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Abstract:

 The present work is a continuation of the previous papers written by the author on the subject. In terms of the measurability (or measurable quantities) notion introduced in a minimal length theory, first the consideration is given to a quantum theory in the momentum representation. The same terms are used to consider the Markov gravity model that here illustrates the general approach to studies of gravity in terms of measurable quantities.
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1. Introduction: Measurable and Nonmeasurable Quantities


This work is a direct continuation of my previous papers [1,2] and is interlaced with these publications at some points. As shown in [1], provided the theory involves the minimal length lmin as a minimal measurement unit for the quantities having the dimensions of length, this theory must not have infinitesimal spatial-temporal quantities dxμ because the latter lead to the infinitely small length ds [3]


[image: there is no content]



(1)




that is inexistent because of [image: there is no content].



Of course, in this case only measurable quantities are meant. As a mathematical notion, the quantity ds is naturally existent but, due to the involvement of lmin, it is immeasurable.



However it is well known that at high energies (on the order of the quantum gravity energies) the minimal length lmin to which the indicated energies are “sensitive”, as distinct from the low ones, should inevitably become apparent in the theory. But if lmin is really present, it must be present at all the “Energy Levels” of the theory, low energies including. And this, in addition to the above arguments, points to the fact that the mathematical formalism of the theory should not involve any infinitesimal spatial-temporal quantities. Besides, some new parameters become involved, which are dependent on lmin [4,5,6,7,8,9,10,11,12,13].



What are the parameters of interest in the case under study? It is obvious that, as the quantum-gravitational effects will be revealed at very small (possibly Planck) scales, these parameters should be dependent on some limiting values, e.g., lp ∝ lmin and hence Planck energy Ep.



This means that in a high-energy gravitation theory the energy-dependent or, what is the same, measuring scales-dependent parameters should be necessarily introduced.



But, on the other hand, these parameters could hardly disappear totally at low energies, i.e., for General Relativity (GR) too. However, since the well-known canonical (and in essence the classical) statement of GR has no such parameters [3], the inference is as follows: their influence at low energies is so small that it may be disregarded at the modern stage in evolution of the theory and of the experiment.



Still this does not imply that they should be ignored in future evolution of the theory, especially on going to its high-energy limit.



But at the present time, the mathematical apparatus of both special and general relativity theories (and of a quantum theory as well) is based on the concept of continuity and on analysis of infinitesimal spatial-temporal quantities. This is a corner stone for the Minkowski space geometry (MS) and also for the Riemannian geometry (RG) [3].



However, this approach involves a problem when we proceed to a quantum description of nature. Even at a level of the heuristic understanding, it is clear that, as measuring procedures in a quantum theory are fundamental, the description with the use of infinitesimal quantities is problematic because in its character the measuring procedure is discrete.



At a level of the mathematical formalism and physical principles, incompatibility of both the Minkowski space geometry and Riemannian geometry with the uncertainty principle is expected in any “format”, in relativistic and nonrelativistic cases. This problem is considered in greater detail in the following sections of this work.



Thus, if the matter concerns the measurable quantities only, the Quantum Theory (QT) and Gravity formalism should be changed: at least, a new formalism should not involve the infinitesimal spatial-temporal quantities dxμ. Naturally, because of the involved lmin (initially assuming that lmin ∝ lp) new theories should involve new parameters associated with lmin. Presently, such parameters are inexplicitly involved (for example, E/Ep in a quantum gravity phenomenology [4]).



But there is no need to discard the modern formalism of QT and Gravity, since it is clear that at low energies it offers an excellent approximation, experimentally supported to a high accuracy (see [5]). However, proceeding from the above, a change-over to high energies is impossible as, by author’s opinion, this formalism is used in an effort to combine uncombinable things.



This work makes the arguments of [1,2] more forcible on the one hand, and presents a study of the additional parameters associated with the involvement of lmin , in terms of which one can develop a new formalism for a quantum theory and for gravity at all the scales energies too, on the other hand.



One of the key problems of the modern fundamental physics (Quantum Theory (QT) and Gravity (GR)) is framing of a correct theory associated with the ultraviolet region, i.e., the region of the highest (apparently Planck) energies approaching those of the Big Bang.



However, it is well known that at high energies (on the order of the quantum gravity energies) the minimal length lmin to which the indicated energies are “sensitive”, as distinct from the low ones, should inevitably become apparent in the theory. But if lmin is really present, it must be present at all the “Energy Levels” of the theory, low energies including.



What follows from the existence of the minimal length lmin? When the minimal length is involved, any nonzero measurable quantity having the dimensions of length should be a multiple of lmin. Otherwise, its measurement with the use of lmin would result in the measurable quantity ς, so that ς < lmin, and this is impossible.



This suggests that the spatial-temporal quantities dxμ are nonmeasurable quantities because the latter lead to the infinitely small nonmeasurable quantity length ds Equation (1).



Of course, as a mathematical notion, the quantities dxμ, ds are naturally existent but one should realize that there is no way to express them in terms of the minimal possible measuring unit lmin.



So, trying to frame a theory (QT and GR) correct at all the energy levels using only the measurable quantities, one should realize that then the mathematical formalism of the theory should not involve any infinitesimal spatial-temporal quantities. Besides, proceeding from the acknowledged results associated with the Planck scales physics [4,5,6,7,8,9,10,11,12,13], one can infer that certain new parameters dependent on lmin should be involved.



What are the parameters of interest in the case under study? It is obvious that, as the quantum-gravitational effects will be revealed at very small (possibly Planck) scales, these parameters should be dependent on some limiting values, e.g., lp ∝ lmin and hence Planck’s energy Ep.



This means that in high-energy QT and GR the energy-or, what is the same, measuring scales-dependent parameters should be necessarily introduced.



But, on the other hand, these parameters could hardly disappear totally at low energies both in QT and in GR.



But, provided lmin exists, it must be involved at all the energy levels, both high and low.



The fact that lmin is omitted in the formulation of low-energy QT and GR and the theories give perfect results leads to two different inferences:

	1

	
The influence of the above-mentioned new parameters associated with lmin in low-energy QT and GR is so small that it may be disregarded at the modern stage in evolution of the theory and of the experiment.




