white light.

The actual application of noise and noise spectroscopy constitutes an interesting instrument
to complete non-destructive detection systems and devices in various branches of industry;
advantageously, the technique can be used for the diagnostics of objects made of inhomogeneous,
anisotropic materials, such as rubber or synthetic polymers (plastic moldings, automobile tires).
By extension, powdery substances, including sand or cereals, are also examinable.

Furthermore (and as already proposed above), noise, its evaluation, and relevant spectroscopy
are pursued within astrophysics and astronomy [1,2], whereas the detection and evaluation of signals
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find use in the broad province of nuclear machinery and facilities [2]. Noise is regularly evaluated
in electronics [6], especially as regards the high frequency bands between GHz and THz. In this
sense, from a broader perspective, an interesting attempt to challenge traditional detection concepts
was proposed by Yang et al., whose algorithms and theorems outlined within the above-referenced
paper [7] may embody a viable solution to some of the drawbacks that affect current procedures
within signal detection and noise processing. Certain fields and disciplines, then, utilize substantially
simplified theoretical tools [6] or analyses based on decomposing the resulting signal into elements
of infinite or wide series [7]; similarly, stochastic instruments are also employed, complementing
the two previously mentioned approaches that enable the description of large-scale systems as a
nondeterministic model of research [8]. In such solutions, it is usually suitable to consider the origin
and source of the ultra-wideband (UWB) signal. The actual processing is then performed with
powerful tools of filtering as a means of signal modification to facilitate the retrieval of a minor
portion of parameters of the large-scale system being examined or described. In this connection, the
technique designed by Li et al. [9], who exploit hybrid filtering, appears to be a promising approach
that eliminates spurious effects in friction signals. The discussion presented herein is aimed to
contribute, at least partially and complementarily, to the current understanding of UWB signals
and spectroscopic tools; the authors intend to demonstrate and summarize the essential physical
structures for UWB systems with quantitative description (quantities across the frequency spectrum),
thus exposing the properties of the entire signal spectrum propagation in the nonlinear system of the
investigated task.

2. Mathematical Models: Analogies and Similarities

The quantitative analysis of the evaluation of signals can be performed analogously to the analysis
of white light propagation, using approaches known from optical geometry. Here, initial conditions
apply for the solution of light-related tasks; these preconditional aspects include, for example, the
dimensions of the investigated task, l >> λs, where λs [m] is the wavelength of the light from a light
source. This procedure has been utilized by a number of researchers, such as the authors of [10,11] in
solving models and comparing light systems.

Generally, light source tasks can be classified into two basic types. In the first one, the assumed
model geometry is such that the smallest dimension of the basic geometry (the structural element)
is greater than l = 100. λs (λs denotes the wavelength of light from λs ∈ <λmin;λmax>). We assume
the basic reflection [-] and attenuation [-], without polarization of the wave. Two other variants are
acceptable: Vλ 6= f (λ) and Vλ = f (λ). With Vλ = f (λ), geometries and effects are considered in which
there occur the polarization of light, diffraction in parts (l ≈ λs), and light interferences. The former of
the above cases, Vλ 6= f (λ), can be solved via the duality between a light-related task and a thermal
task with radiation.

Exploiting the similarities and analogies of formal notation, it is possible to set up mathematical
models based on previously used ones [12]. Various modeling techniques exhibit different forms
of analogy and similarity. More concretely, the latter concept is interpretable as mutual assignment
between diverse systems in view of their structures, properties, and behavior. Physical similarity
captures the affinity between systems and processes sharing the same physical principles, and
thus it includes the likeness between parameters and geometries; mathematical similarity between
systems and processes then occurs if identical mathematical descriptions are found. Two systems
physically dissimilar but mathematically similar are considered analogous; in this context, for example,
Table 1 indicates the quantities analyzed in a thermal task and those of a light-related task with
geometrical optics.
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Table 1. The mutual relationship between thermal and light quantities.

