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Abstract: We consider here multivariate data which we understand as the problem where each data
point i is measured for two or more distinct variables. In a typical situation there are many data points
i while the range of the different variables is more limited. If there is only one variable then the data
can be arranged as a rectangular matrix where i is the index of the rows while the values of the variable
label the columns. We begin here with this case, but then proceed to the more general case with
special emphasis on two variables when the data can be organized as a tensor. An analysis of such
multivariate data by a maximal entropy approach is discussed and illustrated for gene expressions in
four different cell types of six different patients. The different genes are indexed by i, and there are 24
(4 by 6) entries for each i. We used an unbiased thermodynamic maximal-entropy based approach
(surprisal analysis) to analyze the multivariate transcriptional profiles. The measured microarray
experimental data is organized as a tensor array where the two minor orthogonal directions are the
different patients and the different cell types. The entries are the transcription levels on a logarithmic
scale. We identify a disease signature of prostate cancer and determine the degree of variability
between individual patients. Surprisal analysis determined a baseline expression level common for
all cells and patients. We identify the transcripts in the baseline as the “housekeeping” genes that
insure the cell stability. The baseline and two surprisal patterns satisfactorily recover (99.8%) the
multivariate data. The two patterns characterize the individuality of the patients and, to a lesser
extent, the commonality of the disease. The immune response was identified as the most significant
pathway contributing to the cancer disease pattern. Delineating patient variability is a central issue
in personalized diagnostics and it remains to be seen if additional data will confirm the power of
multivariate analysis to address this key point. The collapsed limits where the data is compacted into
two dimensional arrays are contained within the proposed formalism.

Keywords: multivariate analysis; maximal entropy; prostate cancer markers; personalized
diagnostics; transcriptomics; high order SVD; tensor data format; ensemble phenotypes

1. Introduction

We derive the extension to multivariate arrays of the thermodynamic-like approach that we have
recently proposed for identifying pattern responses in cancerous cell lines and patient data. Our
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approach is based on information theory and surprisal analysis. It was earlier introduced to deal with
physicochemical systems in disequilibrium [1–3]. It is currently being applied to biophysicochemical
systems [4–8]. The essential difference with the methods already proposed [9–13] is that we use the
thermodynamic entropy instead of using entropy as a statistical measure of dispersion.

In this paper we discuss the approach to multilevel arrays and apply it to transcription level
data. We treat each transcript as a molecule so we have the thermodynamics (of disequilibrium) in a
multicomponent system. The thermodynamic-like approach allows for the defining of a base line level
for the expression level of each transcript. We show by example that indeed transcripts from different
patients and/or different cells do have the same base line level. It is with respect to this baseline that
the changes induced by the different conditions are quantified. By using a thermodynamic entropy
and surprisal analysis, we have previously shown that the base line can be determined from genomic
data. In addition to the partition function of each transcript, the base line includes all the contributions
to the entropy that are common to all the conditions: non ideality, environment effects, etc. We have
recently argued that the reference base line corresponds to the essential cell machinery and is valid
across cell types, patients, and organisms [4]. Such a base line is also recovered in the multivariate case
developed here.

One can use entropy in the information theoretic sense as a measure of dispersion from uniformity.
Analyses of genetic networks from this point of view have received attention with special reference to
the connectivity of the network [10,12,14–21]. It is the use of a thermodynamic-like expression for the
entropy that places the present method apart. It is definitely not a minor correction because the base
line distribution of expression levels of transcripts is a very non-uniform distribution that accounts
for the great majority of an information theoretic entropy (>97%, [4]). The change in expression level
induced by the disease is small compared to the base line. In other words, even in diseased patients
cells are inherently stable. It is possible to induce a change of the stable state (e.g., [8]), but it is a change
from one stable state to another.

Singular value decomposition (SVD) is used here as a mathematical tool to implement a fast and
useful surprisal analysis of large data sets [7]. The technical point is that it is the logarithm of the
expression level that is being expanded. The invariant part of that expansion is the free energy (in
units of the thermal energy) of the transcript and specifies the baseline value.

For 2D arrays, we previously reported on using SVD as a practical tool to implement
surprisal analysis and determine the gene patterns in terms of which the data can be analyzed
and compacted [4–7,15,22–25]. In the multivariate case derived here, a High Order Singular Valued
Decomposition (HOSVD) is used [26]. Compared to other tensor decomposition methods based on
the Tucker decomposition [27,28], HOSVD has the advantage of leading to orthogonal patterns which
allows it to characterize the deviation of the observed expression level with respect to the base line in a
unique way.

We turn next to the background for our work in terms of systems biology [29]. High throughput
genomic and proteomic data on various types of organisms are becoming routinely available.
The purpose of measuring these massive data sets is to uncover trends and patterns in the genomic
and proteomic responses to different conditions and perturbations, with the promise of a better
understanding of diseases like cancer or for optimizing energy production biotechnologies based on
unicellular organisms like yeast and algae. Typically, the number of conditions that can be engineered
is much smaller than the number of gene transcripts that can be measured, where that number ranges
in the tens of thousands depending on the organism. Similarly, the number of proteins that can
nowadays be quantitatively measured is also quite large. Most of the methods of analysis deal with
2D rectangular arrays where all the conditions are treated on the same level. These can be different
points in time [8,23,24,30], different nutrients conditions, or in the case of cancer, different cell types,
oncogenes, and/or drug treatments. When all these different conditions are lumped into a 2D array,
the correlation between different conditions is not easy to identify. In some cases, a multivariate
analysis has been applied [31–33].
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Another case that calls for a multivariate analysis is that where the genomic response of cancer is
analyzed for different patients and their different cell types. This is the case that we focus on. We show
that identifying the gene response of the 3D tensor of data uncovers correlations between cell type and
individual patients that are washed out if the 3D array is collapsed to a 2D one by averaging the gene
response over patients and keeping the cell type as a relevant dimension, or averaging over cell type
and keeping the different patients as the relevant axis.