	2

	
The modern mathematical apparatus of conventional QT and GR has been derived in terms of the infinitesimal spatial-temporal quantities dxμ which, as noted above, are nonmeasurable quantities in the formalism of lmin.










2. Main Motivation


In this Section the principal assumptions are introduced which have been implicitly used previously in [1] and especially in [2].



It is well known that in a quantum study the key role is played by the measuring procedure, its fundamental principle being the Heisenberg Uncertainty Principle (HUP) [14,15]:


[image: there is no content]



(2)







(Note that the normalization ΔxΔp ≥ ℏ is used rather than ΔxΔp ≥ ℏ/2.)



Now we can proceed to the following quite natural suppositions.

Supposition 1. 

Any small variation (increment) [image: there is no content] of any spatial coordinate [image: there is no content] of the arbitrary point [image: there is no content],μ=1,…,3 in some space-time system R may be realized in the form of the uncertainty (standard deviation) Δ[image: there is no content] when this coordinate is measured within the scope of Heisenberg’s Uncertainty Principle (HUP)


Δ˜[image: there is no content]=Δ[image: there is no content],Δ[image: there is no content]≃ℏΔpμ,μ=1,2,3



(3)




for some [image: there is no content].







Similarly, for [image: there is no content] for pair “time-energy” [image: there is no content], the any small variation (increment) value of time [image: there is no content] may be realized in the form of the uncertainty (standard deviation) [image: there is no content] and then


[image: there is no content]



(4)




for some [image: there is no content].



Here HUP is given for the nonrelativistic case. In the relativistic case HUP has the distinctive features [16] which, however, are of no significance for the general formulation of Supposition 1, being associated only with particular alterations in the right-hand side of the second relation Equation (3) as shown later.



It is clear that at low energies [image: there is no content] (momentums [image: there is no content]) Supposition 1 sets a lower bound for the variations (increments) [image: there is no content] of any space-time coordinate [image: there is no content].



At high energies E (momentums P) this is not the case if E (P) have no upper limit. But, according to the modern knowledge, E (P) are bounded by some maximal quantities Emax, (Pmax)


[image: there is no content]



(5)




where in general Emax, Pmax may be on the order of Planck quantities [image: there is no content] and also may be the trans-Planck’s quantities.



In any case the quantities Pmax and Emax lead to the introduction of the minimal length lmin and of the minimal time tmin.



With this point of view, even at the ultimate (Planck) energies a minimal “detected” (i.e., measurable) space-time volume is, within the known constants, restricted to


[image: there is no content]



(6)







Consequently, “detectability” of the infinitesimal space-time volume


Vd[image: there is no content]=(d[image: there is no content])4



(7)




is impossible as this necessitates going to infinitely high energies


[image: there is no content]



(8)







Because of this, it is natural to complete Supposition 1 with Supposition 2.

Supposition 2. 

There is the minimal length lmin as a minimal measurement unit for all quantities having the dimension of length, whereas the minimal time tmin = lmin/c as a minimal measurement unit for all quantities having the dimension of time, where c is the speed of light.







lmin and tmin are naturally introduced as Δ[image: there is no content],μ=1,2,3 and Δt in Equations (3) and (4) for [image: there is no content] and [image: there is no content].



For definiteness, we consider that Emax and Pmax are the quantities on the order of the Planck quantities, then lmin and tmin are also on the order of Planck quantities lmin ∝ lp, tmin ∝ tp.



Suppositions 1 and 2 are quite natural in the sense that there are no physical principles with which these suppositions are inconsistent.




3. Minimal Length and Measurability


In this Section particularly the results from Subsection 3.1 of [2] are used. Now from the start we assume that the theory involves the minimal length lmin as a minimal measurement unit for all quantities having the dimension of length.



Then it is convenient to begin our study not with HUP Equation (2) but with its widely known high-energy generalization—the Generalized Uncertainty Principle (GUP) that naturally leads to the minimal length lmin [17,18,19,20,21,22,23,24,25,26,27,28,29]:


[image: there is no content]



(9)







Here [image: there is no content] is the model-dependent dimensionless numerical factor and lp is the Planckian length. Note also that initially GUP Equation (9) was derived within a string theory [17,18,19,20] and, subsequently, in a series of works far from this theory [21,22,23,24,25,26,27] it has been demonstrated that on going to high (Planck) energies in the right-hand side of HUP Equation (2) an additional “high-energy” term [image: there is no content] appears. Of particular interest is the work [21], where by means of a simple gedanken experiment it has been demonstrated that with regard to the gravitational interaction Equation (9) is the case.



As Equation (9) is a quadratic inequality, then it naturally leads to the minimal length [image: there is no content]=ξlP=2√[image: there is no content]lP.



This means that the theory for the quantities with a particular dimension has a minimal measurement unit. At least, all the quantities with such a dimension should be “quantized”, i.e., be measured by an integer number of these minimal units of measurement.



Specifically, if lmin—minimal unit of length, then for any length L we have the “Integrality Condition” (IC)


L=[image: there is no content][image: there is no content],



(10)




where NL > 0 is an integer number.



What are the consequences for GUP Equation (9) and HUP Equation (2)?



Assuming that HUP is to a high accuracy derived from GUP on going to low energies or that HUP is a special case of GUP at low values of the momentum, we have


[image: there is no content]



(11)







By the language of NL from Equations (10) and (11) is nothing else but a change-over to the following:


[image: there is no content]



(12)







The assumed equalities in Equations (2) and (9) may be conveniently rewritten in terms of lmin with the use of the deformation parameter αa. This parameter has been introduced earlier in the papers [30,31,32,33,34,35,36,37] as a deformation parameter on going from the canonical quantum mechanics to the quantum mechanics at Planck’s scales (early Universe) that is considered to be the quantum mechanics with the minimal length (QMML):


[image: there is no content]



(13)




where a is the measuring scale.