Heat (λ ∈ <780;10,000> nm) White Light (λ ∈ <440;780> nm)

Monochromatic (spectral) radiation [W·m−1]
Hλ = dWλ

dλ

Monochromatic (spectral) luminous flux [W·m−1]
Φλ = dΦe

dλ

Radiant flux [W]
Φe =

∫
S HedS, He =

∫ ∞
0 Hλdλ

Radiant flux [W]

Φe =
∞∫
0

Φλdλ

Radiant intensity [W·sr−1]
I= dΦe

dω

Luminous intensity [W·sr−1]
Ie =

dΦe
dω

Radiance [W·m−2·sr−1]
Le =

dIe
dS cosϑ

Luminance [W·m−2·sr−1]
Le =

dIϑ
dS cosϑ

Radiant exposure [W·m−2]
He =

dΦe
dS

Luminous exitance [W·m−2]
H = dΦe

dS
Irradiance [K·s·m−1]

Ee =
dΦe
dA

Illuminance [K·s·m−1]
Es =

dΦe
dA

Thermal flux [W·s·m−2]
φT = kT grad T

Luminous flux [W·s·m−2]
φ = Km

∫ ∞
0 Vλφλdλ

To find an analogy, mathematically similar models can be written using the equations below; for a
temperature field, we then have

− div(kTgrad T) = q, on ΩT , (1)

where kT [W·m−1·K−1] is the thermal conductivity, q [W·s·m−3] denotes the heat source (in the
temperature field), ΩT represents the temperature model region, and T [K] is the temperature. For light,
we have

− div(ksgrad ϕs) = qs, on Ωs, (2)

where ks [W·m−1·K−1] is the conductivity of light, qs [W·s·m−3] denotes the source of light (in the
geometrical concept of light propagation), Ωs is the light model region, and ϕs represents the scalar
function [K]. We also have

ks grad ϕs = φ, grad ϕs = Es, (3)

where φ [W·s·m−2] is the luminous flux and Es [K·s·m−1] denotes the illuminance. In general terms,
within Table 1 above, Hλ [W·m−1] is monochromatic radiation, Wλ [W·m−1] denotes radiation,
λ [m] expresses wavelength, Φe [W] is radiant flux, Φλ [W·m−1] is monochromatic luminous flux,
He [W·m−2] is radiant exposure, I [W·sr−1] denotes luminous intensity, ω [sr]represents a spatial angle,
Ie [W·sr−1] is radiant intensity, Le [W·m−2·sr−1] denotes radiance, Lϑ [W·m−2·sr−1] is luminance,
S [m2] is a plane, A [m2] is a plane, Ee [K·s·m−1] represents irradiance, φT [W·s·m−2] denotes thermal
flux, φ [W·s·m−2] is luminous flux, Km [-] are the conversion constants of SI units and [lm] luminous
flux, and Vλ [-] denotes the function of the relative spectral sensitivity of a standard sensor.

3. Broadband Signal Quantities

To evaluate broadband signals, we can utilize the expansion of periodic or non-periodic series,
from which it is possible to compose the desired form of the instantaneous value of relevant signals.
This well-known technique is suitable for signals exhibiting finite width of the elementary signal
spectrum. Noise, however, embodies a special case of signals with a very broad (infinite) spectral
width, and, for the quantitative description of the noise signal task, the discussed approach is too
extensive and inconvenient for the application procedure.

In a long-established technique used within astronomy [13], the quantitative evaluation of a task
is expressed using the temperature T [K] of the evaluated system, according to the Stefan–Boltzmann
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law [8]; such an evaluation constitutes a direct expression of the radiated power density Πb [W] of a
black body in relation to the temperature T [K]. We have

Pb = k T4, (4)

where k [J·K−1] is the Stefan–Boltzmann constant. Then, for the general surface of a real body, the
radiated power Pr [W] is

Pr = k S eT4, (5)

where ε [-] is the surface emissivity, which mostly depends on the wavelength of the electromagnetic
wave and is represented by e(λ), and S [m2] denotes the surface of the radiation emitting area.
To evaluate tasks with the propagation of an electromagnetic wave (as a signal), and using the
relationship between the modeled task and the wavelength x/λ in the interval x/λ ∈ 〈107;1014〉,
the radiant intensity I depending on the temperature T (from Planck’s law, [13,14]) is expressed for a
small body and radiation from a half sphere. We have

I( f , T) =
2hω3

c2
1

e
hω
kT − 1

, (6)

where ω [rad·s−1] is the angular frequency of an electromagnetic wave, f [Hz] is the frequency, h [W·s2]
is the Planck constant, and c [m·s−1] denotes the velocity of (white) light. The radiated power can then
be written in the form for one half of a spherical object having an angle Θ:

Pr( f , T) =
∫

Θ

∫ ∞

0
S

2hω3

c2
1

e
hω
kT − 1

dωdΘ, (7)

where Θ [rad] is a spatial angle. By progressively rearranging the formula, we obtain the radiated
power for a hemisphere as

