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Abstract:

 Entropy, under a variety of names, has long been used as a measure of diversity in ecology, as well as in genetics, economics and other fields. There is a spectrum of viewpoints on diversity, indexed by a real parameter q giving greater or lesser importance to rare species. Leinster and Cobbold (2012) proposed a one-parameter family of diversity measures taking into account both this variation and the varying similarities between species. Because of this latter feature, diversity is not maximized by the uniform distribution on species. So it is natural to ask: which distributions maximize diversity, and what is its maximum value? In principle, both answers depend on q, but our main theorem is that neither does. Thus, there is a single distribution that maximizes diversity from all viewpoints simultaneously, and any list of species has an unambiguous maximum diversity value. Furthermore, the maximizing distribution(s) can be computed in finite time, and any distribution maximizing diversity from some particular viewpoint [image: there is no content] actually maximizes diversity for all q. Although we phrase our results in ecological terms, they apply very widely, with applications in graph theory and metric geometry.
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1. Introduction


For decades, ecologists have used entropy-like quantities as measures of biological diversity. The basic premise is that given a biological community or ecosystem containing n species in proportions [image: there is no content], the entropy of the probability distribution [image: there is no content] indicates the extent to which the community is balanced or “diverse”. Shannon entropy itself is often used; so too are many variants, as we shall see. But almost all of them share the property that for a fixed number n of species, the entropy is maximized by the uniform distribution [image: there is no content].



However, there is a growing appreciation that this crude model of a biological community is too far from reality, in that it takes no notice of the varying similarities between species. For instance, we would intuitively judge a meadow to be more diverse if it consisted of ten dramatically different plant species than if it consisted of ten species of grass. This has led to the introduction of measures that do take into account inter-species similarities [1,2]. In mathematical terms, making this refinement essentially means extending the classical notion of entropy from probability distributions on a finite set to probability distributions on a finite metric space.



The maximum entropy problem now becomes more interesting. Consider, for instance, a pond community consisting of two very similar species of frog and one species of newt. We would not expect the maximum entropy (or diversity) to be achieved by the uniform distribution [image: there is no content], since the community would then be [image: there is no content] frog and only [image: there is no content] newt. We might expect the maximizing distribution to be closer to [image: there is no content]; the exact answer should depend on the degrees of similarity of the species involved. We return to this scenario in Example 7.



For the sake of concreteness, this paper is written in terms of an ecological scenario: a community of organisms classified into species. However, nothing that we do is intrinsically ecological, or indeed connected to any specific branch of science. Our results apply equally to any collection of objects classified into types.



It is well understood that Shannon entropy is just one point (albeit a special one) on a continuous spectrum of entropies, indexed by a parameter [image: there is no content]. This spectrum has been presented in at least two ways: as the Rényi entropies [image: there is no content] [3] and as the so-called Tsallis entropies [image: there is no content] (actually introduced as biodiversity measures by Patil and Taillie prior to Tsallis’s work in physics, and earlier still in information theory [4,5,6]):


[image: there is no content]([image: there is no content])=11-qlog∑i=1npiq,[image: there is no content]([image: there is no content])=1q-11-∑i=1npiq.








Both [image: there is no content] and [image: there is no content] converge to Shannon entropy as [image: there is no content]. Moreover, [image: there is no content] and [image: there is no content] can be obtained from one another by an increasing invertible transformation, and in this sense are interchangeable.



When [image: there is no content] or [image: there is no content] is used as a diversity measure, q controls the weight attached to rare species, with [image: there is no content] giving as much importance to rare species as common ones and the limiting case [image: there is no content] reflecting only the prevalence of the most common species. Different values of q produce genuinely different judgements on which of two distributions is the more diverse. For instance, if over time a community loses some species but becomes more balanced, then the Rényi and Tsallis entropies decrease for [image: there is no content] but increase for [image: there is no content]. Varying q therefore allows us to incorporate a spectrum of viewpoints on the meaning of the word “diversity”.



Here we use the diversity measures introduced by Leinster and Cobbold [1], which both (i) reflect this spectrum of viewpoints by including the variable parameter q, and (ii) take into account the varying similarities between species. We review these measures in Section 2, Section 3 and Section 4. In the extreme case where different species are assumed to have nothing whatsoever in common, they reduce to the exponentials of the Rényi entropies, and in other special cases they reduce to other diversity measures used by ecologists. In practical terms, the measures of [1] have been used to assess a variety of ecological systems, from communities of microbes [7,8] and crustacean zooplankton [9] to alpine plants [10] and arctic predators [11], as well as being applied in non-biological contexts such as computer network security [12].



Mathematically, the set-up is as follows. A biological community is modelled as a probability distribution [image: there is no content] (with [image: there is no content] representing the proportion of the community made up of species i) together with an [image: there is no content] matrix [image: there is no content] (whose [image: there is no content]-entry represents the similarity between species i and j). From this data, a formula gives a real number qD[image: there is no content]([image: there is no content]) for each [image: there is no content], called the “diversity of order q” of the community. As for the Rényi entropies, different values of q make different judgements: for instance, it may be that for two distributions [image: there is no content] and [image: there is no content]′,


1D[image: there is no content]([image: there is no content])<1D[image: there is no content]([image: there is no content]′)but2D[image: there is no content]([image: there is no content])>2D[image: there is no content]([image: there is no content]′).











Now consider the maximum diversity problem. Fix a list of species whose similarities to one another are known; that is, fix a matrix [image: there is no content] (subject to hypotheses to be discussed). The two basic questions are:

	
Which distribution(s) [image: there is no content] maximize the diversity qD[image: there is no content]([image: there is no content]) of order q?



	
What is the value of the maximum diversity sup[image: there is no content]qD[image: there is no content]([image: there is no content])?





This can be interpreted ecologically as follows: if we have a fixed list of species and complete control over their abundances within our community, how should we choose those abundances in order to maximize the diversity, and how large can we make that diversity?



In principle, both answers depend on q. After all, we have seen that if distributions are ranked by diversity then the ranking varies according to the value of q chosen. But our main theorem is that, in fact, both answers are independent of q:

Theorem 1 

(Main theorem). There exists a probability distribution on [image: there is no content]that maximizes qD[image: there is no content]for all [image: there is no content]. Moreover, the maximum diversity sup[image: there is no content]qD[image: there is no content]([image: there is no content])is independent of [image: there is no content].







So, there is a “best of all possible worlds”: a distribution that maximizes diversity no matter what viewpoint one takes on the relative importance of rare and common species.



This theorem merely asserts the existence of a maximizing distribution. However, a second theorem describes how to compute all maximizing distributions, and the maximum diversity, in a finite number of steps (Theorem 2).



Better still, if by some means we have found a distribution [image: there is no content] that maximizes the diversity of some order [image: there is no content], then a further result asserts that [image: there is no content] maximizes diversity of all orders (Corollary 2). For instance, it is often easiest to find a maximizing distribution for diversity of order ∞ (as in Example 6 and Proposition 2), and it is then automatic that this distribution maximizes diversity of all orders.



Let us put these results into context. First, they belong to the huge body of work on maximum entropy problems. For example, the normal distribution has the maximum entropy among all probability distributions on [image: there is no content] with a given mean and variance, a property which is intimately connected with its appearance in the central limit theorem. This alone would be enough motivation to seek maximum entropy distributions in other settings (such as the one at hand), quite apart from the importance of maximum entropy in thermodynamics, machine learning, macroecology, and so on.



Second, we will see that maximum diversity is very closely related to the emerging invariant known as magnitude. This is defined in the extremely wide generality of enriched category theory (Section 1 of [13]) and specializes in interesting ways in a variety of mathematical fields. For instance, it automatically produces a notion of the Euler characteristic of an (ordinary) category, closely related to the topological Euler characteristic [14]; in the context of metric spaces, magnitude encodes geometric information such as volume and dimension [15,16,17]; in graph theory, magnitude is a new invariant that turns out to be related to a graded homology theory for graphs [18,19]; and in algebra, magnitude produces an invariant of associative algebras that can be understood as a homological Euler characteristic [20].



This work is self-contained. To that end, we begin by explaining and defining the diversity measures in [1] (Section 2, Section 3 and Section 4). Then come the results: preparatory lemmas in Section 5, and the main results in Section 6 and Section 7. Examples are given in Section 8, Section 9 and Section 10, including results on special cases such as when the similarity matrix [image: there is no content] is either the adjacency matrix of a graph or positive definite. Perhaps counterintuitively, a distribution that maximizes diversity can eliminate some species entirely. This is addressed in Section 11, where we derive necessary and sufficient conditions on [image: there is no content] for maximization to preserve all species. Finally, we state some open questions (Section 12).



The main results of this paper previously appeared in a preprint of Leinster [21], but the proofs we present here are substantially simpler. Of the new results, Lemma 8 (the key to our results on preservation of species by maximizing distributions) borrows heavily from an argument of Fremlin and Talagrand [22].