The paper is organized as follows. We start by a brief outline of the 2D analysis in Section 2.
The extension to a 3D multivariate array is derived in Section 3 where we show how the possible 2D
results are limiting cases of the general case. The methodology is applied in Section 4 to a 3D array:
the gene response measured for different cell types and different patients in the case of prostate cancer.
This example allows us to provide an operative definition of two opposite trends. One the one hand,
a disease is defined as common features that affect patients in the same way, but on the other, the
analysis of the gene response of individual patients shows that different patients have different disease
gene patterns. Correlating cell types and patient responses using a multivariate analysis provides a
step towards personalized diagnostics. This is a special advantage of the multivariate analysis.

2. Surprisal Analysis of 2D Arrays

In the bivariate case, the data are arranged as a rectangular matrix X of dimension I by J where I,
the number of gene transcripts, is typically much larger than J, the number of conditions for which the
expression levels of the transcripts have been measured. Each column of X is a distribution over the
gene transcripts i measured for the given condition j. Each row is the distribution over the conditions
j measured for a given transcript i. Each reading Xij is the measured expression level of transcript
i under condition j. In a typical experiment involving many cells, Xij is an average value over the
fluctuations that can occur from cell to cell because the individual cell is a finite system [15].

Surprisal analysis seeks to characterize the level distribution Xij as a distribution of maximal
entropy subject to constraints. We assume that the same constraints operate for all the conditions
but it can be that different constraints are more important for different conditions. The number of
constraints, C, is typically smaller than the number of conditions, J, and therefore the constraints
by themselves are not sufficient to determine a unique distribution. Among all the distributions
that are consistent with the constraints, surprisal analysis determines that unique distribution whose
entropy is maximal. When such a distribution exists it can be analytically constructed by the method
of Lagrange undetermined multipliers [4,5,22]. Surprisal analysis employs the following expression
for the logarithm of the expression level of gene i under condition j:

ln
(
Xij
)
= ln(Xi0)−

C

∑
α=1

Giαλαj (1)

where ln(Xi0) is the base line level for transcript i, that is the expression level of transcript i at maximum
entropy without any constraints imposed by the conditions:

ln(Xi0) = −Gi0λ0 (2)

The additional terms in Equation (1) reduce the value of the entropy from its thermodynamic
maximum. λαj is the Lagrange multiplier for the constraint α in condition j. For the condition j, each
constraint α lowers the value of the entropy by an extent given by the Lagrange multiplier λαj The
Lagrange multiplier λαj is common to all genes but does depend on the condition. By definition of
a base line, λ0 in Equation (2) does not depend on the condition j. This invariance is not imposed in
the numerical procedure described below and we show that up to numerical noise, the values of λ0

computed for each condition are indeed the same. The value of the constraint α for the transcript i is
Giα. These values for the transcripts are common for all the different conditions.
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A key property of Equation (1) that is retained also in the higher dimensional case is the
separability. Each deviation term in Equation (1) is made up as a product of two factors, so that
all the genes that contribute to pattern α are changing in the same way (i.e., coherently) as the condition
is being changed. The “weight” λαj of condition j is the same for all the genes that participate in
pattern α.

The aim of surprisal analysis is to retain as few as possible terms in Equation (1), that is, to
identify the minimum set of constraints α that will give a good fit of ln

(
Xij
)

simultaneously for all
conditions j. The constraints can be given a biophysical interpretation in terms of the processes
that restrain the value of the entropy of the distribution to reach its maximal value. Unlike in the
univariate case typically encountered in physical chemistry where the form of the constraints can be
known a priori on physicochemical grounds [2], in the bivariate case, the constraints are typically not
known. One efficient computational way to determine the constraints is to apply singular valued
decomposition, SVD, of the logarithm of data, as follows. Construct the matrix Y such that its elements
are the logarithms of the expression levels Yij = ln

(
Xij
)
. The range of the indices i and j are quite

different, 1 ≤ i ≤ I, 1 ≤ j ≤ J and so Y is a rectangular I by J matrix, where typically I >> J. Therefore Y
is a singular matrix but we can ‘diagonalize’ it in the manner of SVD as

Y = G ·Ω ·VT (3)

where the columns of the matrices G and V are orthonormal. The matrix G is an I by J rectangular
matrix and its rank is therefore J or lower. The matrix Ω is a diagonal J by J matrix made up of the
J eigenvalues of V (or of the non-zero eigenvalues of G). If we want to express Ω as a function of Y,
we get

Ω = GT · Y ·V (4)

which we can call “the most compact form” of the data.
The matrices G and V in Equation (3) are respectively the left and right eigenvectors of Y. The

number of non-zero eigenvalues of Y is limited by its smallest dimension, which for us is the number
of conditions J. The left and right eigenvectors of Y can be obtained as the normalized eigenvectors of
the two covariance matrices that can be built from Y: the “small” J × J matrix YTY and the “large” I ×
I matrix YYT. The matrix Ω in Equation (3) is obtained from the eigenvalue equation

YTY = VT ·Ω2 ·V (5)

where Ω2 is the diagonal matrix of the eigenvalues ω2
α and the vector Vα the corresponding eigenvector.

The maximum rank of YTY is its dimension J. The large I by I matrix YYT is also maximum rank J and
has the same non-zero eigenvalues as YTY. The eigenvectors Gα correspond to the same eigenvalue as
the eigenvector Vα of the YTY matrix. Knowing the eigenvalues ωα and the normalized eigenvectors
Vα is sufficient to determine the vectors Gα, α = 0, . . . , J−1, from the data:

G = Y ·V ·Ω−1 (6)

The SV decomposition given in Equation (3) can be recast into the surprisal form of Equation (1)

Yij = ln
(
Xij
)
=

J−1

∑
α=0

Giαωa

(
VT
)

αj
=

J−1

∑
α=0

Giαλαj (7)

where the Lagrange multiplier λαj is thereby expressed as

λαj = ωα

(
VT
)

αj
= ωαVjα (8)
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The Lagrange multiplier λαj determines the importance of the constraint α for condition j. In
Equation (8), this importance is shown to be a product of two terms. One factor, ωα, is the overall
importance of constraint α. The other is the (normalized) importance of this constraint for condition j.
It is a normalized weight because the vector Vα is normalized.