Pr( f , T) =
2πh
c2 S

∫ ∞

0

ω3

e
hω
kT − 1

dω, (8)

and, following further manipulation, the power spectral density of a hemisphere can be expressed in
the form:

Pr( f , T)
∆ f

∣∣∣∣
∆ f→∞

=
(ω

c

)2
(2π)2ωh S

1

e
hω
kT − 1

. (9)

To evaluate the effect of the temperature T and the frequency f on the radiated power, we have
to consider the formula for expressing the distribution of the frequency spectrum from the above
Equation (5); we then have

Ψr( f , T) =
ω3

e
ωh
kT − 1

. (10)

This function assumes the form for Ψr( f , T) shown in Figure 1. Specifying the formula for
radiated power from Equation (8) will yield the expression

Pr( f , T) = 2πh
c2 S

6
∞
∑

i=1

ei ωh
kT

( h
kT )

4
i4
− ω4

4 + 3ω2
∞
∑

i=1

ei ωh
kT

( h
kT )

2
i2
− 6ω

∞
∑

i=1

ei ωh
kT

( h
kT )

3
i3
+ ω3

ln
(

1−e
ωh
kT

)
h

kT

. (11)

Formula (11) for radiated power Pr can be graphically represented as the behavior for independent
variables f and T, and this is shown in Figures 2–5.
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f ~0.1 MHz–1000 THz and temperatures between 10 and 1000 K, according to relation (9); (b) in
the frequency range of f ~100 MHz–10 GHz and at temperatures of T = 100–1000 K, from Planck’s law
of a black body, relation (9).
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The relevant behavior is shown in Figure 7, exhibiting differences related to the frequency
f. In analyses and evaluations with a limited frequency range, or one up to the order of GHz,
the expression of the noise spectral density according to the Johnson–Nyquist formula constitutes,
within the selected analyses, a tolerable deviation from the expression of an emitting black hemisphere.
For higher frequencies, a more complex definition is used [14]:

Pr( f , T)
∆ f

∣∣∣∣
∆ f→∞

∼
hω
kT

e
hω
kT − 1

. (13)
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Figure 7. The behavior of power spectral density Pr/∆f [Ws] in the frequency range of
f ~100 MHz–10 GHz and at temperatures of T = 10–100 K, related to Johnson–Nyquist noise,
relation (12).

However, if the relationship between the power spectral density Pr/∆f and the frequency f has
to be captured as either the broadband task or individual analyses, then, given that the frequency
range f extends over several decades or reaches above 3 GHz, we can observe a difference between
the simplified Expressions (12) and (13) and the one derived from the radiation of hemisphere (9).
By extension, when comparing the spectral power densities represented in Figures 6–8, we can also
notice marked differences in the behavior of the functions. According to the relevant simplified
criterion (12), power spectral density does not depend on the signal frequency f, but, as further
outlined in Formula (9), the spectral density for half a sphere depends on the frequency (in a nonlinear
manner). Interestingly, a comparison between the above Equation (9) for a hemisphere and the
function derived by Nyquist will reveal a difference in the power of the frequency that determines the
power spectral density of the signal, or noise; this finding subsequently enables us to explicate certain
effects related to UWB and noise spectral tasks or, by extension, their analyses, estimates, predictions,
real measurements, and experimental results.

From the perspective of the applied noise spectroscopy [5], it is then possible to conclude that
the method is heavily nonlinear for higher frequency ranges (bandwidths) of noise, namely, those
above 10 GHz. In the measuring method based on noise spectroscopy, the influence of the discussed
dependence on the frequency f consists of the application of a noise spectrometer above tens of GHz up
to units of THz, according to the evaluation of power spectral density outlined in (9), being nonlinear
and thus highly frequency dependent. This precondition, therefore, has to be respected in any use of
mathematical models consistent with the basic factors comprised in Table 1.
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applications in, for example, noise spectroscopy laboratories [5]. The research into the usability of 
noise spectroscopy and methods for signal accumulation has pointed to certain properties of noise 
that can be analyzed quantitatively via the similarity of the white light of a broadband signal 
extending over at least several decades; such properties are describable according to the physical 
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Figure 8. The behavior of power spectral density Pr/∆f [Ws]: (a) the frequency range of
f ~0.1 MHz–1000 THz and temperatures between 10 and 1000 K, according to the Nyquist–Planck
Formula (13); (b) related to the Nyquist–Planck Formula (13); the frequency range of f ~100 MHz–10 GHz
and temperatures of T = 10–100 K.