Definition 1. Deformation is understood as an extension of a particular theory by inclusion of one or several additional parameters in such a way that the initial theory appears in the limiting transition [38].



Then with the equality ([image: there is no content]) Equation (9) is of the form


[image: there is no content]



(14)







In this case due to Equations (10), (12) and (14) takes the following form:


N[image: there is no content][image: there is no content]=ℏΔp+14NΔx[image: there is no content]



(15)




or


(N[image: there is no content]−14NΔx)[image: there is no content]=ℏΔp.



(16)







That is


Δp=ℏ(N[image: there is no content]−14NΔx)[image: there is no content].



(17)







From Equations (15)–(17) it is clear that HUP Equation (2) in the case of the equality appears to a high accuracy in the limit [image: there is no content] in conformity with Equation (12).



It is easily seen that the parameter αa from Equation (13) is discrete as it is nothing else but


[image: there is no content]



(18)







At the same time, from Equation (18) it is evident that αa is irregularly discrete.



It is clear that from Equation (17) at low energies ([image: there is no content]), up to a constant


ℏ2lmin2=ℏc34[image: there is no content]G



(19)




we have


[image: there is no content]



(20)







But all the above computations are associated with the nonrelativistic case. As known, in the relativistic case, when the total energy of a particle with the mass m and with the momentum p equals [39]:


[image: there is no content]



(21)




a minimal value for [image: there is no content] takes the form [16]:


[image: there is no content]



(22)







And in the ultrarelativistic case


[image: there is no content]



(23)




this means simply that


[image: there is no content]



(24)







Provided the minimal length lmin is involved and considering the “Integrality Condition” (IC) Equation (10), in the general case for Equation (22) at the energies considerably lower than the Planck energies [image: there is no content] we obtain the following:


Δx=N[image: there is no content][image: there is no content]≈cℏE,orE≈cℏN[image: there is no content].



(25)







Similarly, at the same energy scale in the ultrarelativistic case we have


p≈ℏ/N[image: there is no content].



(26)







Next under Supposition 2, we assume that there is a minimal measuring unit of time


[image: there is no content]=[image: there is no content]/vmax=[image: there is no content]/c.



(27)







Then the foregoing Equations (2)–(16) are rewritten by substitution as follows:


Δx→Δt;Δp→ΔE;[image: there is no content]→[image: there is no content];[image: there is no content]→Nt=L/c



(28)







Specifically, Equation (16) takes the form


[image: there is no content]



(29)







And similar to Equation (10), we get the “Integrality Condition” (IC) for any time t:


[image: there is no content]



(30)




for certain an integer |[image: there is no content]|≥0.



According to Equation (29), let us define the corresponding energy E


[image: there is no content]



(31)







Note that at low energies [image: there is no content], that is for [image: there is no content], the formula Equation (31) naturally takes the following form:


[image: there is no content]



(32)







Definition 2. (Measurability)

	(1)

	
Let us define the quantity having the dimensions of length L or time t measurable, when it satisfies the relation Equation (10) (and respectively Equation (30)).




	(2)

	
Let us define any physical quantity measurable, when its value is consistent with points (1) of this Definition.









Thus, infinitesimal changes in length (and hence in time) are impossible (to that indicated in Section 1) and any such changes are dependent on the existing energies.



In particular, a minimal possible measurable change of length is [image: there is no content]. It corresponds to some maximal value of the energy [image: there is no content] or momentum [image: there is no content], If [image: there is no content]∝lP, then [image: there is no content]∝EP, [image: there is no content]∝[image: there is no content], where [image: there is no content]∝[image: there is no content], where [image: there is no content] is where the Planck momentum. Then denoting in nonrelativistic case with [image: there is no content] a minimal measurable change every spatial coordinate w corresponding to the energy E we obtain


▵[image: there is no content](w)=▵[image: there is no content](w)=[image: there is no content].



(33)







Evidently, for lower energies (momentums) the corresponding values of [image: there is no content] are higher and, as the quantities having the dimensions of length are quantized Equation (10), for [image: there is no content], [image: there is no content] is transformed to


|▵p([image: there is no content])(w)|=|[image: there is no content]|[image: there is no content].



(34)




where |[image: there is no content]|>1 is an integer number so that we have


|[image: there is no content]−14[image: there is no content]|[image: there is no content]=ℏ|p([image: there is no content])|.



(35)







In the relativistic case the Equation (33) holds, whereas Equations (34) and (35) for E≡E([image: there is no content])<[image: there is no content] are replaced by


|▵E([image: there is no content])(w)|=|[image: there is no content]|[image: there is no content],



(36)




where [image: there is no content] is an integer.



Next we assume that at high energies [image: there is no content] there is a possibility only for the nonrelativistic case or ultrarelativistic case.



Then for the ultrarelativistic case, with regard to Equations (23)–(29), Formula (35) takes the form


|[image: there is no content]−14[image: there is no content]|[image: there is no content]=ℏcE([image: there is no content])=ℏ|p([image: there is no content])|,



(37)




where [image: there is no content].



In the relativistic case at low energies we have


E≪[image: there is no content]∝EP.



(38)







In accordance with Equations (21) and (22) and Formula (34) is of the form


|▵E([image: there is no content])(w)|=|[image: there is no content]|[image: there is no content]=ℏcE([image: there is no content]),|[image: there is no content]|≫1,



(39)




where [image: there is no content] is an integer number.



In the nonrelativistic case at low energies Equation (38) due to Equation (35) we get


|▵p([image: there is no content])(w)|=|[image: there is no content]|[image: there is no content]=ℏ|p([image: there is no content])|,|[image: there is no content]|≫1,



(40)




where [image: there is no content] is an integer number.



In a similar way for the time coordinate t, by virtue of Equations (30)–(32), at the same conditions we have similar Equations (33)–(35)


▵[image: there is no content](t)=[image: there is no content].



(41)







For E≡E([image: there is no content])<[image: there is no content]


[image: there is no content]



(42)




where [image: there is no content] is an integer number, so that we obtain


[image: there is no content]



(43)







In the relativistic case at low energies


E≪[image: there is no content]∝EP,



(44)




in accordance with Equations (21) and (22), Equation (34) takes the form


|▵E([image: there is no content])(w)|=|[image: there is no content]|[image: there is no content]=ℏcE([image: there is no content]),|[image: there is no content]|≫1,



(45)




where [image: there is no content] is an integer number.