For a 2D data array, the Lagrange multipliers can be written in a matrix form

Λ = Ω ·VT (9)

For a 3D data array the Lagrange multipliers will form a 3D tensor.
From Equation (9) above, we see that the matrix Λ is a partial de-diagonalization of the diagonal

most compact form of the data, Ω.
Using Equations (3) and (9), the surprisal given in Equation (1) can be written as matrix product

Y = G ·Λ (10)

The SVD approach ensures that the constraints are linearly independent since they are orthogonal.
Both the eigenvectors Gα and Vα are orthonormal. Therefore, also the rows of the matrix of the
Lagrange multipliers Λ are orthogonal.

The 2D approach was successfully implemented on microarrays data of gene transcripts for
patient data, for several cancer cell models, and for unicellular organisms [4–7,15,22–25,30,34] subject
to various conditions j. In particular, the values of the Lagrange multipliers that define the base line,
λ0, are found numerically to be independent of the condition index j in agreement with Equation (2).
From Equation (8), one can see that the only way to ensure that λ0 does not depend on j is that
the eigenvector corresponding to the largest eigenvalue is uniform and from the condition that the
eigenvectors are normalized the amplitudes in the vector have the value 1/

√
J. Note that the rows of

the matrix Y are not mean centered. When the rows of the matrix Y are mean centered, the matrix YTY
becomes rank deficient and has one zero eigenvalue with the same corresponding uniform eigenvector.
The remaining J−1 eigenvalues are unchanged compared to the non-mean centered case. The 2D
arrays analysis provides a clear meaning to the base line term of Equation (2). The analysis of the
gene transcripts that dominate the Gi0 constraint show that the pattern of the base line corresponds
to the essential machinery of the cell [4]. For α > 0, the biological interpretation of the transcription
patterns are defined by the analysis of the values of the Lagrange multipliers λαj on the different
conditions j. Each constra Giα corresponds to a pattern in the gene expression associated with the
phenotype α. We will therefore use the terms transcription pattern and phenotype interchangeably
where by phenotype we mean a biological process where all the participating genes act coherently
(see Equation (1) or (7)). The analysis of the phenotypes α > 0 and of the gene expression patterns was
shown to characterize the progression of cancer in cell lines [5,24].

3. Generalization of the Surprisal Analysis for a Multivariate Array

The need for a generalization of surprisal analysis arises from the availability of gene transcript
levels measured, for example, for individual patients and for different conditions or for different cell
types. Keeping the different patients as a separate dimension in addition to cell type leads to data in
the format of a 3D array. Another case where one can have more than 2D arrays of data is that where
different cell types are submitted to different conditions [31–33]. Of course, a 4D data or even higher is
also possible.

To bring the 3D tensor into a surprisal form, we use HOSVD [26]. This approach ensures that
the constraints remain linearly independent and reverts to the 2D case discussed above as a limit.
As an illustration of the formalism we will use data arrays where the gene expression level of different
cell types is measured for several individual patients. The 3D analysis allows us to propose an
interpretation of the notion of disease and of patient diversity.
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We consider a 3D array, T, for which the three dimensions are the number of gene transcripts,
I, the number of cell types, J, and the number of patients, K. The elements of the tensor are defined
as Tijk = lnXijk where Xijk is the measured expression level for transcript i of cell type j of patient k.
The number of transcripts, of the order of 20,000, is typically much larger than the numbers of cell
types or the number of patients. We have therefore a rectangular 3D I × J × K tensor where I >> J ≈ K.
This inequality, typical of gene expression data where the number I of transcripts is very large, plus
the fact that we typically want the expression levels to remain an axis, dictates the compaction of the
3D data to a 2D form as discussed next.

3.1. Representing the Tensor Surprisal T in Matrix Form

2D slices can be made from the 3D array in three ways. Keeping i fixed, one has I different J × K
matrices, keeping j fixed, one has JK × I matrices, and keeping k fixed generates KI × J matrices.
These three possible decompositions of the 3D tensor are arranged as shown in Scheme 1. From these
three decompositions, one can build three matrices that possess the same information as the tensor
itself, as is also shown in Scheme 1. The matrix T(1) is a 2D I × (J × K) matrix. T(1) is made of K side
by side I × J slices. The matrix T(2) is of dimension J × (K × I) and is made of I side by side (J × K)
matrices and the matrix T(3) of dimension K × (I × J) that is made of J side by side (K × I) matrices.
The three matrices T(1), T(2), and T(3) are called the flattened matrices and correspond to the three ways
to represent the tensor as a 2D matrix. These three flattened matrices are the basis for the high order
SV decomposition of the tensor [26]. Each of these flattened rectangular matrices can be decomposed
using the 2D SVD procedure as explained in Section 2 above. We get

T(1) = U ·Ω(1) ·MT (11)

T(2) = V ·Ω(2) ·NT (12)

T(3) = W ·Ω(3) · LT (13)
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Scheme 1. The three ways of representing the tensor T as two dimensional, Equations (11)–(13).