The above-presented views on the measurement accuracy may effectively explain certain
deviations and error rates observed in the testing of metamaterials and periodic structures [5];
such deviations become evident through comparison with the results obtained from a swept spectrum
analyzer for a spectral width larger than one decade.

Due to the error rate occurring at higher frequencies f within the region of tens of GHz if more
than two decades are measured, it is not possible to evaluate the Johnson–Nyquist noise simply with
the above Equation (12) or Equation (13); instead of these, we apply the above Formula (9) for a half
sphere, derived from the Stefan–Boltzmann law, and observe the minimum radiated power above
the limit of ambient noise. Where, however, the noise signal bandwidth remains less than a decade,
the deviation between the two discussed approaches is not markedly conspicuous.

4. Experimental Comparison of Signal Properties for Noise Spectral Analyses

The theoretical conclusions following from the above-presented text may find various practical
applications in, for example, noise spectroscopy laboratories [5]. The research into the usability of
noise spectroscopy and methods for signal accumulation has pointed to certain properties of noise that
can be analyzed quantitatively via the similarity of the white light of a broadband signal extending
over at least several decades; such properties are describable according to the physical similarity from
Table 1 and, in effect, reflect the differences within the relationship between the power spectral density
of a hemisphere (9), spectral density of Johnson–Nyquist noise (12), and refined spectral density of
Johnson–Nyquist noise (13).

The research presented herein comprised the testing of material periodic structures exhibiting
definable resonance characteristics; these structures were numerically analyzed [16,17] and their
characteristics were experimentally measured with both a series (sequential) spectrum analyzer and
noise spectroscopy. Such measurements then enabled us to compare not only the positive and negative
features of the measuring methods but also the parameters required from the noise spectroscopy
proper. In this context, we can then point to the samples from Figure 9 below.



Entropy 2016, 18, 443 9 of 16

Entropy 2016, 18, 443 9 of 16 

 

characteristics were experimentally measured with both a series (sequential) spectrum analyzer and 
noise spectroscopy. Such measurements then enabled us to compare not only the positive and 
negative features of the measuring methods but also the parameters required from the noise 
spectroscopy proper. In this context, we can then point to the samples from Figure 9 below. 

  
(a) (b) (c)

Figure 9. The tested samples of periodic structures: the expected resonant frequencies of the first 
mode: (a) resonator f11 = 58 MHz; (b) resonator f12 = 83 MHz; (c) resonator f13 = 200 MHz. 
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several steps can be performed. First of all, a signal having a known frequency ftest is conducted in the 
noise spectrometer area without the sample, and the spectrometer is employed to evaluate the 
variation of the signal with respect to the background. Thus, for example, the power of the noise 
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order to secure such conditions for the given noise spectral analysis that will facilitate the cumulation 
of the required frequency characteristics of the tested samples. 

In the testing of the samples from Figure 9, with setting for the states indicated in Figure 10, the 
results of the noise analysis of the periodic structures can be interpreted within Figure 11. 

The tests and partial experiments indicated the necessity to use a generator–amplifier–antenna 
chain exhibiting a gain higher than 10 dBm; such a value embodies the precondition for the method 
to yield processable results markedly overriding the background noise. Within the research, we 
tested various types of resonant structures and their properties in diverse frequency bands. Selected 
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Figure 9. The tested samples of periodic structures: the expected resonant frequencies of the first mode:
(a) resonator f 1

1 = 58 MHz; (b) resonator f 1
2 = 83 MHz; (c) resonator f 1

3 = 200 MHz.

A major question relates to the noise signal strength that could facilitate effective evaluation and
estimation of the properties of the examined sample. For this purpose, a simple test consisting of
several steps can be performed. First of all, a signal having a known frequency f test is conducted in
the noise spectrometer area without the sample, and the spectrometer is employed to evaluate the
variation of the signal with respect to the background. Thus, for example, the power of the noise
signal was changed from 22 dBm (Figure 10a) through 30 dBm (Figure 10b), 70 dBm (Figure 10c),
70 dBm (Figure 10d), and 105 dBm (Figure 10e) to 127 dBm (Figure 10f). The results of the given test
are indicated in Figure 10. The relevant experimental measurements make it possible to estimate the
power rates to be achieved in a chain comprising a noise generator, an amplifier, and an antenna in
order to secure such conditions for the given noise spectral analysis that will facilitate the cumulation
of the required frequency characteristics of the tested samples.

In the testing of the samples from Figure 9, with setting for the states indicated in Figure 10,
the results of the noise analysis of the periodic structures can be interpreted within Figure 11.