Conventions


A vector [image: there is no content]=(x1,…,xn)∈[image: there is no content]n is nonnegative if [image: there is no content] for all i, and positive if [image: there is no content] for all i. The support of [image: there is no content]∈[image: there is no content]n is


supp([image: there is no content])=i∈[image: there is no content]:[image: there is no content]≠0,








and [image: there is no content] has full support if supp([image: there is no content])={1,…,n}. A real symmetric [image: there is no content] matrix [image: there is no content] is positive semidefinite if [image: there is no content]T[image: there is no content][image: there is no content]≥0 for all 0≠[image: there is no content]∈[image: there is no content]n, and positive definite if this inequality is strict.





2. A Spectrum of Viewpoints on Diversity


Ecologists began to propose quantitative definitions of biological diversity in the mid-twentieth century [23,24], setting in motion more than fifty years of heated debate, dozens of further proposed diversity measures, hundreds of scholarly papers, at least one book devoted to the subject [25], and consequently, for some, despair (already expressed by 1971 in a famously-titled paper of Hurlbert [26]). Meanwhile, parallel discussions were taking place in disciplines such as genetics [27], economists were using the same formulas to measure wealth inequality and industrial concentration [28], and information theorists were developing the mathematical theory of such quantities under the name of entropy rather than diversity.



Obtaining accurate data about an ecosystem is beset with practical and statistical problems, but that is not the reason for the prolonged debate. Even assuming that complete information is available, there are genuine differences of opinion about what the word “diversity” should mean. We focus here on one particular axis of disagreement, illustrated by the examples in Figure 1.


Figure 1. Two bird communities. Heights of stacks indicate species abundances. In (a), there are four species, with the first dominant and the others relatively rare; in (b), the fourth species is absent but the community is otherwise evenly balanced.



[image: Entropy 18 00088 g001 1024]






One extreme viewpoint on diversity is that preservation of species is all that matters: “biodiversity” simply means the number of species present (as is common in the ecological literature as well as the media). Since no attention is paid to the abundances of the species present, rare species count for exactly as much as common species. From this viewpoint, community (a) of Figure 1 is more diverse than community (b), simply because it contains more species.



The opposite extreme is to ignore rare species altogether and consider only those that are most common. (This might be motivated by a focus on overall ecosystem function.) From this viewpoint, community (b) is more diverse than community (a), because it is better-balanced: (a) is dominated by a single common species, whereas (b) has three common species in equal proportions.



Between these two extremes, there is a spectrum of intermediate viewpoints, attaching more or less weight to rare species. Different scientists have found it appropriate to adopt different positions on this spectrum for different purposes, as the literature amply attests.



Rather than attempting to impose one particular viewpoint, we will consider all equally. Thus, we use a one-parameter family of diversity measures, with the “viewpoint parameter” [image: there is no content] controlling one’s position on the spectrum. Taking [image: there is no content] will give rare species as much importance as common species, while taking [image: there is no content] will give rare species no importance at all.



There is one important dimension missing from the discussion so far. We will consider not only the varying abundances of the species, but also the varying similarities between them. This is addressed in the next section.




3. Distributions on a Set with Similarities


In this section and the next, we give a brief introduction to the diversity measures of Leinster and Cobbold [1]. We have two tasks. We must build a mathematical model of the notion of “biological community” (this section). Then, we must define and explain the diversity measures themselves (next section).



In brief, a biological community will be modelled as a finite set (whose elements are the species) equipped with both a probability distribution (indicating the relative abundances of the species) and, for each pair of elements of the set, a similarity coefficient (reflecting the similarities between species).



Let us now consider each of these aspects in turn. First, we assume a community or system of individuals, partitioned into [image: there is no content] species. The word “species” need not have its standard meaning: it can denote any unit thought meaningful, such as genus, serotype (in the case of viruses), or the class of organisms having a particular type of diet. It need not even be a biological grouping; for instance, in [29] the units are soil types. For concreteness, however, we write in terms of an ecological community divided into species. The division of a system into species or types may be somewhat artificial, but this is mitigated by the introduction of the similarity coefficients (as shown in [1], p. 482).



Second, each species has a relative abundance, the proportion of organisms in the community belonging to that species. Thus, listing the species in order as [image: there is no content], the relative abundances determine a vector [image: there is no content]. This is a probability distribution: [image: there is no content]≥0 for each species i, and ∑i=1n[image: there is no content]=1. Abundance can be measured in any way thought relevant, e.g., number of individuals, biomass, or (in the case of plants) ground coverage.



Critically, the word “diversity” refers only to the relative, not absolute, abundances. If half of a forest burns down, or if a patient loses [image: there is no content] of their gut bacteria, then it may be an ecological or medical disaster; but assuming that the system is well-mixed, the diversity does not change. In the language of physics, diversity is an intensive quantity (like density or temperature) rather than an extensive quantity (like mass or heat), meaning that it is independent of the system’s size.



The third and final aspect of the model is inter-species similarity. For each pair [image: there is no content] of species, we specify a real number [image: there is no content] representing the similarity between species i and j. This defines an [image: there is no content] matrix [image: there is no content]=([image: there is no content])1≤i,j≤n. In [1], similarity is taken to be measured on a scale of 0 to 1, with 0 meaning total dissimilarity and 1 that the species are identical. Thus, it is assumed there that


0≤[image: there is no content]≤1foralli,j,Zii=1foralli.



(1)




In fact, our maximization theorems will only require the weaker hypotheses


[image: there is no content]≥0foralli,j,Zii>0foralli



(2)




together with the requirement that [image: there is no content] is a symmetric matrix. (In the appendix to [1], matrices satisfying conditions (2) were called “relatedness matrices”.)



Just as the meanings of “species” and “abundance” are highly flexible, so too is the meaning of “similarity”:



Example 1. The simplest similarity matrix [image: there is no content] is the identity matrix [image: there is no content]. This is called the naive model in [1], since it embodies the assumption that distinct species have nothing in common. Crude though this assumption is, it is implicit in the diversity measures most popular in the ecological literature (Table 1 of [1] ).



Example 2. With the rapid fall in the cost of DNA sequencing, it is increasingly common to measure similarity genetically (in any of several ways). Thus, the coefficients [image: there is no content] may be chosen to represent percentage genetic similarities between species. This is an effective strategy even when the taxonomic classification is unclear or incomplete [1], as is often the case for microbial communities [7].



Example 3. Given a suitable phylogenetic tree, we may define the similarity between two present-day species as the proportion of evolutionary time before the point at which the species diverged.



Example 4. In the absence of more refined data, we can measure species similarity according to a taxonomic tree. For instance, we might define


[image: there is no content]=1ifi=j,0.8ifspeciesiandjaredifferentbutofthesamegenus,[image: there is no content]ifspeciesiandjareofdifferentgenerabutthesamefamily,0otherwise.











Example 5. In purely mathematical terms, an important case is where the similarity matrix arises from a metric d on the set [image: there is no content] via the formula [image: there is no content]=e-d(i,j). Thus, the community is modelled as a probability distribution on a finite metric space. (The naive model corresponds to the metric defined by [image: there is no content] for all [image: there is no content].) The diversity measures that we will shortly define can be understood as (the exponentials of) Rényi-like entropies for such distributions.




4. The Diversity Measures


Here we state the definition of the diversity measures of [1], which we will later seek to maximize. We then explain the reasons for this particular definition.



As in Section 3, we take a biological community modelled as a finite probability distribution [image: there is no content] together with an [image: there is no content] matrix [image: there is no content] satisfying conditions (2). As explained in Section 2, we define not one diversity measure but a family of them, indexed by a parameter [image: there is no content] controlling the emphasis placed on rare species. The diversity of order q of the community is


qD[image: there is no content]([image: there is no content])=∑i∈supp([image: there is no content])[image: there is no content]([image: there is no content][image: there is no content])iq-11/(1-q)



(3)




([image: there is no content]). Here supp([image: there is no content]) is the support of [image: there is no content] (Conventions, Section 1), [image: there is no content][image: there is no content] is the column vector obtained by multiplying the matrix [image: there is no content] by the column vector [image: there is no content], and ([image: there is no content][image: there is no content])i is its i-th entry. Conditions (2) imply that ([image: there is no content][image: there is no content])i>0 whenever i∈supp([image: there is no content]), and so qD[image: there is no content]([image: there is no content]) is well-defined.



Although this formula is invalid for [image: there is no content], it converges as [image: there is no content], and 1D[image: there is no content]([image: there is no content]) is defined to be the limit. The same is true for [image: there is no content]. Explicitly,


1D[image: there is no content]([image: there is no content])=∏i∈supp([image: there is no content])([image: there is no content][image: there is no content])i-[image: there is no content]=exp-∑i∈supp([image: there is no content])[image: there is no content]log([image: there is no content][image: there is no content])i,∞D[image: there is no content]([image: there is no content])=1/maxi∈supp([image: there is no content])([image: there is no content][image: there is no content])i.











The applicability, context and meaning of Equation (3) are discussed at length in [1]. Here we briefly review the principal points.



First, the definition includes as special cases many existing quantities going by the name of diversity or entropy. For instance, in the naive model [image: there is no content]=[image: there is no content], the diversity qD[image: there is no content]([image: there is no content]) is the exponential of the Rényi entropy of order q, and is also known in ecology as the Hill number of order q. (References for this and the next two paragraphs are given in Table 1 of [1].)