The SV decomposition of each of the three flattened matrices T(1), T(2), and T(3) is algebraically
the same procedure as discussed in Section 2 above for the 2D surprisal matrix. In particular, since the
rows of the three matrices are not mean centered, for each of them, the normalized eigenvector of the
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small covariance matrix that corresponds to the largest eigenvalue has uniform amplitudes given by
1/
√

dim where dim is the smallest dimension of each matrix.
The left-hand side matrices in Equations (11)–(13) provide a SV decomposition for the elements of

the 3D tensor [26]:

Tijk =
JK−1

∑
r=0

J−1

∑
s=0

K−1

∑
t=0

ΩrstUirVjsWkt (14)

where the matrix U is the I × JK matrix of the left eigenvectors of T(1), V the J × J matrix of the left
eigenvectors of T(2), and W the K × K matrix of the left eigenvectors of T(3). Ω is the core tensor.
Its dimensions are JK × J × K and correspond to the number of non-zero eigenvalues of the flattened
matrices T(1), T(2), and T(3), respectively. The elements of the core tensor can be computed from its
JK × JK flattened matrix Ω(1) [26] by

Ω(1) = UT · T(1) · (V⊗W)(
Ω(1)

)
rq
=

I−1
∑

i=0
Uir

JK−1
∑

l=0

(
T(1)

)
il
(V⊗W)lq

(15)

In Equation (15), the symbol⊗ stands for the direct product of the V and W matrices (see Equations
(12) and (13)), which leads to a square JK × JK Ω(1) matrix. The matrices U and T(1) are defined in
Equation (11) above. Equation (15) is the practical form that can be used to compute the core tensor as
a flattened matrix. Formally, the core tensor Ω is defined from the n mode multiplication [26,27] of the
input tensor T by the three matrices U, V, and W:

Ω = T ×1U ×2V ×3W (16)

where the symbol “×1” means to multiply the input tensor from the gene direction I by the I × KJ
U matrix of the left eigenvectors of T(1) (Equation (11)), “×2” means to multiply T from the cell type
direction J by the matrix V of the left eigenvectors of T(2) (Equation (12)), and “×3”means to multiply
T from the patient direction K by W (Equation (13)). By doing so, one obtains the core tensor Ω of
dimensions JK × J × K whose flattened expression is given by Equation (15).

The labels of matrix elements as used in Equation (14) are, of course, arbitrary. However, once we
made a particular choice it carried through. Specifically, because we use the index i to label transcripts,
the notation Uir implies that r will index the transcription patterns where U is the left matrix of T(1)

(Equation (11)). Similarly j is a cell type index so s will label cell type patterns where Vjs is an element
of the left matrix of T(2) (Equation (12)) while r is a patient type index.

3.2. The Tensor Form of the Surprisal

Equation (14) generates a fully separable expression for the tensor form of the surprisal for a 3D
data array

Tijk =
JK−1

∑
r=0

J−1

∑
s=0

K−1

∑
t=0

ΩrstUirVjsWkt

It takes JK × J × K terms to get an equality. The remarkable practical observation is that, in all
the examples that we analyzed, very few terms need to be retained for this equation to provide an
excellent approximation.

Equation (14) is analogous to Equation (3) of the 2D case. As in the 2D case it is possible to
rewrite Equation (14) in a surprisal form. Here we discuss the surprisal of the expression level of the
different transcripts, and since these are enumerated by the index i we pull the vector U up front in the
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summation. Rearrangement of the order of summations one has the 3D surprisal form as a summation
over the different constraints labeled by r

Tijk =
JK−1

∑
r=0

J−1
∑

s=0

K−1
∑

t=0
ΩrstUirVjsWkt

=
JK−1

∑
r=0

Uir

(
J−1
∑

s=0

K−1
∑

t=0
ΩrstVjsWkt

)
=

JK−1
∑

r=0
Uirλr(jk)

(17)

The Lagrange multiplier of the r’th constraint, λr(jk), is thereby expressed as the term in the
big bracket

λr(jk) =
J−1

∑
s=0

K−1

∑
t=0

ΩrstVjsWkt (18)

In the 2D case the Lagrange multipliers for a given constraint (a given value of α) form a vector. The
entries of this vector are labeled by the different conditions j. In the 3D case the Lagrange multipliers
are matrices, one matrix for each value of the index r of the constraints. (We use a different letter for
the index of the constraints in 2 and 3D so as to explicitly indicate the dimension). The elements of
each matrix are labeled by j and k, the indices of the different cell types and the different patients.

The entire set of Lagrange multipliers that were a matrix in the 2D case (Equation (9)) are now a
3D tensor Λ of dimension JK × J × K, Λ = Ω x2VT

x3WT whose flattened matrix form is given by

Λ(1) = Ω(1) · (V⊗W)T = Ω(1) ·
(

VT ⊗WT
)

(19)

By analogy to the matrix product representation, Equation (10), of the 2D case, one can also
rewrite the surprisal as given by Equation (17) as an n mode product of the tensor representing the
Lagrange multipliers, Λ, by a matrix representing the constraints, U:

T = Λ x1U (20)

3.3. The Lagrange Multipliers

Numbering the eigenvalues by decreasing order, we can rewrite the surprisal form (17) as

Tijk =
1√
KJ

Ui0Ω000 +
JK−1

∑
r=1

Uirλr(jk) (21)

where the first term is the base line for the 3D case, taking into account that

V0j =
1√

J , j = 0, . . . , J − 1

W0k =
1√
K

, k = 0, . . . , K− 1
(22)

We stress that due to the condition on the dimensions of the tensor, I >> J ≈ K, the I components
of the vector U0 are not uniform. They define the gene transcript pattern that corresponds to the base
line. The vector U0 plays the role of the vector G0 in the 2D case.

The elements of the core tensor, Ωrst in Equation (17), can be ranked in decreasing order. Their
weight is defined as

wrst =
Ω2

rst
KJ−1

∑
r=0

J−1
∑

s=0

K−1
∑

k=0
ω2

rst

(23)

The Ω000 term has always the highest weight. This is the term that defines the baseline. As
we show in the illustrative example below, this term alone usually provides a semiquantitatively



Entropy 2016, 18, 445 9 of 18

acceptable fit of the data. Often, fewer than a dozen terms suffice to recover most of the information
contained in the data.