The tests and partial experiments indicated the necessity to use a generator–amplifier–antenna
chain exhibiting a gain higher than 10 dBm; such a value embodies the precondition for the method to
yield processable results markedly overriding the background noise. Within the research, we tested
various types of resonant structures and their properties in diverse frequency bands. Selected resonant
structures are presented in Figure 12, together with the relevant numerical characteristics (verified via
spectrum analyzers).
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(e) (f)

Figure 10. The test of the noise spectroscopy setup with respect to the power of the excitation signal at one frequency: (a) the background checking, 198–202 MHz; the 
generator signal of 200 MHz–22 dBm, without an amplifier—number of samples: 2000; (b) the background checking, 198–202 MHz; the generator signal of 200 MHz–30 
dBm, without an amplifier—number of samples: 2000; (c) the background checking, 198–202 MHz; the generator signal of 200 MHz–70 dBm, without an amplifier—number 
of samples: 10,000; (d) the test generator: signal of 58 MHz–70 dBm (noise level signal); input: a +27 dBm amplifier; output: a two-stage electronic radio-frequency amplifier 
(ERA) ; (e) the test generator: signal of 58 MHz–105 dBm (signal immersed in noise); input: a +27 dBm amplifier; output: a two-stage ERA—number of samples: 5000; (f) 
the test generator: signal of 58 MHz–127 dBm (signal immersed in noise); input: a +27 dBm amplifier; output: a two-stage ERA—number of samples: 5000. 

 

Figure 10. The test of the noise spectroscopy setup with respect to the power of the excitation signal at one frequency: (a) the background checking, 198–202 MHz;
the generator signal of 200 MHz–22 dBm, without an amplifier—number of samples: 2000; (b) the background checking, 198–202 MHz; the generator signal of
200 MHz–30 dBm, without an amplifier—number of samples: 2000; (c) the background checking, 198–202 MHz; the generator signal of 200 MHz–70 dBm, without an
amplifier—number of samples: 10,000; (d) the test generator: signal of 58 MHz–70 dBm (noise level signal); input: a +27 dBm amplifier; output: a two-stage electronic
radio-frequency amplifier (ERA) ; (e) the test generator: signal of 58 MHz–105 dBm (signal immersed in noise); input: a +27 dBm amplifier; output: a two-stage
ERA—number of samples: 5000; (f) the test generator: signal of 58 MHz–127 dBm (signal immersed in noise); input: a +27 dBm amplifier; output: a two-stage
ERA—number of samples: 5000.
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Figure 11. The testing of the samples from Figure 9 with noise spectroscopy: (a) the noise generator: 
horizontal configuration; (b) the noise generator: vertical configuration; (c) the noise generator: 
tangential configuration; (d) the noise generator: a TVA amplifier +27 dBm; an antenna–an antenna –
a two-stage ERA amplifier–an Agilent spectrometer (Keysight Technologies, Inc., Westlake Village, 
CA, USA); a sample from Figure 9. f11, horizontal position, 58 MHz; (e) the noise generator: a TVA 
amplifier +27 dBm; an antenna–an antenna–a two-stage ERA amplifier–an Agilent spectrometer; a 
sample from Figure 9. f11, vertical position; (f) the noise generator: a time variant amplifier (TVA) + 27 
dBm; an antenna–an antenna–a two-stage ERA amplifier–an Agilent spectrometer; a sample from 
Figure 9. f11, tangential position; (g) the noise generator: a TVA amplifier + 27 dBm; an antenna–an 
antenna–a two-stage ERA amplifier–an Agilent spectrometer; a sample from Figure 9. f12, horizontal 
position; (h) the noise generator: a TVA amplifier + 27 dBm; an antenna–an antenna–a two-stage ERA 
amplifier–an Agilent spectrometer; a sample from Figure 9. f13, horizontal position. 