Continuing in the naive model [image: there is no content]=[image: there is no content] and specializing further to particular values of q, we obtain other known quantities: 0D[image: there is no content]([image: there is no content]) is species richness (the number of species present), 1D[image: there is no content]([image: there is no content]) is the exponential of Shannon entropy, 2D[image: there is no content]([image: there is no content]) is the Gini–Simpson index (the reciprocal of the probability that two randomly-chosen individuals are of the same species), and ∞D[image: there is no content]([image: there is no content])=1/maxi[image: there is no content] is the Berger–Parker index (a measure of the dominance of the most abundant species).



Now allowing a general [image: there is no content], the diversity of order 2 is 1/∑[image: there is no content][image: there is no content][image: there is no content][image: there is no content]. Thus, diversity of order 2 is the reciprocal of the expected similarity between a random pair of individuals. (The meaning given to “similarity” will determine the meaning of the diversity measure: taking the coefficients [image: there is no content] to be genetic similarities produces a genetic notion of diversity, and similarly phylogenetic, taxonomic, and so on.) Up to an increasing, invertible transformation, this is the well-studied quantity known as Rao’s quadratic entropy.



Given distributions [image: there is no content] and [image: there is no content]′ on the same list of species, different values of q may make different judgements on which of [image: there is no content] and [image: there is no content]′ is the more diverse. For instance, with [image: there is no content]=[image: there is no content] and the two distributions shown in Figure 1, taking [image: there is no content] makes community (a) more diverse and embodies the first “extreme viewpoint” described in Section 2, whereas [image: there is no content] makes (b) more diverse and embodies the opposite extreme.



It is therefore most informative if we calculate the diversity of all orders [image: there is no content]. The graph of qD[image: there is no content]([image: there is no content]) against q is called the diversity profile of [image: there is no content]. Two distributions [image: there is no content] and [image: there is no content]′ can be compared by plotting their diversity profiles on the same axes. If one curve is wholly above the other then the corresponding distribution is unambiguously more diverse. If they cross then the judgement as to which is the more diverse depends on how much importance is attached to rare species.



The formula for qD[image: there is no content]([image: there is no content]) can be understood as follows.



First, for a given species i, the quantity ([image: there is no content][image: there is no content])i=∑j[image: there is no content][image: there is no content] is the expected similarity between species i and an individual chosen at random. Differently put, ([image: there is no content][image: there is no content])i measures the ordinariness of the i-th species within the community; in [1], it is called the “relative abundance of species similar to the i-th”. Hence, the mean ordinariness of an individual in the community is ∑i[image: there is no content]([image: there is no content][image: there is no content])i. This measures the lack of diversity of the community, so its reciprocal is a measure of diversity. This is exactly 2D[image: there is no content]([image: there is no content]).



To explain the diversity of orders [image: there is no content], we recall the classical notion of power mean. Let [image: there is no content] be a finite probability distribution and let [image: there is no content]=(x1,…,xn)∈[0,∞)n, with [image: there is no content] whenever [image: there is no content]>0. For real [image: there is no content], the power mean of [image: there is no content] of order t, weighted by [image: there is no content], is


Mt([image: there is no content],[image: there is no content])=∑i∈supp([image: there is no content])[image: there is no content]xit1/t








(Chapter II of [30]). This definition is extended to [image: there is no content] and [image: there is no content] by taking limits in t, which gives


M-∞([image: there is no content],[image: there is no content])=mini∈supp([image: there is no content])[image: there is no content],M0([image: there is no content],[image: there is no content])=∏i∈supp([image: there is no content])xi[image: there is no content],M∞([image: there is no content],[image: there is no content])=maxi∈supp([image: there is no content])[image: there is no content].








Now, when we take the “mean ordinariness” in the previous paragraph, we can replace the ordinary arithmetic mean (the case [image: there is no content]) by the power mean of order [image: there is no content]. Again taking the reciprocal, we obtain exactly Equation (3). That is,


qD[image: there is no content]([image: there is no content])=1/Mq-1([image: there is no content],[image: there is no content][image: there is no content])



(4)




for all [image: there is no content], [image: there is no content], and [image: there is no content]. So in all cases, diversity is the reciprocal mean ordinariness of an individual within the community, for varying interpretations of “mean”.



The diversity measures qD[image: there is no content]([image: there is no content]) have many good properties, discussed in [1]. Crucially, they are effective numbers: that is,


qD[image: there is no content](1/n,…,1/n)=n








for all q and n. This gives meaning to the quantities qD[image: there is no content]([image: there is no content]): if qD[image: there is no content]([image: there is no content])=32.8, say, then the community is nearly as diverse as a community of 33 completely dissimilar species in equal proportions. With the stronger assumptions (1) on [image: there is no content], the value of qD[image: there is no content]([image: there is no content]) always lies between 1 and n.



Diversity profiles are decreasing: as less emphasis is given to rare species, perceived diversity drops. More precisely:

Proposition 1. 

Let [image: there is no content] be a probability distribution on [image: there is no content] and let [image: there is no content] be an [image: there is no content] matrix satisfying conditions (2). If ([image: there is no content][image: there is no content])i has the same value K for all i∈supp([image: there is no content]) then qD[image: there is no content]([image: there is no content])=1/K for all [image: there is no content]. Otherwise, qD[image: there is no content]([image: there is no content]) is strictly decreasing in [image: there is no content].





Proof. 

This is immediate from Equation (4) and a classical result on power means (Theorem 16 of [30]): Mt([image: there is no content],[image: there is no content]) is increasing in t, strictly so unless [image: there is no content] has the same value K for all i∈supp([image: there is no content]), in which case it has constant value K. ☐







So, any diversity profile is either constant or strictly decreasing. The first part of the next lemma states that diversity profiles are also continuous:

Lemma 1. 

Fix an [image: there is no content] matrix [image: there is no content] satisfying conditions (2). Then:

	i.

	
qD[image: there is no content]([image: there is no content]) is continuous in [image: there is no content] for each distribution [image: there is no content];




	ii.

	
qD[image: there is no content]([image: there is no content]) is continuous in [image: there is no content] for each [image: there is no content].











Proof. 

See Propositions A1 and A2 of the appendix of [1]. ☐







Finally, the measures have the sensible property that if some species have zero abundance, then the diversity is the same as if they were not mentioned at all. To express this, we introduce some notation: given a subset [image: there is no content], we denote by [image: there is no content]B the submatrix ([image: there is no content])[image: there is no content] of [image: there is no content].

Lemma 2 

(Absent species). Let [image: there is no content] be an [image: there is no content] matrix satisfying conditions (2). Let [image: there is no content], and let [image: there is no content] be a probability distribution on [image: there is no content] such that [image: there is no content]=0 for all [image: there is no content]. Then, writing [image: there is no content]′ for the restriction of [image: there is no content] to B,


qD[image: there is no content]B([image: there is no content]′)=qD[image: there is no content]([image: there is no content])








for all [image: there is no content].





Proof. 

This is trivial, and is also an instance of a more general naturality property (Lemma A13 in the appendix of [1]). ☐








5. Preparatory Lemmas


For the rest of this work, fix an integer [image: there is no content] and an [image: there is no content] symmetric matrix [image: there is no content] of nonnegative reals whose diagonal entries are positive (that is, strictly greater than zero). Also write


[image: there is no content]=(p1,…,pn)∈[image: there is no content]n:[image: there is no content]≥0,p1+⋯+pn=1








for the set of probability distributions on [image: there is no content].



To prove the main theorem, we begin by making two apparent digressions.



Let [image: there is no content] be any matrix. A weighting on [image: there is no content] is a column vector [image: there is no content] such that [image: there is no content][image: there is no content] is the column vector whose every entry is 1. It is trivial to check that if both [image: there is no content] and its transpose have at least one weighting, then the quantity [image: there is no content] is independent of the choice of weighting [image: there is no content] on [image: there is no content]; this quantity is called the magnitude [image: there is no content] of [image: there is no content] (Section 1.1 of [13]).



When [image: there is no content] is symmetric (the case of interest here), [image: there is no content] is defined just as long as [image: there is no content] has at least one weighting. When [image: there is no content] is invertible, [image: there is no content] has exactly one weighting and [image: there is no content] is the sum of all the entries of [image: there is no content]-1.



The second digression concerns the dichotomy expressed in Proposition 1: every diversity profile is either constant or strictly decreasing. We now ask: which distributions have constant diversity profile?



This question turns out to have a clean answer in terms of weightings and magnitude. To state it, we make some further definitions.



Definition 1. 

A probability distribution [image: there is no content] on [image: there is no content] is invariant if qD[image: there is no content]([image: there is no content])=q′D[image: there is no content]([image: there is no content]) for all q,q′∈[0,∞].





Let [image: there is no content], and let 0≠[image: there is no content]∈[0,∞)B be a nonnegative vector. Then there is a probability distribution [image: there is no content]([image: there is no content]) on [image: there is no content] defined by


([image: there is no content]([image: there is no content]))i=wi/∑j∈Bwjifi∈B,0otherwise.