Remark 1.



Remark 1.1. It should be noted that the lattice is usually understood as a uniform discrete structure with one and the same constant parameter a (lattice pitch). But in this case we have a nonuniform discrete structure (lattice in its nature), where the analogous parameter is variable, is a multiple of lmin, i.e., a = Nalmin, and also is dependent on the energies. Only in the limit of high (Planck’s) energies we get a (nearly) uniform lattice with (nearly) constant pitch a ≈ lmin or a = κlmin where κ is on the order of 1.



Remark 1.2. Obviously, when lmin is involved, the foregoing formulas for the momenta p([image: there is no content]) and for the energies E([image: there is no content]),E([image: there is no content]) may certainly give the highly accurate result that is close to the experimental one only at the verified low energies: |[image: there is no content]|≫1,|[image: there is no content]|≫1,|[image: there is no content]|≫1. In the case of high energies E∝[image: there is no content]∝EP or, what is the same |[image: there is no content]|→1,|[image: there is no content]|→1,|[image: there is no content]|→1, we have a certain, experimentally unverified, model with a correct low-energy limit.



Remark 1.3. It should be noted that dispersion relations Equation (21) are valid only at low energies [image: there is no content]. In the last few years in a series of works [40,41,42,43,44] it has been demonstrated that within the scope of GUP the high-energy generalization of Equation (21)—Modified Dispersion Relations (MDRs)—is valid.



Specifically, in its most general form the Modified Dispersion Relation (Formula (9) in [44]) may be given as follows:


[image: there is no content]



(46)




where in the notation of [44] the fundamental constants are [image: there is no content], f is the function that gives the exact dispersion relation, and in the right-hand side the applicability of the Taylor-series expansion for [image: there is no content] is assumed. The coefficients [image: there is no content] can take different values in different quantum-gravity proposals. m is the rest energy of a particle, and the mass parameter μ in the right-hand side is directly related to the rest energy but [image: there is no content] if not all the coefficients [image: there is no content] are vanishing.



The general case of (MDRs) Equation (46) in terms of the considerations given in this section is yet beyond the scope of this paper and necessitates further studies of the transition from low [image: there is no content] to high [image: there is no content] energies.



For now it is assumed that at low energies Equation (21) is valid to within a high accuracy, whereas at high energies, i.e., for |[image: there is no content]|→1,|[image: there is no content]|→1,|[image: there is no content]|→1, Equation (21) should be replaced by Equation (46). Besides, it is important that in this paper, as distinct from [40,41,42,43,44], the author uses the simplest (earlier) variant of GUP [17,18,19,20,21,22,23,24,25,26,27], involving a minimal length but not a minimal momentum.



Also note that references [40,41,42,43,44] give not nearly so complete a list of the publications devoted to GUP (and, in particular, MDR)—a very complete and interesting survey may be found in [41].



Remark 1.4. The papers [1,2] point to the fact that the resolved discrete theory is very close to the initial continuous one ([image: there is no content]=0) at low energies [image: there is no content], i.e., at |[image: there is no content]|≫1,|[image: there is no content]|≫1.



In what follows all the considerations are given in terms of “measurable quantities” in the sense of Definition 2 given in this Section. Specifically, in Section 5 these terms are used to consider the Momentum Representation for a quantum theory.




4. Space-Time Lattice of Measurable Quantities and Dual Lattice


So, provided the minimal length [image: there is no content] exists, two lattices are naturally arising.

	
Lattice of the space-time variation—[image: there is no content] representing, to within the known multiplicative constants, the sets of nonzero integers [image: there is no content] and [image: there is no content]≠0 in the corresponding formulas from the set Equations (34) and (45) for each of the three space variables [image: there is no content] and the time variable t


LatS−T≐(Nw,[image: there is no content]).



(47)







Which restrictions should be initially imposed on these sets of nonzero integers?



It is clear that in every such set all the integers (Nw,[image: there is no content]) should be sufficiently “close”, because otherwise, for one and the same space-time point, variations in the values of its different coordinates are associated with principally different values of the energy E which are “far” from each other.



Note that the words “close” and “far” will be elucidated further in this text.



Thus, at the admittedly low energies (Low Energies) E≪[image: there is no content]∝EP the low-energy part (sublattice) [image: there is no content] of [image: there is no content] is as follows:


LatS−T[LE]=(Nw,[image: there is no content])≡(|Nx|≫1,|Ny|≫,|Nz|≫1,|[image: there is no content]|≫1).



(48)







At high energies (High Energies) E→[image: there is no content]∝EP we, on the contrary, have the sublattice [image: there is no content] of [image: there is no content]


LatS−T[HE]=(Nw,[image: there is no content])≡(|Nx|≈1,|Ny|≈1,|Nz|≈1,|[image: there is no content]|≈1).



(49)







	
Next let us define the lattice momenta-energies variation [image: there is no content] as a set to obtain (px(Nx,p),py(Ny,p),pz(Nz,p),E([image: there is no content])) in the nonrelativistic and ultrarelativistic cases for all energies, and as a set to obtain (Ex(Nx,E),Ey(Ny,E),Ez(Nz,E),E([image: there is no content])) in the relativistic (but not ultrarelativistic) case for low energies [image: there is no content], where all the components of the above sets conform to the space coordinates [image: there is no content] and time coordinate t and are given by the corresponding Formulas (33)–(45) from the previous Section.



Note that, because of the suggestion made after formula Equation (38) in the previous Section, we can state that the foregoing sets exhaust all the collections of momentums and energies possible for the lattice [image: there is no content].