In Equation (21), each element of the tensor of the Lagrange multiplier λr(jk)

λr(jk) =
J−1

∑
s=0

K−1

∑
t=0

ΩrstVjsWkt (24)

can be represented as a J × K heat map. Among the J × K terms in the sum typically very few ones of
the highest weight dominate. We show an example of such heat maps of the elements of the tensor of
the Lagrange multipliers in the analysis of the numerical example below. Here we draw attention to
a 2D view that also leads to this form for the surprisal. In this 2D view we arrange the 3D data as a
2D array by giving each data column a double index jk. On reflection this is exactly the matrix T(1) of
dimension I × JK as discussed above. This matrix has JK non-zero eigenvalues. Its SV decomposition
is given by Equation (11), where M is the matrix on the right:

T(1)
i(jk) =

JK−1

∑
r=0

Girωr M(jk)r =
JK−1

∑
α=0

Girλr(jk) (25)

From the surprisal form (21), we have the equality

λr(jk) = ωr M(jk)r =
J−1

∑
s=0

K−1

∑
t=0

ΩrstVjsWkt (26)

3.4. 2D Limiting Forms of the Tensor Form of the Surprisal

2D limits of the 3D surprisal enable us, for example, to analyze separately the correlations between
cell types, irrespective of the patients or the correlations between patients irrespective of cell types. To
do so one needs to average the data over patients or over cell type respectively. In the first case, one
will get a 2D array of dimension I × J, and in the second one, a 2D array of dimension I × K. Using an
overbar to designate an average we write when we average the surprisal

Tijk =
1
K

K−1

∑
k=0

Tijk (27)

Tijk =
1
J

J−1

∑
j=0

Tijk (28)

These two 2D matrices can be obtained by starting from the general surprisal form given by
Equation (17) and, as we next show, retain only terms t = 0 (average over patients) or only terms s = 0
(average over cell type). From averaging over patients in the surprisal form of the tensor, Equation (27),
takes the form:

Tijk = 1
K

K−1
∑

k=0
Tijk =

1√
K

KJ−1
∑

r=0
Uir

J−1
∑

s=0
Vjs

K−1
∑

t=0
Ωrst

K−1
∑

k=0
WktWk0

= 1√
K

KJ−1
∑

r=0
Uir

(
J−1
∑

s=0
Ωrs0Vjs

)
= 1√

K

KJ−1
∑

r=0
Uirλrj0

(29)

where Equation (22) and the orthogonality between the eigenvectors of T(3) have been taken into
account. Similarly, when averaging over cell types, one obtains
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Tijk = 1
J

J−1
∑

j=0
Tijk =

1√
J

KJ−1
∑

r=0
Uir

K−1
∑

t=0
Wkt

J−1
∑

s=0
Ωrst

J−1
∑

j=0
VjsVj0

= 1√
J

KJ−1
∑

r=0
Uir

(
K−1
∑

t=0
WktΩr0t

)
= 1√

J

KJ−1
∑

r=0
Uirλr0k

(30)

The expressions of Equations (29) and (30) are not fully identical to what one would get by
applying 2D SVD directly to averaged I × J and I × K data matrices where the difference is that the
logarithm of the average is not the same as the average of the logarithm (see also Section S1 of the
supplementary materials).

By performing a double average over both patients and cell types, the 1D limit is given by

Tijk = 1
JK

K−1
∑

j=0

K−1
∑

k=0
Tijk

= 1√
JK

KJ−1
∑

r=0
Uir

J−1
∑

s=0

K−1
∑

t=0
Ωrst

J−1
∑

j=0
VjsVj0

K−1
∑

k=0
WktWk0

= 1√
JK

KJ−1
∑

r=0
UirΩr00

(31)

The 2D and even more so the 1D limit show how information is lost upon averaging. When 3D
data is available the Lagrange multiplier for constraint r is given by, cf. Equation (17)

λr(jk) =

(
J−1

∑
s=0

K−1

∑
t=0

ΩrstVjsWkt

)
(32)

When there is an averaging on either patient or cell type data

λr0k =
K−1

∑
t=0

Ωr0tWkt, λrj0 =
J−1

∑
s=0

Ωrs0Vjs

while in the 1D case when averaging is over both

λr00 = Ωr00 (33)

4. Analysis of the Correlations between Cell Type and Patient in a Cohort of 6 Patients

Section 4 illustrates multivariate analysis of a data tensor where the gene level expressions are
recorded for two cell types (basal or luminal) of six patients with a benign or advanced stage of
prostate cancer. For each patient, there are therefore four cell types: benign luminal (BeLu), cancerous
luminal (CaLu), benign basal (BeBa), and cancerous basal (CaBa). Each measurement was done in
three replicates and only the genes that satisfied the confidence Student test were kept in the analysis.
This leads to a data tensor of dimensions 18220 × 4 × 6.

4.1. Multivariate Surprisal Analysis

The starting point of the multivariate analysis of the surprisal is to compute the weights of the
elements of the core tensor Ωrst given by Equation (23). The highest ones are plotted in Figure 1.
The base line element, Ω000, dominates and with a weight (Equation (23)) equal to 0.99721 the base line
accounts for 99.7% of the data. Also, in 2D expression level vs. time data the base line dominates [4]
and it typically accounts for about 98% of the data. The next highest two elements are three orders
of magnitude smaller and correspond to averaging over patient (1-1-0) and averaging over cell type
(2-0-1). The three highest weight terms together represent 99.8% of the data. To interpret these results
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in terms of cell and patient phenotypes we plot the amplitudes ΩrstVjsWkt of the terms 1-1-0 and
2-0-1 as a function of the combined cell type-patient index, Figure 2. Thereby it is seen that the 1-1-0
element of the tensor is a cell type phenotype and provides the distinction between basal and luminal
cells, while the 2-0-1 is a patient phenotype which distinguishes between patient P6 and the rest of
the patient. The amplitudes plotted in Figure 2 are the terms in the tensor expansion, Equation (14),
and are the main contributors to tensor of the Lagrange multiplier λr(jk) defined in Equation (24).
To ascertain that these amplitudes dominate we show the heat map of the s and t terms that contribute
to a given λr(jk) shown in Figure 4. It is seen that indeed the largest terms are the 1-1-0 and 2-0-1 terms.
The averaging over cell types term 1-0-1 is also shown in Figure 2. The pattern of its amplitude on
the jk cell-type-patient index is very similar to that of the 2-0-1 term. Its weight amounts to 0.01% of
the data. We also show in Figure 2 the amplitudes of a disease phenotype, the 3-2-0 term. This term
has opposite amplitudes on the benign and cancer cells. As we further discuss in Section 4.2 below,
a disease phenotype needs to have the value 2 for the index s. The 3-2-0 term is the highest weight
term of this type that appears in the highest weight list. It is not dominant (see Figure 1). This term
corresponds to the disease cell phenotype (s = 2) and an averaging over patients (t = 0).
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Figure 2. The magnitude of the two highest weight terms (r-s-t = 1-1-0, 2-0-1) of the tensor form of the
surprisal as a function of the jk index, conditionpatient. The first two highest terms, 1-1-0 and 2-0-1,
already provide a very good fit for the surprisal. The phenotypes r = 1 and r = 2 are shown in Figures 3
and 4 below. While r = 1 mainly corresponds to the distinction between basal and luminal cells with
a small modulation due to the patients, r = 2 corresponds to the distinction between P6 and P1 and
the rest of the patients with a small modulation due to the cell type. In this sense, 2-0-1 is more clearly
a patient phenotype than 1-0-1. The term 3-2-0 is the first disease term. As shown, it distinguishes
between benign and cancer cells in that it changes its sign. It is the 12th term in the tensor expansion
(see Figure 1 for the weights, wrst) of the different terms and so it does not contribute much to the
recovery of the input data.