In particular, let B be a nonempty subset of [image: there is no content] and [image: there is no content] a nonnegative weighting on [image: there is no content]B=([image: there is no content])[image: there is no content]. Then [image: there is no content]≠0, so [image: there is no content]([image: there is no content]) is defined, and [image: there is no content]([image: there is no content])i=wi/[image: there is no content]B for all [image: there is no content].



Lemma 3. 

The following are equivalent for [image: there is no content]∈[image: there is no content]:

	i.

	
[image: there is no content] is invariant;




	ii.

	
([image: there is no content][image: there is no content])i=([image: there is no content][image: there is no content])j for all i,j∈supp([image: there is no content]);




	iii.

	
[image: there is no content]=[image: there is no content]([image: there is no content]) for some nonnegative weighting [image: there is no content] on [image: there is no content]B and some nonempty subset [image: there is no content].






Moreover, in the situation of (iii), qD[image: there is no content]([image: there is no content])=[image: there is no content]B for all [image: there is no content].





Proof. 

(i) [image: there is no content] (ii) is immediate from Proposition 1.





For (ii) [image: there is no content] (iii), assume (ii). Put B=supp([image: there is no content]) and write K=([image: there is no content][image: there is no content])i for any [image: there is no content]. Then [image: there is no content], so we may define [image: there is no content]∈[image: there is no content]B by wi=[image: there is no content]/K ([image: there is no content]). Evidently [image: there is no content]=[image: there is no content]([image: there is no content]) and [image: there is no content] is nonnegative. Furthermore, [image: there is no content] is a weighting on [image: there is no content]B, since whenever [image: there is no content],


([image: there is no content]B[image: there is no content])i=∑j∈B[image: there is no content][image: there is no content]/K=∑j=1n[image: there is no content][image: there is no content]/K=1.











Finally, for (iii) [image: there is no content] (ii) and “moreover”, take B and [image: there is no content] as in (iii). Then supp([image: there is no content]([image: there is no content]))⊆B, so for all i∈supp([image: there is no content]([image: there is no content])),


[image: there is no content]·[image: there is no content]([image: there is no content])i=[image: there is no content]B[image: there is no content]/[image: there is no content]Bi=1/[image: there is no content]B.








Hence qD[image: there is no content]([image: there is no content]([image: there is no content]))=[image: there is no content]B for all [image: there is no content] by Proposition 1. ☐



We now prove a result that is much weaker than the main theorem, but will act as a stepping stone in the proof.



Lemma 4. 

For each [image: there is no content], there exists an invariant distribution that maximizes qD[image: there is no content].





Proof. 

Let [image: there is no content]. Then qD[image: there is no content] is continuous on the compact space [image: there is no content] (Lemma 1(ii)), so attains a maximum at some point [image: there is no content]. Take j,k∈supp([image: there is no content]) such that ([image: there is no content][image: there is no content])j is least and ([image: there is no content][image: there is no content])k is greatest. By Lemma 3, it is enough to prove that ([image: there is no content][image: there is no content])j=([image: there is no content][image: there is no content])k.





Define δj∈[image: there is no content] by taking [image: there is no content] to be the Kronecker delta [image: there is no content], and [image: there is no content] similarly. Then [image: there is no content]+t(δj-[image: there is no content])∈[image: there is no content] for all real t sufficiently close to 0, and


0=ddtqD[image: there is no content][image: there is no content]+t(δj-[image: there is no content])1-q|[image: there is no content]



(5)






=(q-1)∑i∈supp([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content][image: there is no content])iq-2-∑i∈supp([image: there is no content])Zik[image: there is no content]([image: there is no content][image: there is no content])iq-2+([image: there is no content][image: there is no content])jq-1-([image: there is no content][image: there is no content])kq-1



(6)






≥(q-1)∑i=1n[image: there is no content][image: there is no content]([image: there is no content][image: there is no content])jq-2-∑i=1nZik[image: there is no content]([image: there is no content][image: there is no content])kq-2+([image: there is no content][image: there is no content])jq-1-([image: there is no content][image: there is no content])kq-1



(7)






=q([image: there is no content][image: there is no content])jq-1-([image: there is no content][image: there is no content])kq-1



(8)






≥0,



(9)




where Equation (5) holds because [image: there is no content] is a supremum, Equation (6) is a routine computation, inequalities (7) and (9) follow from the defining properties of j and k, and Equation (8) uses the symmetry of [image: there is no content]. Equality therefore holds throughout, and in particular in (9). Hence ([image: there is no content][image: there is no content])j=([image: there is no content][image: there is no content])k, as required. ☐



An alternative proof uses Lagrange multipliers, but is complicated by the possibility that qD[image: there is no content] attains its maximum on the boundary of [image: there is no content].



The result we have just proved only concerns the maximization of qD[image: there is no content] for specific values of q, but the following lemma will allow us to deduce results about maximization for all q simultaneously.



Definition 2. 

A probability distribution on [image: there is no content] is maximizing if it maximizes qD[image: there is no content] for all [image: there is no content].





Lemma 5. 

For [image: there is no content], any invariant distribution that maximizes q′D[image: there is no content] also maximizes qD[image: there is no content]. In particular, any invariant distribution that maximizes 0D[image: there is no content] is maximizing.



Proof. Let [image: there is no content] and let [image: there is no content] be an invariant distribution that maximizes q′D[image: there is no content]. Then for all [image: there is no content]∈[image: there is no content],


qD[image: there is no content]([image: there is no content])≤q′D[image: there is no content]([image: there is no content])≤q′D[image: there is no content]([image: there is no content])=qD[image: there is no content]([image: there is no content]),








since diversity profiles are decreasing (Proposition 1). ☐






6. The Main Theorem


For convenience, we restate the main theorem:

Theorem 1 

(Main theorem). There exists a probability distribution on [image: there is no content] that maximizes qD[image: there is no content] for all [image: there is no content]. Moreover, the maximum diversity sup[image: there is no content]∈[image: there is no content]qD[image: there is no content]([image: there is no content]) is independent of [image: there is no content].





Proof. 

An equivalent statement is that there exists an invariant maximizing distribution. To prove this, choose a decreasing sequence [image: there is no content] in [image: there is no content] converging to 0. By Lemma 4, we can choose for each [image: there is no content] an invariant distribution [image: there is no content]λ that maximizes qλD[image: there is no content]. Since [image: there is no content] is compact, we may assume (by passing to a subsequence if necessary) that the sequence ([image: there is no content]λ) converges to some point [image: there is no content]∈[image: there is no content]. We will show that [image: there is no content] is invariant and maximizing.







We show that [image: there is no content] is invariant using Lemma 3. Let i,j∈supp([image: there is no content]). Then i,j∈supp([image: there is no content]λ) for all [image: there is no content], so ([image: there is no content][image: there is no content]λ)i=([image: there is no content][image: there is no content]λ)j for all [image: there is no content], and letting [image: there is no content] gives ([image: there is no content][image: there is no content])i=([image: there is no content][image: there is no content])j.



To show that [image: there is no content] is maximizing, first note that [image: there is no content]λ′ maximizes qλD[image: there is no content] whenever [image: there is no content] (by Lemma 5). Fixing λ and letting [image: there is no content], this implies that [image: there is no content] maximizes qλD[image: there is no content], since qλD[image: there is no content] is continuous (Lemma 1(ii)).



Thus, [image: there is no content] maximizes qλD[image: there is no content] for all λ. But [image: there is no content] as [image: there is no content], and diversity is continuous in its order (Lemma 1(i)), so [image: there is no content] maximizes 0D[image: there is no content]. Since [image: there is no content] is invariant, Lemma 5 implies that [image: there is no content] is maximizing. ☐



The theorem can be understood as follows (Figure 2a). Each particular value of the viewpoint parameter q ranks the set of all distributions [image: there is no content] in order of diversity, with [image: there is no content] placed above [image: there is no content]′ when qD[image: there is no content]([image: there is no content])>qD[image: there is no content]([image: there is no content]′). Different values of q rank the set of distributions differently. Nevertheless, there is a distribution [image: there is no content]max that is at the top of every ranking. This is the content of the first half of Theorem 1.


Figure 2. Visualizations of the main theorem: (a) in terms of how different values of q rank the set of distributions; and (b) in terms of diversity profiles.
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Alternatively, we can visualize the theorem in terms of diversity profiles (Figure 2b). Diversity profiles may cross, reflecting the different priorities embodied by different values of q. But there is at least one distribution [image: there is no content]max whose profile is above every other profile; moreover, its profile is constant.



Theorem 1 immediately implies:

Corollary 1. 

Every maximizing distribution is invariant.