From this it is inferred that, in analogy with point I of this Section, within the known multiplicative constants, we have


LatP−E≐(1Nw−11/4Nw,1[image: there is no content]−11/4[image: there is no content]),



(50)




where Nw≠0,[image: there is no content]≠0 are integer numbers from Equation (47). Similar to Equation (48), we obtain the low-energy (Low Energy) part or the sublattice [image: there is no content] of [image: there is no content]


LatP−E[LE]≈(1Nw,1[image: there is no content]),|Nw|≫1,|[image: there is no content]|≫1.



(51)




were Nw,[image: there is no content] are integer numbers.



In accordance with Equation (49), the high-energy (High Energy) part (sublattice) [image: there is no content] of [image: there is no content] takes the form


LatP−E[HE]≈(1Nw−11/4Nw,1[image: there is no content]−11/4[image: there is no content]),|Nw|→1,|[image: there is no content]|→1.



(52)







Considering Remark 1 from the previous Section, it should be noted that, as currently the low energies E≪[image: there is no content]∝EP are verified by numerous experiments and thoroughly studied, the sublattice [image: there is no content] Equation (51) is correctly defined and rigorously determined by the sublattice [image: there is no content] Equation (48).



However, at high energies E→[image: there is no content]∝EP we can not be so confident the sublattice [image: there is no content] may be defined more exactly.



Specifically, [image: there is no content] is obviously a small parameter. And, as demonstrated in [45,46], in the case of GUP we have the following:


[image: there is no content]



(53)







But, according to Equation (18), |1/Na|=[image: there is no content], then, due to Equation (53), the denominators in the right-hand side of Equation (52) may be also varied by adding the terms [image: there is no content], [image: there is no content], that is liable to influence the final result for |Nw|→1,|[image: there is no content]|→1.



The notions “close” and “far” for [image: there is no content] will be completely determined by the dual lattice [image: there is no content] and by Formulas (34) and (45).



It is important to note the following.



In the low-energy sublattice [image: there is no content] all elements are varying very smoothly enabling the approximation of a continuous theory.









5. Measurable Quantities and Momentum Representation


For convenience, we denote the minimal length [image: there is no content]≠0 by ℓ.



Let us consider the above calculations using the formalism of the well-known work [28]. Then GUP (Section 3.2 in [28]) has the following form:


[image: there is no content]



(54)




where ([image: there is no content]) and


[image: there is no content]



(55)







In the form of Section 3 in the present work, Formula (7) from [28]


[image: there is no content]



(56)




with regard to Equations (10), (15), (17) and (55) may be written as


ℏN[image: there is no content](N[image: there is no content]−14NΔx)≥ℏ(1+1(N[image: there is no content]−14NΔx)2+ℓ2ℏ2[image: there is no content]).



(57)







In the equality case this results in the following expression:


−ℏ2(12N[image: there is no content]2+1)(4N[image: there is no content]2−1)2ℓ2=−ℏ2ℓ2(3+4(4N[image: there is no content]2−1)2)=[image: there is no content].



(58)







In this way at low energies [image: there is no content], i.e., at |N[image: there is no content]|≫1, [image: there is no content] is varying practically continuously.



Next, hereinafter we use the Formula (35) with the replacement of [image: there is no content]=ℓ, i.e., we have N[image: there is no content]=[image: there is no content] and


|[image: there is no content]|=ℏ|[image: there is no content]−14[image: there is no content]|ℓ.



(59)







We can write


ıℏ(1+βp2)=ıℏ(1+ℓ2ℏ2ℏ2([image: there is no content]−14[image: there is no content])2ℓ2)=ıℏ(1+1([image: there is no content]−14[image: there is no content])2).



(60)







Let us introduce the following symbols:


[image: there is no content]



(61)







Then we suppose that only in the classical dynamics variations of momenta (energies) have no lower bounds and we have [image: there is no content]. At the same time, in a quantum dynamics, due to the limited spatial domains, these variations have both upper and lower bounds.



In this case, as distinct from [28], in the theory there is a minimum variation of the momentum [image: there is no content] that within the scope of the measurability (Definition 2 in Section 3) takes the form


[image: there is no content]



(62)







As in Equation (61) at high |[image: there is no content]|,(|[image: there is no content]|≫1), Δp[image: there is no content]=[image: there is no content]−pN+1∝(1[image: there is no content]−1[image: there is no content]+1)=1[image: there is no content]([image: there is no content]+1), it is clear that


[image: there is no content]([image: there is no content]+1)≤Nor−12−(14+N)≤[image: there is no content]≤−12+(14+N).



(63)







Considering that [image: there is no content] is an integer number and [image: there is no content], it follows that


|[image: there is no content]|≤[N]−1≡[image: there is no content],



(64)




where the square brackets [] in the right-hand side of Equation (64) denote an integer part of the number.



Next, due to Equations (60) and (61), an analog of Formulae (11) and (12) from [28] in the case under study at low energies will be of the form


p.ψ(p)⇒[image: there is no content]ψ([image: there is no content])=ℏ([image: there is no content]−14[image: there is no content])ℓψ([image: there is no content])≈ℏ[image: there is no content]ℓψ([image: there is no content]),x.ψ(p)⇒x.ψ([image: there is no content])=ıℏ(1+1([image: there is no content]−14[image: there is no content])2)Δp−1ψ([image: there is no content])≈≈ıℏ(1+1Np2)Δp−1ψ([image: there is no content]).



(65)







The scalar product [image: there is no content] from [28]


[image: there is no content]=∫−∞+∞[image: there is no content]1+βp2ψ*(p)ϕ(p)



(66)




in the case of low energies [image: there is no content] is replaced by the sum


[image: there is no content]=∫−∞+∞[image: there is no content]1+βp2ψ*(p)ϕ(p)⇒⇒[image: there is no content]1≪|[image: there is no content]|≤[image: there is no content]=∑1≪|[image: there is no content]|≤[image: there is no content]Δp([image: there is no content])ψ*([image: there is no content])ϕ([image: there is no content])(1+1([image: there is no content]−14[image: there is no content])2)≈≈∑1≪|[image: there is no content]|≤[image: there is no content]Δp([image: there is no content])ψ*([image: there is no content])ϕ([image: there is no content])(1+1Np2).