Figure 11. The testing of the samples from Figure 9 with noise spectroscopy: (a) the noise generator:
horizontal configuration; (b) the noise generator: vertical configuration; (c) the noise generator:
tangential configuration; (d) the noise generator: a TVA amplifier +27 dBm; an antenna–an antenna –a
two-stage ERA amplifier–an Agilent spectrometer (Keysight Technologies, Inc., Westlake Village,
CA, USA); a sample from Figure 9. f 1

1, horizontal position, 58 MHz; (e) the noise generator:
a TVA amplifier +27 dBm; an antenna–an antenna–a two-stage ERA amplifier–an Agilent spectrometer;
a sample from Figure 9. f 1

1, vertical position; (f) the noise generator: a time variant amplifier
(TVA) + 27 dBm; an antenna–an antenna–a two-stage ERA amplifier–an Agilent spectrometer; a sample
from Figure 9. f 1

1, tangential position; (g) the noise generator: a TVA amplifier + 27 dBm; an antenna–an
antenna–a two-stage ERA amplifier–an Agilent spectrometer; a sample from Figure 9. f 1

2, horizontal
position; (h) the noise generator: a TVA amplifier + 27 dBm; an antenna–an antenna–a two-stage ERA
amplifier–an Agilent spectrometer; a sample from Figure 9. f 1

3, horizontal position.
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Figure 12. The design and types of the samples tested for noise spectroscopy: (a) the design; (b) the 
fabricated unit; (c) the frequency dependence without a capacitor; (d) the frequency dependence with 
capacitors; (e) a detailed view of the tuned structure; (f) the resonance values measured over 
elementary resonators; (g) the magnetic imaging (MI) lens designed with square resonators [16,17]; 
(h) the fabricated MI-based unit; (i) the resonant structure consisting of two plates with quasi-periodic 
resonators: fr = 58 MHz; (j) and fr = 83 MHz.  

5. Conclusions 

The paper proposes a novel approach to noise as a tool of spectroscopy, comprising a unique, 
compact set of theoretical and experimental results obtained from research into the noise field. In this 
context, the article presents an overview of the laboratory equipment for noise spectroscopy 
measurement and the related experiments. The authors discuss various approaches to models for 
evaluating the parameters related to the quantification character of the application of noise in noise 
spectroscopy. With respect to the experiments and laboratory-based testing, the present report notices 
relevant limiting aspects, including the radiated power of a broadband transmission system to ensure 
the minimal gain of signals in the monitored spectrum; the purpose of this process then consists of 
securing the evaluation of major information and the parameters of the tested periodic structure. 

The research performed by the authors within UWB signals is oriented towards subregions such 
as non-destructive diagnostics of classic materials or structures; its practical applicability lies in the 
evaluation of materials as periodic systems (currently represented by benzene core-based 
nanomaterials, amorphous magnetic materials, and similar substances) and within security systems 
or concepts. The set of aspects evaluable via the proposed technique also includes the quality of 
products manufactured from complex polymeric organic materials. The investigation procedures 
exploit known properties of several effects, including noise as a UWB signal, the response of identical 
structures, and changes in the spectra of signals; a relevant advantage is embodied in the possibility 
of conducting the research without the necessity to use an anechoic chamber and other highly 
specialized laboratories. 
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Figure 12. The design and types of the samples tested for noise spectroscopy: (a) the design; (b) the
fabricated unit; (c) the frequency dependence without a capacitor; (d) the frequency dependence
with capacitors; (e) a detailed view of the tuned structure; (f) the resonance values measured over
elementary resonators; (g) the magnetic imaging (MI) lens designed with square resonators [16,17];
(h) the fabricated MI-based unit; (i) the resonant structure consisting of two plates with quasi-periodic
resonators: f r = 58 MHz; (j) and f r = 83 MHz.

5. Conclusions

The paper proposes a novel approach to noise as a tool of spectroscopy, comprising a unique,
compact set of theoretical and experimental results obtained from research into the noise field.
In this context, the article presents an overview of the laboratory equipment for noise spectroscopy
measurement and the related experiments. The authors discuss various approaches to models for
evaluating the parameters related to the quantification character of the application of noise in noise
spectroscopy. With respect to the experiments and laboratory-based testing, the present report notices
relevant limiting aspects, including the radiated power of a broadband transmission system to ensure
the minimal gain of signals in the monitored spectrum; the purpose of this process then consists of
securing the evaluation of major information and the parameters of the tested periodic structure.

The research performed by the authors within UWB signals is oriented towards subregions
such as non-destructive diagnostics of classic materials or structures; its practical applicability lies
in the evaluation of materials as periodic systems (currently represented by benzene core-based
nanomaterials, amorphous magnetic materials, and similar substances) and within security systems or
concepts. The set of aspects evaluable via the proposed technique also includes the quality of products
manufactured from complex polymeric organic materials. The investigation procedures exploit known
properties of several effects, including noise as a UWB signal, the response of identical structures,
and changes in the spectra of signals; a relevant advantage is embodied in the possibility of conducting
the research without the necessity to use an anechoic chamber and other highly specialized laboratories.
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