This result can be partially understood as follows. For Shannon entropy, and more generally any of the Rényi entropies, the maximizing distribution is obtained by taking the relative abundance [image: there is no content] to be the same for all species i. This is no longer true when inter-species similarities are taken into account. However, what is approximately true is that diversity is maximized when ([image: there is no content][image: there is no content])i, the relative abundance of species similar to the i-th, is the same for all species i. This follows from Corollary 1 together with the characterization of invariant distributions in Lemma 3(ii); but it is only “approximately true” because it is only guaranteed that ([image: there is no content][image: there is no content])i=([image: there is no content][image: there is no content])j when i and j both belong to the support of [image: there is no content], not for all i and j. It may in fact be that some or all maximizing distributions do not have full support, a phenomenon we examine in Section 11.



The second half of Theorem 1 tells us that associated with the matrix [image: there is no content] is a numerical invariant, the constant value of a maximizing distribution:

Definition 3. 

The maximum diversity of [image: there is no content] is Dmax([image: there is no content])=sup[image: there is no content]∈[image: there is no content]qD[image: there is no content]([image: there is no content]), for any [image: there is no content].







We show how to compute Dmax([image: there is no content]) in the next section.



If a distribution [image: there is no content] maximizes diversity of order 2, say, must it also maximize diversity of orders 1 and ∞? The answer turns out to be yes:

Corollary 2. 

Let [image: there is no content] be a probability distribution on [image: there is no content]. If [image: there is no content] maximizes qD[image: there is no content] for some [image: there is no content] then [image: there is no content] maximizes qD[image: there is no content] for all [image: there is no content].





Proof. 

Let [image: there is no content] and let [image: there is no content] be a distribution maximizing qD[image: there is no content]. Then


qD[image: there is no content]([image: there is no content])≤0D[image: there is no content]([image: there is no content])≤Dmax([image: there is no content])=qD[image: there is no content]([image: there is no content]),








where the first inequality holds because diversity profiles are decreasing. So equality holds throughout. Now qD[image: there is no content]([image: there is no content])=0D[image: there is no content]([image: there is no content]) with [image: there is no content], so Proposition 1 implies that [image: there is no content] is invariant. But also 0D[image: there is no content]([image: there is no content])=Dmax([image: there is no content]), so [image: there is no content] maximizes 0D[image: there is no content]. Hence by Lemma 5, [image: there is no content] is maximizing. ☐







The significance of this corollary is that if we wish to find a distribution that maximizes diversity of all orders q, it suffices to find a distribution that maximizes diversity of a single nonzero order.



The hypothesis that [image: there is no content] in Corollary 2 cannot be dropped. Indeed, take [image: there is no content]=[image: there is no content]. Then 0D[image: there is no content]([image: there is no content]) is species richness (the cardinality of supp([image: there is no content])), which is maximized by any distribution [image: there is no content] of full support, whereas 1D[image: there is no content]([image: there is no content]) is the exponential of Shannon entropy, which is maximized only when [image: there is no content] is uniform.




7. The Computation Theorem


The main theorem guarantees the existence of a maximizing distribution [image: there is no content]max, but does not tell us how to find it. It also states that qD[image: there is no content]([image: there is no content]max) is independent of q, but does not tell us what its value is. The following result repairs both omissions.



Theorem 2 

(Computation theorem). The maximum diversity and maximizing distributions of [image: there is no content] are given as follows:

	i.

	
For all [image: there is no content],


sup[image: there is no content]∈[image: there is no content]qD[image: there is no content]([image: there is no content])=maxB[image: there is no content]B



(10)




where the maximum is over all [image: there is no content] such that [image: there is no content]B admits a nonnegative weighting.




	ii.

	
The maximizing distributions are precisely those of the form [image: there is no content]([image: there is no content]) where [image: there is no content] is a nonnegative weighting on [image: there is no content]B for some B attaining the maximum in Equation (10).











Proof. 

Let [image: there is no content]. Then


sup{qD[image: there is no content]([image: there is no content]):[image: there is no content]∈[image: there is no content]}=sup{qD[image: there is no content]([image: there is no content]):[image: there is no content]∈[image: there is no content],[image: there is no content]isinvariant}



(11)






=sup{[image: there is no content]B:∅≠B⊆[image: there is no content],[image: there is no content]Badmitsanonnegativeweighting}



(12)






=max{[image: there is no content]B:B⊆[image: there is no content],[image: there is no content]Badmitsanonnegativeweighting},



(13)




where Equation (11) follows from the fact that there is an invariant maximizing distribution (Theorem 1), Equation (12) follows from Lemma 3, and Equation (13) follows from the trivial fact that [image: there is no content]B≥0=[image: there is no content]∅ whenever [image: there is no content]B admits a nonnegative weighting.





This proves part (i). Every maximizing distribution is invariant (Corollary 1), so part (ii) follows from Lemma 3. ☐



Remark 1. The computation theorem provides a finite-time algorithm for finding all the maximizing distributions and computing Dmax([image: there is no content]), as follows. For each of the [image: there is no content] subsets B of [image: there is no content], perform some simple linear algebra to find the space of nonnegative weightings on [image: there is no content]B; if this space is nonempty, call B feasible and record the magnitude [image: there is no content]B. Then Dmax([image: there is no content]) is the maximum of all the recorded magnitudes. For each feasible B such that [image: there is no content]B=Dmax([image: there is no content]), and each nonnegative weighting [image: there is no content] on [image: there is no content]B, the distribution [image: there is no content]([image: there is no content]) is maximizing. This generates all of the maximizing distributions.



This algorithm takes exponentially many steps in n, and Remark 3 provides strong evidence that the time taken cannot be reduced to a polynomial in n. But the situation is not as hopeless as it might appear, for two reasons.



First, each step of the algorithm is fast, consisting as it does of solving a system of linear equations. For instance, in an implementation in Matlab on a standard laptop, with no attempt at optimization, the maximizing distributions of [image: there is no content] matrices were computed in a few seconds. (We thank Christina Cobbold for carrying out this implementation.) Second, for certain classes of matrices [image: there is no content], we can make substantial improvements in computing time, as observed in Section 10.




8. Simple Examples


The next three sections give examples of the main results, beginning here with some simple, specific examples.



Example 6. First consider the naive model [image: there is no content]=[image: there is no content], in which different species are deemed to be entirely dissimilar. As noted in Section 4, qD[image: there is no content]([image: there is no content]) is the exponential of the Rényi entropy of order q. It is well-known that Rényi entropy of any order [image: there is no content] is maximized uniquely by the uniform distribution. This result also follows trivially from Corollary 2: for clearly ∞D[image: there is no content]([image: there is no content])=1/maxi[image: there is no content] is uniquely maximized by the uniform distribution, and the corollary implies that the same is true for all values of [image: there is no content]. Moreover, Dmax([image: there is no content])=[image: there is no content]=n.



Example 7. For a general matrix [image: there is no content] satisfying conditions (1), a two-species system is always maximized by the uniform distribution [image: there is no content]. When [image: there is no content], however, nontrivial examples arise. For instance, take the system shown in Figure 3, consisting of one species of newt and two species of frog. Let us first consider intuitively what we expect the maximizing distribution to be, then compare this with the answer given by Theorem 2.


Figure 3. Hypothetical three-species system. Distances between species indicate degrees of dissimilarity between them (not to scale).
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If we ignore the fact that the two frog species are more similar to each other than they are to the newt, then (as in Example 6) the maximizing distribution is [image: there is no content]. At the other extreme, if we regard the two frog species as essentially identical then effectively there are only two species, newts and frogs, so the maximizing distribution gives relative abundance [image: there is no content] to the newt and [image: there is no content] to the frogs. So with this assumption, we expect diversity to be maximized by the distribution [image: there is no content].



Intuitively, then, the maximizing distribution should lie between these two extremes. And indeed, it does: implementing the algorithm in Remark 1 (or using Proposition 3 below) reveals that the unique maximizing distribution is [image: there is no content].



One of our standing hypotheses on [image: there is no content] is symmetry. The last of our simple examples shows that if [image: there is no content] is no longer assumed to be symmetric, then the main theorem fails in every respect.



Example 8. Let [image: there is no content]=11/201, which satisfies all of our standing hypotheses except symmetry. Consider a distribution [image: there is no content]=(p1,p2)∈Δ2. If [image: there is no content] is [image: there is no content] or [image: there is no content] then qD[image: there is no content]([image: there is no content])=1 for all q. Otherwise,


0D[image: there is no content]([image: there is no content])=3-21+p1,



(14)






2D[image: there is no content]([image: there is no content])=23(p1-1/2)2+5/4,



(15)






∞D[image: there is no content]([image: there is no content])=1/(1-p1)ifp1≤1/3,2/(1+p1)ifp1≥1/3.



(16)




From Equation (14) it follows that sup[image: there is no content]∈Δ20D[image: there is no content]([image: there is no content])=2. However, this supremum is not attained; 0D[image: there is no content]([image: there is no content])→2 as [image: there is no content]→(1,0), but 0D[image: there is no content][image: there is no content]=1. Equations (15) and (16) imply that


sup[image: there is no content]∈Δ22D[image: there is no content]([image: there is no content])=1.6,sup[image: there is no content]∈Δ2∞D[image: there is no content]([image: there is no content])=1.5,








with unique maximizing distributions [image: there is no content] and [image: there is no content] respectively.