(67)







And since |[image: there is no content]|≫1 is a variable, in fact [image: there is no content] is continuously varying and, proceeding from the above formulae, we can assume that to a high accuracy the function ϕ([image: there is no content]),(ψ*([image: there is no content])) is differentiable in terms of this variable.



On the other hand, at high energies, when for |[image: there is no content]|≈1 the presentation is fairly discrete, the scalar product Equation (66) is replaced by the sum


[image: there is no content]=∫−∞+∞[image: there is no content]1+βp2ψ*(p)ϕ(p)⇒⇒[image: there is no content]|[image: there is no content]|≈1=∑|[image: there is no content]|≈1Δp([image: there is no content])ψ*([image: there is no content])ϕ([image: there is no content])(1+1([image: there is no content]−14[image: there is no content])2).



(68)







We consider only two cases: (a) 1≪|[image: there is no content]|≤[image: there is no content], “Quantum Consideration, Low Energies” and (b) |[image: there is no content]|≈1,“Quantum Consideration, High Energies”. The case (c)


[image: there is no content]≪|[image: there is no content]|<∞



(69)




is omitted in this Section as it is associated with the “Classical Picture”.



Then at all the energy scales [image: there is no content][image: there is no content] may be formally represented as follows:


[image: there is no content][image: there is no content]=[image: there is no content]1≪|[image: there is no content]|≤[image: there is no content]+[image: there is no content]|[image: there is no content]|≈1.



(70)







However, with the formalism and terms proposed in this work, and also with the use of the Formula (12) that in this case takes the form


(|[image: there is no content]|≈1)→(1≪|[image: there is no content]|≤[image: there is no content]),



(71)




it seems more logical to consider the two components in Equation (70) separately, the first component originating in the process of the low-energy transition from the second component as follows:


[image: there is no content]|[image: there is no content]|≈1⇒|[image: there is no content]|≫1[image: there is no content]1≪|[image: there is no content]|≤[image: there is no content].



(72)







Clearly, the first part of formula (13) from [28] holds as well in the general case for each of the components Equation (70)


[image: there is no content]



(73)







The second part of formula (13) from [28]


[image: there is no content]



(74)




takes place (to a high accuracy) for the low-energy case 1≪|[image: there is no content]|≤[image: there is no content]<∞, i.e., for the first component in Equation (70).



Indeed, in this case, due to the condition |[image: there is no content]|≫1, we have


Δp[image: there is no content]≈dp;Δp−1ψ([image: there is no content])≈∂pψ([image: there is no content])orlim|[image: there is no content]|→∞,([image: there is no content]→∞)Δp[image: there is no content]=dp;lim|[image: there is no content]|→∞,([image: there is no content]→∞)Δp−1ψ([image: there is no content])=∂pψ([image: there is no content]).



(75)







Then in this (low-energy) case there exists the analog of formula (15) from [28]


⟨ψ|(x|ϕ)⟩=∑1≪|[image: there is no content]|≤[image: there is no content]−1Δp([image: there is no content])(1+1Np2)ψ*([image: there is no content])iℏ(1+1Np2)Δp−1(ϕ([image: there is no content]))==∑1≪|[image: there is no content]|≤[image: there is no content]−1Δp([image: there is no content])ψ*([image: there is no content])iℏΔp−1(ϕ([image: there is no content]))≈≈⟨(ψ|x)|ϕ⟩=∑1≪|[image: there is no content]|≤[image: there is no content]−1Δp([image: there is no content])(iℏΔp−1ψ([image: there is no content]))*ϕ([image: there is no content]).



(76)







It is important to note the following remarks:

	(1)

	
The operator x is defined in the case of low energies only for the functional space ϕ([image: there is no content])1≪|[image: there is no content]|≤[image: there is no content]−1. Really, because of the existence of the Formula (61), the extreme point [image: there is no content], (such that ([image: there is no content]+1)([image: there is no content]+2)>N) “moves” this operator beyond the domain under study [image: there is no content]. Therefore, replacing [image: there is no content]↦[image: there is no content]+1,[image: there is no content]+1↦[image: there is no content]+2 in Formula (63), one can easily get the estimate of [image: there is no content] instead of [image: there is no content] as seen in Equation (76).




	(2)

	
Despite the fact that the operator x is also defined at high energies, i.e., for ϕ([image: there is no content])|[image: there is no content]|≈1, in general the property Equation (74) in this case has no place for lack of Formulae (75).




	(3)

	
In all the cases when we consider |[image: there is no content]|≫1 (low energies) the “cutoff” for some upper bound [image: there is no content],([image: there is no content]≪Ppl),1≪N[image: there is no content]<|[image: there is no content]|,p≠[image: there is no content] is determined by the initial conditions of the solved problem.




	(4)

	
It is clear that in the relativistic case [image: there is no content] leads to a minimal variation in the energy


[image: there is no content]



(77)








	(5)

	
In this work a minimal variation of the momentum [image: there is no content] has been introduced from the additional assumptions but, as shown in [47], a minimal variation of the momentum may arise from the Extended Uncertainty Principle (EUP) as follows:


[image: there is no content]



(78)




where l is the characteristic, large length scale [image: there is no content] and β is a dimensionless real constant on the order of unity [47]. From Equation (78) we get an absolute minimum in the momentum uncertainty


[image: there is no content]



(79)







In [48] GUP and EUP are combined by the principle called the Symmetric Generalized Uncertainty Principle (SGUP):


[image: there is no content]



(80)




where [image: there is no content] and l defines the limit of the UV-cutoff (not being such up to a constant factor as in the case of GUP).Then


[image: there is no content]








whereas L defines the limit for IR-cutoff i.e., we have a


[image: there is no content]












	(6)

	
Of course, this paper is only the first step to resolve the Quantum Theory in terms of the measurable quantities using Definition 2. It is necessary to study thoroughly the low-energy case [image: there is no content] and the correct transition to high energies [image: there is no content]. The author is planning to treat these problems in his further works.