Entropy 2016, 18, 445 12 of 18

Entropy 2016, 18, 445 12 of 17 

 

in part due to the fact that the most important patient phenotype, t = 1, that emerges from our analysis 
is one that has an overwhelming weight in P6. The description of the individuality of P4 involves 
more patient phenotypes. This is the reason why most of the highest weight terms beyond the terms 
1-1-0 and 2-0-1 involve a patient phenotype and averaging over cell type. The heat map of the terms 
that contribute to a given Lagrange multiplier ߣ()  provides a quantitative analysis of the 
correlations between cell type and patient and opens the way to personalized medicine. 

The detailed structure shown in Figure 3 can also be viewed as when the Lagrange multiplier  ߣ() = 	߱ܯ() is plotted vs. the combined index jk. As discussed in connection with the derivation 
of Equation (26), this multiplier can also be viewed as a result of analysis of a 2D data matrix where 
each data column corresponds to a pair of conditions jk. Such a plot is shown for r = 1,2 in Figure 4. 
To plot two terms on a common scale we plot the amplitude ܯ(). 

 
Figure 3. The magnitudes of the 24 terms ΩrstVjsWkt (see Equations (17) and (18)) that contribute to the 
value of a Lagrange multiplier ݎߣ(݆݇) plotted as a heat map as a function of the cell phenotype index 
s and the patient phenotype t, r is the index of the constraint. Analyzing the relative importance of the 
different terms for a given constraint r and a given cell type and patient gives access to personalized 
medicine. Top left: r = 1, j = beba, k = P4, top right r = 2, j = beba, k = P4, bottom left: r =1, j = calu,  
k = P6, bottom right: r = 2, j = beba, k = P4. Note that the terms s = 1, t = 0, and s = 0 and t = 1 dominates 
all panels. In addition, the heat maps clearly indicate that more terms significantly contribute to a 
given cell type for patient P4 than P6. This can be understood because several patient phenotypes 
contribute to the description of P4. 

 
Figure 4. Amplitudes ݎ(݆݇)ܯ of the two dominant patterns, r = 1,2, of the bivariate transcription data 
matrix with 24 columns labeled by both cell type and patient. The r = 1 pattern is high on basal cells 
and low on luminal for each patient. The r = 2 pattern distinguishes patient 6 from the rest. 

Figure 3. Amplitudes M(jk)r of the two dominant patterns, r = 1,2, of the bivariate transcription data
matrix with 24 columns labeled by both cell type and patient. The r = 1 pattern is high on basal cells
and low on luminal for each patient. The r = 2 pattern distinguishes patient 6 from the rest.

Entropy 2016, 18, 445 12 of 17 

 

in part due to the fact that the most important patient phenotype, t = 1, that emerges from our analysis 
is one that has an overwhelming weight in P6. The description of the individuality of P4 involves 
more patient phenotypes. This is the reason why most of the highest weight terms beyond the terms 
1-1-0 and 2-0-1 involve a patient phenotype and averaging over cell type. The heat map of the terms 
that contribute to a given Lagrange multiplier ߣ()  provides a quantitative analysis of the 
correlations between cell type and patient and opens the way to personalized medicine. 

The detailed structure shown in Figure 3 can also be viewed as when the Lagrange multiplier  ߣ() = 	߱ܯ() is plotted vs. the combined index jk. As discussed in connection with the derivation 
of Equation (26), this multiplier can also be viewed as a result of analysis of a 2D data matrix where 
each data column corresponds to a pair of conditions jk. Such a plot is shown for r = 1,2 in Figure 4. 
To plot two terms on a common scale we plot the amplitude ܯ(). 

 
Figure 3. The magnitudes of the 24 terms ΩrstVjsWkt (see Equations (17) and (18)) that contribute to the 
value of a Lagrange multiplier ݎߣ(݆݇) plotted as a heat map as a function of the cell phenotype index 
s and the patient phenotype t, r is the index of the constraint. Analyzing the relative importance of the 
different terms for a given constraint r and a given cell type and patient gives access to personalized 
medicine. Top left: r = 1, j = beba, k = P4, top right r = 2, j = beba, k = P4, bottom left: r =1, j = calu,  
k = P6, bottom right: r = 2, j = beba, k = P4. Note that the terms s = 1, t = 0, and s = 0 and t = 1 dominates 
all panels. In addition, the heat maps clearly indicate that more terms significantly contribute to a 
given cell type for patient P4 than P6. This can be understood because several patient phenotypes 
contribute to the description of P4. 