Thus, when [image: there is no content] is not symmetric, the main theorem fails comprehensively: the supremum sup[image: there is no content]∈[image: there is no content]0D[image: there is no content]([image: there is no content]) may not be attained; there may be no distribution maximizing sup[image: there is no content]∈[image: there is no content]qD[image: there is no content]([image: there is no content]) for all q simultaneously; and that supremum may vary with q.



Perhaps surprisingly, nonsymmetric similarity matrices [image: there is no content] do have practical uses. For example, it is shown in Proposition A7 of [1] that the mean phylogenetic diversity measures of Chao, Chiu and Jost [31] are a special case of the measures qD[image: there is no content]([image: there is no content]), obtained by taking a particular [image: there is no content] depending on the phylogenetic tree concerned. This [image: there is no content] is usually nonsymmetric, reflecting the asymmetry of evolutionary time. More generally, the case for dropping the symmetry axiom for metric spaces was made in [32], and Gromov has argued that symmetry “unpleasantly limits many applications” (p. xv of [33]). So the fact that our maximization theorem fails for nonsymmetric [image: there is no content] is an important restriction.




9. Maximum Diversity on Graphs


Consider those matrices [image: there is no content] for which each similarity coefficient [image: there is no content] is either 0 or 1. A matrix [image: there is no content] of this form amounts to a (finite, undirected) reflexive graph with vertex-set [image: there is no content], with an edge between i and j if and only if [image: there is no content]=1. (That is, [image: there is no content] is the adjacency matrix of the graph.) Our standing hypotheses on [image: there is no content] then imply that [image: there is no content] for all i, so every vertex has a loop on it; this is the meaning of reflexive.



What is the maximum diversity of the adjacency matrix of a graph? Before answering this question, we explain why it is worth asking. Mathematically, the question is natural, since such matrices [image: there is no content] are extreme cases. More exactly, the set of symmetric matrices [image: there is no content] satisfying conditions (1) is convex, the adjacency matrices of graphs are the extreme points of this convex set, and the diversity measure qD[image: there is no content]([image: there is no content]) is a convex function of [image: there is no content] for certain values of q (such as [image: there is no content]). Computationally, the answer turns out to lead to a lower bound on the difficulty of computing the maximum diversity of a given similarity matrix. Biologically, it is less clear that the question is relevant, but neither is it implausible, given the importance in biology of graphs (food webs, epidemiological contact networks, etc.).



We now recall some terminology. Vertices x and y of a graph are adjacent, written [image: there is no content], if there is an edge between them. (In particular, every vertex of a reflexive graph is adjacent to itself.) A set of vertices is independent if no two distinct vertices are adjacent. The independence number [image: there is no content] of a graph G is the maximal cardinality of an independent set of vertices of G.



Proposition 2. 

Let G be a reflexive graph with adjacency matrix [image: there is no content]. Then the maximum diversity Dmax([image: there is no content]) is equal to the independence number [image: there is no content].





Proof. 

We will maximize the diversity of order ∞ and apply Theorem 1. For any probability distribution [image: there is no content] on the vertex-set [image: there is no content], we have


∞D[image: there is no content]([image: there is no content])=1/maxi∈supp([image: there is no content])∑j:i∼j[image: there is no content].



(17)









First we show that Dmax([image: there is no content])≥α(G). Choose an independent set B of maximal cardinality, and define [image: there is no content]∈[image: there is no content] by


[image: there is no content]=[image: there is no content]ifi∈B,0otherwise.








For each i∈supp([image: there is no content]), the sum on the right-hand side of Equation (17) is [image: there is no content]. Hence ∞D[image: there is no content]([image: there is no content])=α(G), and so α(G)≤Dmax([image: there is no content]).



Now we show that Dmax([image: there is no content])≤α(G). Let [image: there is no content]∈[image: there is no content]. Choose an independent set B⊆supp([image: there is no content]) with maximal cardinality among all independent subsets of supp([image: there is no content]). Then every vertex of supp([image: there is no content]) is adjacent to at least one vertex in B, otherwise we could adjoin it to B to make a larger independent subset. Hence


∑i∈B∑j:i∼j[image: there is no content]=∑i∈B∑j∈supp([image: there is no content]):i∼j[image: there is no content]≥∑j∈supp([image: there is no content])[image: there is no content]=1.








So there exists [image: there is no content] such that [image: there is no content], where [image: there is no content] denotes the cardinality of B. But [image: there is no content], and therefore


maxi∈supp([image: there is no content])∑j:i∼j[image: there is no content]≥1/α(G),








as required. ☐



Remark 2. The first part of the proof (together with Corollary 2) shows that a maximizing distribution can be constructed by taking the uniform distribution on some independent set of largest cardinality, then extending by zero to the whole vertex-set. Except in the trivial case [image: there is no content]=[image: there is no content], this maximizing distribution never has full support. We return to this point in Section 11.



Example 9. The reflexive graph G=•-•-• (loops not shown) has adjacency matrix [image: there is no content]=110111011. The independence number of G is 2; this, then, is the maximum diversity of [image: there is no content]. There is a unique independent set of cardinality 2, and a unique maximizing distribution, [image: there is no content].



Example 10. The reflexive graph •-•-•-• again has independence number 2. There are three independent sets of maximal cardinality, so by Remark 2, there are at least three maximizing distributions,


(1/2,0,1/2,0),(1/2,0,0,1/2),(0,1/2,0,1/2),








all with different supports. (The possibility of multiple maximizing distributions was also observed in the case [image: there is no content] by Pavoine and Bonsall [34].) In fact, there are further maximizing distributions not constructed in the proof of Proposition 2, namely, [image: there is no content] and [image: there is no content] for any [image: there is no content].



Example 11. Let d be a metric on [image: there is no content]. For a given [image: there is no content], the covering number [image: there is no content] is the minimum cardinality of a subset [image: there is no content] such that


⋃i∈AB(i,ε)=[image: there is no content],








where [image: there is no content]. The number [image: there is no content] is known as the ε-entropy of d [35].



Now define a matrix [image: there is no content]ε by


Zijε=1ifd(i,j)≤ε,0otherwise.








Then [image: there is no content]ε is the adjacency matrix of the reflexive graph G with vertices [image: there is no content] and [image: there is no content] if and only if [image: there is no content]. Thus, a subset of [image: there is no content] is independent in G if and only if [image: there is no content] for every [image: there is no content]. It is a consequence of the triangle inequality that


[image: there is no content]








and so by Proposition 2,


N(d,ε)≤Dmax([image: there is no content]ε)≤N(d,ε/2).








Recalling that logqD[image: there is no content] extends the classical notion of Rényi entropy, this thoroughly justifies the name of ε-entropy (which was originally justified by vague analogy).



The moral of the proof of Proposition 2 is that by performing the simple task of maximizing diversity of order ∞, we automatically maximize diversity of all other orders. Here is an example of how this can be exploited.



Recall that every graph G has a complement [image: there is no content], with the same vertex-set as G; two vertices are adjacent in [image: there is no content] if and only if they are not adjacent in G. Thus, the complement of a reflexive graph is irreflexive (has no loops), and vice versa. A set B of vertices in an irreflexive graph X is a clique if all pairs of distinct elements of B are adjacent in X. The clique number [image: there is no content] of X is the maximal cardinality of a clique in X. Thus, [image: there is no content].



We now recover a result of Berarducci, Majer and Novaga (Proposition 5.10 of [36]).



Corollary 3. 

Let X be an irreflexive graph. Then


sup[image: there is no content]∑(i,j):i∼j[image: there is no content][image: there is no content]=1-1[image: there is no content]








where the supremum is over probability distributions [image: there is no content] on the vertex-set of X, and the sum is over pairs of adjacent vertices of X.





Proof. 

Write [image: there is no content] for the vertex-set of X, and [image: there is no content] for the adjacency matrix of the reflexive graph [image: there is no content]. Then for all [image: there is no content]∈[image: there is no content],


∑(i,j):i∼jinX[image: there is no content][image: there is no content]=∑i,j=1n[image: there is no content][image: there is no content]-∑[image: there is no content]:i∼jin[image: there is no content][image: there is no content][image: there is no content]=1-∑i,j=1n[image: there is no content][image: there is no content][image: there is no content]=1-1/2D[image: there is no content]([image: there is no content]).








Hence by Theorem 1 and Proposition 2,


sup[image: there is no content]∈[image: there is no content]∑(i,j):i∼jinX[image: there is no content][image: there is no content]=1-1Dmax([image: there is no content])=1-1α([image: there is no content])=1-1[image: there is no content]. ☐













It follows from this proof and Remark 2 that ∑(i,j):i∼j[image: there is no content][image: there is no content] can be maximized as follows: take the uniform distribution on some clique in X of maximal cardinality, then extend by zero to the whole vertex-set.



Remark 3. Proposition 2 implies that computationally, finding the maximum diversity of an arbitrary [image: there is no content] is at least as hard as finding the independence number of a reflexive graph. This is a very well-studied problem, usually presented in its dual form (find the clique number of an irreflexive graph) and called the maximum clique problem [37]. It is [image: there is no content]-hard, so on the assumption that P≠[image: there is no content], there is no polynomial-time algorithm for computing maximum diversity, nor even for computing the support of a maximizing distribution.