6. Gravity Markov’s Model in Terms of Measurable Quantities


This heuristic model was introduced in the work [49] at the early eighties of the last century. This model already considered by the author in his previous paper [46] is treated from the standpoint of the above-mentioned arguments. In [49], it is assumed that “by the universal decree of nature a quantity of the material density ϱ is always bounded by its upper value given by the expression that is composed of fundamental constants” ([49], p. 214):


[image: there is no content]



(81)




with [image: there is no content] as “Planck’s density”.



Then the quantity


[image: there is no content]=ϱ/[image: there is no content]≤1



(82)




is the deformation parameter as it is used in [49] to construct the following of Einstein equations deformation or [image: there is no content]-deformation (Formula (2) in [49]):


[image: there is no content]



(83)




where [image: there is no content], [image: there is no content]–energy-momentum tensor, Λ—cosmological constant.



The case of the parameter [image: there is no content]≪1 or ϱ≪[image: there is no content] correlates with the classical Einstein equations, and the case when [image: there is no content]=1—with the de Sitter Universe. In this way Equation (83) may be considered as [image: there is no content]-deformation of the General Relativity.



As shown in [1, [image: there is no content]-of Einstein equations deformation Equation (83) is nothing else but α-deformation of GR for the parameter [image: there is no content] at [image: there is no content] from Equation (13).



If [image: there is no content] is the average material density for the Universe of the characteristic linear dimension l, i.e., of the volume [image: there is no content], we have


℘l,ϱ=ϱl[image: there is no content]∝αl2=ωαl2,



(84)




where ω is some computable factor.



Then it is clear that [image: there is no content]-representation Equation (83) is of the form


Rμν−12Rδμν=8πGc4[image: there is no content](1−ω2αl4)n−Λω2nαl4nδμν,



(85)




or in the general form we have


Rμν−12Rδμν=8πGc4[image: there is no content]([image: there is no content])−Λ([image: there is no content])δμν.



(86)







But, as r.h.s. of Equation (86) is dependent on [image: there is no content] of any value and particularly in the case [image: there is no content]≪1, i.e., at [image: there is no content], l.h.s of Equation (86) is also dependent on [image: there is no content] of any value and Equation (86) may be written as


Rμν([image: there is no content])−12R([image: there is no content])δμν=8πGc4[image: there is no content]([image: there is no content])−Λ([image: there is no content])δμν.



(87)







Thus, in this specific case we obtain the explicit dependence of GR on the available energies [image: there is no content], that is insignificant at low energies or for [image: there is no content] and, on the contrary, significant at high energies, [image: there is no content].



6.1. Low Energies, E ≪ EP



	
Low energies. Nonmeasurable case. In this case at low energies, using Formula (13) in the limit [image: there is no content] for [image: there is no content], we get a continuous theory coincident with the General Relativity.



	
Low energies. Measurable case. In this case at low energies, using Formulas (13) and (18) for [image: there is no content], for [image: there is no content] (and hence for [image: there is no content]), we get a discrete theory which is a “nearly continuous theory”, practically similar to the General Relativity with the slowly (smoothly) varying parameter [image: there is no content], where t—time.








So, due to low energies and momentums (E≪EP,p≪[image: there is no content]), the “continuous case” 1 (General Relativity) and the “discrete case” 2 that is actually a “nearly continuous case”.




6.2. High Energies, E ≈ EP


At high energies we consider the measurable case only. Then it is clear that at high energies the parameter [image: there is no content] is discrete and for the limiting value of [image: there is no content]=1 we get a discrete series of equations of the form Equation (87) (or a single equation of this form met by a discrete series of solutions) corresponding to [image: there is no content]=1;1/4;1/9;…



As this takes place, [image: there is no content]([image: there is no content])≈0, and in both cases 2 and Section 6.2 Λ([image: there is no content]) is not longer a cosmological constant, being a dynamical cosmological term.



Note that because of Formula (20) given in Section 3, [image: there is no content] in cases 2 and Section 6.2 is an element of the lattice [image: there is no content] from Section 4. And in case 2 it is an element of the sublattice [image: there is no content], whereas case 2 is associated with the sublattice [image: there is no content].



It seems expedient to make some important remarks:

	(1)

	
In Formulae (71) and (72) of Section 5 in this work we have considered the transition


QuantumTheoryinHighEnergies(QTHE)⇒⇒QuantumTheoryinLowEnergies(QTLE).



(88)







However, according to the modern knowledge, the (quantum) gravity phase begins only at very high energies at Planck scales, i.e., the case (a) from Section 5 is inexistent, and hence it is more correct to consider the transition


QuantumTheoryinHighEnergies(QTHE)⇒⇒ClassicalTheory(LowEnergies).



(89)







And this corresponds to the case (c) that has been omitted from consideration in Section 5 Equation (69) with [image: there is no content]=1


(|[image: there is no content]|≈1)→(1≪|[image: there is no content]|<∞).



(90)








	(2)

	
Generally speaking, as Section 6.2 and case 2 in Section 6.1 are associated with measurable cases for low energies and high energies, respectively, all the terms of the Equation (87): Rμν([image: there is no content]),R([image: there is no content]),[image: there is no content]([image: there is no content]),Λ([image: there is no content]) must be expressed in terms of measurable quantities in view of Definition 2 from Section 3. But this problem still remains to be solved. In fact, it is reduced to the construction of the following “measurable” deformations in the sense of Definition 2 in Section 3 as follows:


limℓ→0(Rμν([image: there is no content]≪1),R([image: there is no content]≪1),[image: there is no content]([image: there is no content]≪1),Λ([image: there is no content]≪1))→→(Rμν,R,[image: there is no content],Λ)



(91)




and


lim([image: there is no content]≈1)→([image: there is no content]≪1)(Rμν([image: there is no content]≈1),R([image: there is no content]≈1),[image: there is no content]([image: there is no content]≈1),Λ([image: there is no content]≈1))→→lim[image: there is no content]→0(Rμν([image: there is no content]≪1),R([image: there is no content]≪1)δμν,[image: there is no content]([image: there is no content]≪1),Λ([image: there is no content]≪1))→→(Rμν,R,[image: there is no content],Λ).