 
Figure 4. Amplitudes ݎ(݆݇)ܯ of the two dominant patterns, r = 1,2, of the bivariate transcription data 
matrix with 24 columns labeled by both cell type and patient. The r = 1 pattern is high on basal cells 
and low on luminal for each patient. The r = 2 pattern distinguishes patient 6 from the rest. 

Figure 4. The magnitudes of the 24 terms ΩrstVjsWkt (see Equations (17) and (18)) that contribute to
the value of a Lagrange multiplier λr(jk) plotted as a heat map as a function of the cell phenotype index
s and the patient phenotype t, r is the index of the constraint. Analyzing the relative importance of the
different terms for a given constraint r and a given cell type and patient gives access to personalized
medicine. Top left: r = 1, j = beba, k = P4, top right r = 2, j = beba, k = P4, bottom left: r =1, j = calu,
k = P6, bottom right: r = 2, j = beba, k = P4. Note that the terms s = 1, t = 0, and s = 0 and t = 1 dominates
all panels. In addition, the heat maps clearly indicate that more terms significantly contribute to a given
cell type for patient P4 than P6. This can be understood because several patient phenotypes contribute
to the description of P4.

In Figure 4 one can also see what are the other terms of the tensor form of the surprisal
(Equation (17)), that mostly contribute to the value of the Lagrange multiplier λr(jk) for a given
cell type j and a given patient k. For example, it is clear from the heat map that more terms are needed
to reproduce the cell type “benign basal” of patient P4 than the cell type “cancer luminal” of P6. This is
in part due to the fact that the most important patient phenotype, t = 1, that emerges from our analysis
is one that has an overwhelming weight in P6. The description of the individuality of P4 involves
more patient phenotypes. This is the reason why most of the highest weight terms beyond the terms
1-1-0 and 2-0-1 involve a patient phenotype and averaging over cell type. The heat map of the terms
that contribute to a given Lagrange multiplier λr(jk) provides a quantitative analysis of the correlations
between cell type and patient and opens the way to personalized medicine.
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The detailed structure shown in Figure 4 can also be viewed as when the Lagrange multiplier
λr(jk) = ωr M(jk)r is plotted vs. the combined index jk. As discussed in connection with the derivation
of Equation (26), this multiplier can also be viewed as a result of analysis of a 2D data matrix where
each data column corresponds to a pair of conditions jk. Such a plot is shown for r = 1,2 in Figure 3.
To plot two terms on a common scale we plot the amplitude M(jk)r.

The base line and the two highest terms in the expansion of the tensor surprisal suffice to provide
a very acceptable fit of the data (see Figure 5). The next five terms that are shown in Figure 1 serve
mainly to distinguish among patients and correspond to an averaging over cell type. Terms that show
correlations between cell type and patient, meaning both values of s and t are different from zero, have
smaller weights.
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and 15 terms (see Figure 1 for the values of the indices). Keeping only three terms, terms that are just 
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between cell type and patients. We also note that retaining three and eight terms does not 
significantly improve the fit obtained by retaining the base line only. Also shown in Figure 5b is the 
fit to the data, but from a 2D analysis where the patient data has been averaged over cell types. The 
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Figure 5. Scatter plots of the recovered data vs. the input data for given cell type and patient and for
a 2D computation that is done for data averaged over cell types. Shown in panels (a) and (b) are the
cell type caba for P2 and calu for P6, respectively. The recovered data are computed for an increasing
number of terms in the surprisal expansion. In the tensor analysis, panels (a) and (b), one (only the
base line), three, eight, and fifteen terms are kept. There are 24 combinations of patients and cell types
and there are thousands of transcription levels for each pair. For all 24 pairs the three terms suffice to
characterize the data. Eight terms are needed for representation of details and from twelve terms on
the fit is to the noise in the data. The RNA profile calu of P6 which is characterized by the first patient
phenotype in the tensor analysis is better fitted than the caba profile of P2 that is spread over several
patient phenotypes. In panels (c) and (d) where the data is averaged over cell types, two terms beyond
the base line α = 0 capture most of P6 (d), which is characterized by the first phenotype patient. Many
more terms are need for P2, because the RNA profile is described by several patient phenotypes.

Figure 5a shows the fit to the data for a given cell type and patient computed for an increasing
number of terms in the expansion of the surprisal, Equation (17). The number of terms kept are one
term, that corresponding to the 0-0-0 base line term, three terms (0-0-0, 1-1-0, and 2-0-1), eight terms,
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and 15 terms (see Figure 1 for the values of the indices). Keeping only three terms, terms that are just
three entries of the core tensor, is already sufficient to provide a good fit for all the 24 combinations
between cell type and patients. We also note that retaining three and eight terms does not significantly
improve the fit obtained by retaining the base line only. Also shown in Figure 5b is the fit to the data,
but from a 2D analysis where the patient data has been averaged over cell types. The point is to show
how the tensor representation that keeps the cell-patient correlation explicitly has a richer and finer
structure. Figure 5c,d show the 2D surprisal analysis of the input data. The 2D input matrix is obtained
by averaging over cell type for each of the six patients. In such an analysis, the information over cell
type is washed out. The Lagrange multiplier, λαj, of a given constraint, α, is a vector that depends on
the index j of the patient only (see Equation (1) and Section 2). For such averaging, the constraints
correspond to a patient phenotype, irrespective of the cell type. One needs several patient phentoypes
to satisfactorily recover the data for patient P2 (Figure 5c) while the data of patient P6 are well fitted
with only two patient phenotypes.

4.2. Dominant Phenotypes Along Each Tensor Direction

We discuss the phenotypes as determined by the 3D tensor data and as approximated by the
ensemble averaging approach discussed in detail in the supplementary materials file.