10. Positive Definite Similarity Matrices


The theory of magnitude of metric spaces runs most smoothly when the matrices [image: there is no content] concerned are positive definite [16,38]. We will see that positive (semi)definiteness is also an important condition when maximizing diversity.



Any positive definite matrix is invertible and therefore has a unique weighting. (A positive semidefinite matrix need not have a weighting at all.) Now the crucial fact about magnitude is:

Lemma 6. 

Let [image: there is no content] be a positive semidefinite [image: there is no content] real matrix admitting a weighting. Then


[image: there is no content]=sup[image: there is no content]∈[image: there is no content]n:[image: there is no content]T[image: there is no content][image: there is no content]≠0∑i=1n[image: there is no content]2[image: there is no content]T[image: there is no content][image: there is no content]>0.








If [image: there is no content] is positive definite then the supremum is attained by exactly the nonzero scalar multiples [image: there is no content] of the unique weighting on [image: there is no content].





Proof. 

This is a small extension of Proposition 2.4.3 of [13]. Choose a weighting [image: there is no content] on [image: there is no content]. By the Cauchy–Schwarz inequality,


([image: there is no content]T[image: there is no content][image: there is no content])2≤([image: there is no content]T[image: there is no content][image: there is no content])([image: there is no content]T[image: there is no content][image: there is no content]),








or equivalently


∑[image: there is no content]2≤([image: there is no content]T[image: there is no content][image: there is no content])[image: there is no content],



(18)




for all [image: there is no content]∈[image: there is no content]n. Equality holds when [image: there is no content] is a scalar multiple of [image: there is no content], and if [image: there is no content] is positive definite, it holds only then. Finally, taking [image: there is no content]=(1,0,…,0)T in (18) and using positive semidefiniteness gives [image: there is no content]>0. ☐







From this, we deduce:

Lemma 7. 

Let [image: there is no content]. If [image: there is no content] is positive semidefinite and both [image: there is no content] and [image: there is no content]B admit a weighting, then [image: there is no content]B≤[image: there is no content]. Moreover, if [image: there is no content] is positive definite and the unique weighting on [image: there is no content] has full support, then [image: there is no content]B<[image: there is no content].





Proof. 

The first statement follows from Lemma 6 and the fact that [image: there is no content]B is positive semidefinite. The second is trivial if [image: there is no content]. Assuming not, let [image: there is no content]∈[image: there is no content]B be the unique weighting on [image: there is no content]B (which is positive definite), and write [image: there is no content]∈[image: there is no content]n for the extension of [image: there is no content] by zero to [image: there is no content]. Then [image: there is no content]≠0, [image: there is no content]≠0, and


[image: there is no content]B=∑[image: there is no content]yi2[image: there is no content]T[image: there is no content]B[image: there is no content]=∑i=1n[image: there is no content]2[image: there is no content]T[image: there is no content][image: there is no content].








But [image: there is no content] does not have full support, so by hypothesis, it is not a scalar multiple of the unique weighting on [image: there is no content]. Hence by Lemma 6, (∑[image: there is no content])2/[image: there is no content]T[image: there is no content][image: there is no content]<[image: there is no content]. ☐







We now apply this result on magnitude to the maximization of diversity.



Proposition 3. 

Suppose that [image: there is no content] is positive semidefinite. If [image: there is no content] has a nonnegative weighting [image: there is no content], then Dmax([image: there is no content])=[image: there is no content] and [image: there is no content]/[image: there is no content] is a maximizing distribution. Moreover, if [image: there is no content] is positive definite and its unique weighting [image: there is no content] is positive then [image: there is no content]/[image: there is no content] is the unique maximizing distribution.





Proof. 

This follows from Theorem 2 and Lemma 7. ☐





In particular, if [image: there is no content] is positive semidefinite and has a nonnegative weighting, then its maximum diversity can be computed in polynomial time.



Corollary 4. 

If [image: there is no content] is positive definite with positive weighting, then its unique maximizing distribution has full support.





In other words, when [image: there is no content] has these properties, its maximizing distribution eliminates no species. Here are three classes of such matrices [image: there is no content].



Example 12. Call [image: there is no content]ultrametric if Zik≥min{[image: there is no content],Zjk} for all [image: there is no content] and [image: there is no content] for all i. (Under the assumptions (1) on [image: there is no content], the latter condition just states that distinct species are not completely similar.) If [image: there is no content] is ultrametric then [image: there is no content] is positive definite with positive weighting, by Proposition 2.4.18 of [13].



Such matrices arise in practice: for instance, [image: there is no content] is ultrametric if it is defined from a phylogenetic or taxonomic tree as in Examples 3 and 4.



Example 13. Let [image: there is no content]∈[image: there is no content] be a probability distribution of full support, and write [image: there is no content] for the diagonal matrix with entries [image: there is no content]. Then for [image: there is no content],


-logqD[image: there is no content]([image: there is no content])=1q-1log∑i∈supp([image: there is no content])piqri1-qifq≠1,∑i∈supp([image: there is no content])[image: there is no content]log([image: there is no content]/ri)ifq=1.








The right-hand side is the Rényi relative entropy or Rényi divergence Iq([image: there is no content]|[image: there is no content]) (Section 3 of [3]). Evidently [image: there is no content] is positive definite, and its unique weighting [image: there is no content] is positive. (In fact, [image: there is no content] is ultrametric.) So Proposition 3 applies; in fact, it gives the classical result that Iq([image: there is no content]|[image: there is no content])≥0 with equality if and only if [image: there is no content]=[image: there is no content].



Example 14. The identity matrix [image: there is no content]=[image: there is no content] is certainly positive definite with positive weighting. By topological arguments, there is a neighbourhood U of [image: there is no content] in the space of symmetric matrices such that every matrix in U also has these properties. (See the proofs of Propositions 2.2.6 and 2.4.6 of [13].) Quantitative versions of this result are also available. For instance, in Proposition 2.4.17 of [13] it was shown that [image: there is no content] is positive definite with positive weighting if [image: there is no content] for all i and [image: there is no content]<1/(n-1) for all [image: there is no content]. In fact, this result can be improved:

Proposition 4. 

Suppose that [image: there is no content] for all [image: there is no content] and that [image: there is no content] is strictly diagonally dominant (that is, Zii>∑j≠i[image: there is no content] for all i). Then [image: there is no content] is positive definite with positive weighting.





Proof. 

Since [image: there is no content] is real symmetric, it is diagonalizable with real eigenvalues. By the hypotheses on [image: there is no content] and the Gershgorin disc theorem (Theorem 6.1.1 of [39]), every eigenvalue of [image: there is no content] is in the interval [image: there is no content]. It follows that [image: there is no content] is positive definite and that every eigenvalue of [image: there is no content]-[image: there is no content] is in [image: there is no content]. Hence [image: there is no content]-[image: there is no content] is similar to a diagonal matrix with entries in [image: there is no content], and so ∑k=0∞([image: there is no content]-[image: there is no content])k converges to ([image: there is no content]-([image: there is no content]-[image: there is no content]))-1=[image: there is no content]-1. Thus,


[image: there is no content]-1=∑k=0∞([image: there is no content]-[image: there is no content])k=∑k=0∞([image: there is no content]-[image: there is no content])2k(2[image: there is no content]-[image: there is no content]).



(19)




Writing e=(1⋯1)T, the unique weighting on [image: there is no content] is [image: there is no content]=[image: there is no content]-1e. The hypotheses on [image: there is no content] imply that [image: there is no content]-[image: there is no content] has nonnegative entries and (2[image: there is no content]-[image: there is no content])e has positive entries. Hence by (19),


[image: there is no content]=[image: there is no content]-1e≥([image: there is no content]-[image: there is no content])0(2[image: there is no content]-[image: there is no content])e=(2[image: there is no content]-[image: there is no content])e








entrywise, and so [image: there is no content] is positive. ☐







Thus, a matrix [image: there is no content] that is ultrametric, or satisfies conditions (1) and is strictly diagonally dominant, has many special properties: the maximum diversity is equal to the magnitude, there is a unique maximizing distribution, the maximizing distribution has full support, and both the maximizing distribution and the maximum diversity can be computed in polynomial time.




11. Preservation of Species


We saw in Examples 9 and 10 that for certain similarity matrices [image: there is no content], none of the maximizing distributions has full support. Mathematically, this simply means that maximizing distributions sometimes lie on the boundary of [image: there is no content]. But ecologically, it may sound shocking: is it reasonable that diversity can be increased by eliminating some species?



We argue that it is. Consider, for instance, a forest consisting of one species of oak and ten species of pine, with each species equally abundant. Suppose that an eleventh species of pine is added, again with equal abundance (Figure 4). This makes the forest even more heavily dominated by pine, so it is intuitively reasonable that the diversity should decrease. But now running time backwards, the conclusion is that if we start with a forest containing the oak and all eleven pine species, eliminating the eleventh should increase diversity.