(92)







Here the first Equation (91) is a pure low-energy limiting transition from the measurable variant of gravity to the nonmeasurable one (or from a discrete theory to a continuous theory), whereas the second Equation (92) from the beginning is associated with the measurable transition from high energies to low energies and then is coincident with the first one.




	(3)

	
It should be noted that in [1,2] in terms of measurable quantities, as an example, we have studied gravity for the static spherically-symmetric horizon space. It has been shown that, “...despite the absence of infinitesimal spatial-temporal increments owing to the existence of [image: there is no content] and the essential ‘discreteness’ of a theory, this discreteness at low energies is not ‘felt’, the theory in fact being close to the original continuum theory. The indicated discreteness is significant only in the case of high (Planck) energies ” [1]. The Markov model considered in this section represents the generalization of the above-mentioned example. Of course, this model requires further thorough investigation in terms of measurable quantities.











7. Conclusions


7.1. Measurable and Non-Measurable Transitions in Gravity


The illustration considered in the preceding Section (Gravity Markov’s Model) is universal considering the following:



First, using the formalism of this work, it is required to construct a measurable deformation of the General Relativity (GR) at low energies (Formula (91)). This deformation is denoted in terms of [image: there is no content]


[image: there is no content]



(93)







Next, we should construct the high-energy deformation (denoted in terms of [image: there is no content]), this time for [image: there is no content] (the first arrow in the Formula (92))


Grav[HE]ℓ⇒[image: there is no content]→0Grav[LE]ℓ.



(94)







At the present time the majority of the proposed approaches to quantization of gravity are associated with the construction of the following transition:


[image: there is no content]



(95)







But, by the author opinion, this is impossible. It seems that for correct quantization of gravity one needs reversal of the arrow from Equation (94)


Grav[LE]ℓ([image: there is no content]≈0,[image: there is no content]≠0)⇒[image: there is no content]→1Grav[HE]ℓ([image: there is no content]≈1).



(96)







The above results indicate that the low-energy “measurable” gravity variant [image: there is no content] should be very close to GR but different at the same time.



The author is hopeful that the correct construction of a low-energy [image: there is no content] close to GR allows for a more natural transition to quantum (Planck) gravity. Besides, within the notion of measurability, gravity could be saved from some odd solutions, from wormholes in particular.




7.2. Measurable and Non-measurable Transitions in Quantum Theory


The situation is similar for a quantum theory too. In the general case, based on the parameter [image: there is no content] (Formula (18) of Section 3), this means that there exists the following correct limiting high-energy transition:


limℓ≠0,|Na|≫1[image: there is no content]⇒HighEnergylimℓ≠0,|Na|≈1[image: there is no content]



(97)




and there is no correct limiting high-energy transition


lim[image: there is no content][image: there is no content]⇒HighEnergylimℓ≠0,|Na|≈1[image: there is no content].



(98)







The first of them corresponds to the transition from a measurable theory at low energies to a measurable theory at high energies


[image: there is no content]



(99)




whereas the second


[image: there is no content]



(100)




(here [image: there is no content] are quantum theories with the minimal length [image: there is no content] at low energies [image: there is no content], at high energies [image: there is no content], and the well-known (continuous) quantum theory with [image: there is no content]=0).



However, the whole theoretical physics, where presently at low energies [image: there is no content] the minimal length ℓ is not involved at all (i.e., [image: there is no content]=0), is framed around a search for the nonexistent limits Equation (98) (correspondingly Equation (100)).



Of course, in this case the low-energy “measurable” variant [image: there is no content] of [image: there is no content] by its results will be very close to the initial theory [image: there is no content], as indicated in [1,2], and Section 5 of the present work. But these theories are different by nature: the first of them is discrete and the second one is continuous. Nevertheless, it is clear that the main requirement in this case is associated with the “Compatibility Principe”:


at low energies the resolved variant QT[LE]ℓmust, to a high accuracy, represent the well-known approved results of the corresponding continuous theory QT.







These theories should be differing considerably at least on going to high energies [image: there is no content].



The hypothesis set by the author is that correct construction of the “measurable” transition to high energies (Formula (99)) should naturally lead to solution of the ultraviolet divergences problem (initially in terms of the finite measurable quantities).




7.3. Summary of Section 7.1 and Section 7.2 is Such [2]



	
When in the theory the minimal length [image: there is no content]≠0 is actualized (involved) at all the energy scales, a mathematical apparatus of this theory must be changed considerably: no infinitesimal space-time variations (increments) must be involved, the key role being played by the definition of measurability (Definition 2 from Section 3).



	
As this takes place the theory becomes discrete at all the energy scales but at low energies (far from the Planck energies) the sought for theory must be very close in its results to the starting continuous theory (with [image: there is no content]=0). In the process a real discreteness is exhibited only at high energies which are close to the Planck energies.



	
By this approach the theory at low and high energies is associated with a common single set of the parameters ([image: there is no content] from Formula (10)) or with the dimensionless small parameters (1/[image: there is no content]=√αL) which are lacking if at low energies the theory is continuous, i.e., when [image: there is no content]=0.



The principal objective of my further studies is to develop for quantum theory and gravity, within the scope of the considerations given in points 1–3, the corresponding discrete models (with [image: there is no content]≠0) for all the energy scales and to meet the following requirements:



	
At low energies the models must, to a high accuracy, represent the results of the corresponding continuous theories.



	
The models should not have the problems of transition from low to high energies and, specifically, the ultraviolet divergences problem. By author’s opinion, the problem associated with points 4 and 5 is as follows.



	
It is interesting to know why, with the existing [image: there is no content]≠0,[image: there is no content]≠0 and discreteness of nature, at low energies E≪[image: there is no content]∝EP the apparatus of mathematical analysis based on the use of infinitesimal space-time quantities (d[image: there is no content],∂φ∂[image: there is no content], and so on) is very efficient giving excellent results. The answer is simple: in this case [image: there is no content] and [image: there is no content] are very far from the available scale of L and t, the corresponding [image: there is no content]≫1,[image: there is no content]≫1 being in general true but insufficient. There is a need for rigorous calculations.
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