The “cell type” phenotypes are defined by the left eigenvectors of the matrix V of the flatten
matrix T(2), Equation (12). These eigenvectors are also those defining the phenotypes in the 2D limit
given by Equations (27) and (28). Their importance is ranked by the magnitude of the eigenvalues.
The eigenvalues of T(2) are reported in Table S1 of the supplementary materials. As discussed, the
largest eigenvalue corresponds to a uniform eigenvector whose amplitudes are given by 1/

√
J and this

defines the base line. The amplitudes of the eigenvector corresponding to the next largest eigenvalue
reflects the distinction between basal and luminal cells (see Figure 6a) while the next largest phenotype
discriminates between benign and cancerous cells, Figure 6b. Beyond that, the phenotypes are
becoming not so secure because they are increasingly more contaminated by noise. To assess the
biology associated with disease, genes that discriminate between benign and cancerous cells were
characterized into pathways using DAVID Bioinformatics [35]. Of note, the most significant pathways
included immune response and several immune-related terms, supporting a role for the immune
system in tumor development (Table S2).

To assess the robustness of these three phenotypes, we have also carried out the 2D SVD
decomposition of the “gene transcript” vs “cell type” matrices for each of the six patients separately,
as shown in Figure 6. The corresponding eigenvectors are reported in dotted lines in the figures and
the eigenvalues in Table S1. As a last check, we analyzed the I × J matrix obtained by averaging
the logarithm of the data over patients. For the off diagonal elements of the 2D covariance matrix
there is a difference between averaging first and analyzing next or analyzing first and averaging the
surprisal next.

For the dominant phenotype, that discriminates between basal and luminal cells, cf. Figure 6a,
eigenvectors computed for each patient individually almost superimpose with those defined from the
tensor analysis and by averaging over patients. For the next phenotypes that are related to the disease,
there is somewhat more dispersion among the eigenvectors computed for individual patients, but the
tensor analysis and the average over patient lead to very similar results. This indicates that the “cell
phenotypes” are robust and common to all patients.

We turn next to the complementary aspect, that of the analysis of the “patient” phenotypes. Those
are defined by the left eigenvectors, W, of the flattened T(3) matrix (Equation (13)). Those eigenvectors
also define the patient phenotype in the 2D analysis given by Equation (29). Similarly to the analysis
of the “cell type” phenotypes, the “patient” phenotypes obtained from the tensor decomposition can
be compared to those defined by the 2D SVD analysis of the average of logarithm of the data over cell
types as well as those obtained for each cell type individually.
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Figure 6. Amplitudes of the dominant cell type eigenvector Vjs, (a) for s = 1 and (b) for s = 2 on the four 
cell types, j = 1,2,3,4. Bold full line (red, color on line), computed for the diagonalization of the T(2) 
matrix, cf. Equation (12). Bold dashes (blue, color on line), computed from the diagonalization of the 
2D matrix obtained by averaging the logarithm of the data over patients (see Section S1 of the 
supplementary materials). Thin lines, computed by 2D SVD analysis of the surprisal for each one of 
the six patients. For the dominant phenotype, which corresponds to the distinction between basal and 
luminal cells, all methods of analysis concur. s = 2 is the “disease” phenotype and distinguishes 
between benign and cancer cells. While there is a wider dispersion from one patient to the next, the 
tensor analysis and the average over patients give similar results. 

Figure 6. Amplitudes of the dominant cell type eigenvector Vjs, (a) for s = 1 and (b) for s = 2 on the
four cell types, j = 1,2,3,4. Bold full line (red, color on line), computed for the diagonalization of the
T(2) matrix, cf. Equation (12). Bold dashes (blue, color on line), computed from the diagonalization
of the 2D matrix obtained by averaging the logarithm of the data over patients (see Section S1 of the
supplementary materials). Thin lines, computed by 2D SVD analysis of the surprisal for each one of
the six patients. For the dominant phenotype, which corresponds to the distinction between basal
and luminal cells, all methods of analysis concur. s = 2 is the “disease” phenotype and distinguishes
between benign and cancer cells. While there is a wider dispersion from one patient to the next, the
tensor analysis and the average over patients give similar results.

Unlike for the cell type analysis, the variations from patient to patient are more correlated to the
cell type. Only two patient phenotypes, t = 1 (see Figure 7) and t = 2 are common to all cell types and
even for those, there is more dispersion between the results for each cell type than between the results
of each patient in the cell type analysis. The patient phenotype t = 1 indicates that patient 6 and to a
certain extent patient 1 are different from the rest of the patients.
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Figure 7. Amplitudes Wkt of the patient eigenvector, t = 1, on the six patients, k = 1,2,..,6. Bold full line
(red, color on line), computed for the diagonalization of the T(3) matrix (Equation (13)). Bold dashes
(blue, color on line), computed from the diagonalization of the 2D matrix obtained by averaging
first over patients and then performing surprisal analysis. Thin lines, computed for each of the
four cell types individually. The patient-cell type correlations are manifested strongly in the patient
phenotype analysis which leads to a larger dispersion among the patient analysis for given cell types.
Note, however, that the tensor analysis and the averaging over patients give similar results.

From t = 3 on, the patient-cell type correlations are too strong to be able to define a patient
phenotype across all cell types. In that case, the tensor phenotype is different from that obtained by
averaging over cell type.
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5. Conclusions

The multivariate surprisal analysis of the gene transcript expression levels measured for several
cell types of different patients allows us to characterize the gene expression of dominant cell type
and patient phenotypes. In the case of the data that we have analyzed, the dominant cell phenotype
distinguishes between basal and luminal cells, irrespective of the benign or cancer disease character.
The next cell phenotype is the disease phenotype, that discriminates between benign and cancer,
irrespective of the cell type. The patient analysis shows that patient P6 is different from the rest of
the five patients. A second patient phenotype indicates that P1 and P6 are different from P2, P3, P4,
and P5.

The tensor analysis shows that beyond the distinction between basal and luminal cells, the data
are dominated by the patient to patient variations. The tensor analysis thereby opens the way to
a quantification of the correlations between cell types and patients and could therefore contribute
towards personalized diagnostics and intervention.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/18/12/445/s1.
Table S1: Eigenvalues of the flatten matrix T(2) that defines the cell phenotype in the tensor analysis and of the 2D
surprisal analysis carried out on average over patients of the ln of the input data, Table S2. Gene analysis of the
cell phenotype.
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