Figure 4. Hypothetical community consisting of one species of oak (▪) and ten species of pine (•), to which one further species of pine is then added (◦). Distances between species indicate degrees of dissimilarity (not to scale).



[image: Entropy 18 00088 g004 1024]






To clarify further, recall from Section 3 that diversity is defined in terms of the relative abundances only. Thus, eliminating species i causes not only a decrease in [image: there is no content], but also an increase in the other relative abundances [image: there is no content]. If the i-th species is particularly ordinary within the community (like the eleventh species of pine), then eliminating it makes way for less ordinary species, resulting in a more diverse community.



The instinct that maximizing diversity should not eliminate any species is based on the assumption that the distinction between species is of high value. (After all, if two species were very nearly identical—or in the extreme, actually identical—then losing one would be of little importance.) If one wishes to make that assumption, one must build it into the model. This is done by choosing a similarity matrix [image: there is no content] with a low similarity coefficient [image: there is no content] for each [image: there is no content]. Thus, [image: there is no content] is close to the identity matrix [image: there is no content] (assuming that similarity is measured on a scale of 0 to 1). Example 14 guarantees that in this case, there is a unique maximizing distribution and it does not, in fact, eliminate any species.



(The fact that maximizing distributions can eliminate some species has previously been discussed in the ecological literature in the case [image: there is no content]; see Pavoine and Bonsall [34] and references therein.)



We now derive necessary and sufficient conditions for a similarity matrix [image: there is no content] to admit at least one maximizing distribution of full support, and also necessary and sufficient conditions for every maximizing distribution to have full support. The latter conditions are genuinely more restrictive; for instance, if [image: there is no content]=1111 then some but not all maximizing distributions have full support.



Lemma 8. 

If at least one maximizing distribution for [image: there is no content] has full support then [image: there is no content] is positive semidefinite and admits a positive weighting. Moreover, if every maximizing distribution for [image: there is no content] has full support then [image: there is no content] is positive definite.





Proof. 

Fix a maximizing distribution [image: there is no content] of full support. Maximizing distributions are invariant (Corollary 1), so by (i) [image: there is no content] (iii) of Lemma 3, [image: there is no content][image: there is no content] is a weighting of [image: there is no content] and [image: there is no content]>0. In particular, [image: there is no content] has a positive weighting.





Now we imitate the proof of Proposition 3B of [22]. For each [image: there is no content]∈[image: there is no content]n such that [image: there is no content], define a function [image: there is no content]:[image: there is no content]→[image: there is no content] by


[image: there is no content](t)=([image: there is no content]+t[image: there is no content])T[image: there is no content]([image: there is no content]+t[image: there is no content]).








Using the symmetry of [image: there is no content] and the fact that [image: there is no content][image: there is no content] is a weighting, we obtain


[image: there is no content](t)=[image: there is no content]T[image: there is no content][image: there is no content]+2[image: there is no content]T[image: there is no content][image: there is no content]·t+[image: there is no content]T[image: there is no content][image: there is no content]·t2=1/[image: there is no content]+[image: there is no content]T[image: there is no content][image: there is no content]·t2.



(20)




Now [image: there is no content] and [image: there is no content] has full support, so [image: there is no content]+t[image: there is no content]∈[image: there is no content] for all real t sufficiently close to zero. But [image: there is no content](t)=1/2D[image: there is no content]([image: there is no content]+t[image: there is no content]) for such t, so [image: there is no content] has a local minimum at 0. Hence [image: there is no content]T[image: there is no content][image: there is no content]≥0. It follows that [image: there is no content] is everywhere positive.



We have shown that [image: there is no content]T[image: there is no content][image: there is no content]≥0 whenever [image: there is no content]∈[image: there is no content]n with [image: there is no content]. Now take [image: there is no content]∈[image: there is no content]n with ∑[image: there is no content]≠0. Put [image: there is no content]=[image: there is no content]/∑[image: there is no content]-[image: there is no content]. Then [image: there is no content], and


[image: there is no content]T[image: there is no content][image: there is no content]=∑[image: there is no content]2[image: there is no content](1)>0.



(21)




Hence [image: there is no content] is positive semidefinite.



For “moreover”, assume that every maximizing distribution for [image: there is no content] has full support. By (21), we need only show that [image: there is no content]T[image: there is no content][image: there is no content]>0 whenever [image: there is no content] with [image: there is no content]. Given such an [image: there is no content], choose t∈[image: there is no content] such that [image: there is no content]+t[image: there is no content] lies on the boundary of [image: there is no content]. Then [image: there is no content]+t[image: there is no content] does not have full support, so is not maximizing, so does not maximize 2D[image: there is no content] (by Corollary 2). Hence [image: there is no content](t)>[image: there is no content](0), which by (20) implies that [image: there is no content]T[image: there is no content][image: there is no content]>0. ☐



We can now prove the two main results of this section.



Proposition 5. 

The following are equivalent:

	i.

	
there exists a maximizing distribution for [image: there is no content] of full support;




	ii.

	
[image: there is no content] is positive semidefinite and admits a positive weighting.











Proof. 

(i) [image: there is no content] (ii) is the first part of Lemma 8. For the converse, assume (ii) and choose a positive weighting [image: there is no content]. Then [image: there is no content]>0, so [image: there is no content]=[image: there is no content]/[image: there is no content] is a probability distribution of full support. We have qD[image: there is no content]([image: there is no content])=[image: there is no content] for all q, by Lemma 3. But the computation theorem implies that Dmax([image: there is no content])=[image: there is no content]B for some [image: there is no content] such that [image: there is no content]B admits a weighting, so Dmax([image: there is no content])≤[image: there is no content] by Lemma 7. Hence [image: there is no content] is maximizing. ☐





Proposition 6. 

The following are equivalent:

	i.

	
every maximizing distribution for [image: there is no content] has full support;




	ii.

	
[image: there is no content] has exactly one maximizing distribution, which has full support;




	iii.

	
[image: there is no content] is positive definite with positive weighting;




	iv.

	
Dmax([image: there is no content])>Dmax([image: there is no content]B) for every nonempty proper subset B of [image: there is no content].











(The weak inequality Dmax([image: there is no content])≥Dmax([image: there is no content]B) holds for any [image: there is no content], by the absent species lemma (Lemma 2).)



Proof. 

(i) [image: there is no content] (iii) and (iii) [image: there is no content] (ii) are immediate from Lemma 8 and Proposition 3 respectively, while (ii) [image: there is no content] (i) is trivial.





For (i) [image: there is no content] (iv), assume (i). Let [image: there is no content]. Choose a maximizing distribution [image: there is no content]′ for [image: there is no content]B, and denote by [image: there is no content] its extension by zero to [image: there is no content]. Then [image: there is no content] does not have full support, so there is some [image: there is no content] such that [image: there is no content] fails to maximize qD[image: there is no content]. Hence


Dmax([image: there is no content]B)=qD[image: there is no content]B([image: there is no content]′)=qD[image: there is no content]([image: there is no content])<Dmax([image: there is no content]),








where the second equality is by the absent species lemma.



For (iv) [image: there is no content] (i), assume (iv). Let [image: there is no content] be a maximizing distribution for [image: there is no content]. Write B=supp([image: there is no content]), and denote by [image: there is no content]′ the restriction of [image: there is no content] to B. Then for any q,


Dmax([image: there is no content]B)≥qD[image: there is no content]B([image: there is no content]′)=qD[image: there is no content]([image: there is no content])=Dmax([image: there is no content]),








again by the absent species lemma. Hence by (iv), [image: there is no content]. ☐




12. Open Questions


The main theorem, the computation theorem and Corollary 2 answer all the principal questions about maximizing the diversities qD[image: there is no content]. Nevertheless, certain questions remain.



First, there are computational questions. We have found two classes of matrix [image: there is no content] for which the maximum diversity and maximizing distributions can be computed in polynomial time: ultrametric matrices (Example 12) and those close to the identity matrix [image: there is no content] (Example 14). Both are biologically significant. Are there other classes of similarity matrix for which the computation can be performed in less than exponential time?



Second, we may seek results on maximization of qD[image: there is no content]([image: there is no content]) under constraints on [image: there is no content]. There are certainly some types of constraint under which both parts of Theorem 1 fail, for trivial reasons: if we choose two distributions [image: there is no content] and [image: there is no content]′ whose diversity profiles cross (Figure 2b) and constrain our distribution to lie in the set {[image: there is no content],[image: there is no content]′}, then there is no distribution that maximizes qD[image: there is no content] for all q simultaneously, and the maximum value of qD[image: there is no content] also depends on q. But are there other types of constraint under which the main theorem still holds?



In particular, the distribution might be constrained to lie close to a given distribution [image: there is no content]. The question then becomes: if we start with a distribution [image: there is no content] and have the resources to change it by only a given small amount, what should we do in order to maximize the diversity?



Third, there are suggestive resemblances between the theory developed here and the theory of evolutionarily stable strategies (ESSs) for matrix games (Chapter 6 of [40]), taking the payoff matrix for the game to be the dissimilarity matrix (1-[image: there is no content]). For instance, the condition in Lemma 3(ii) that ([image: there is no content][image: there is no content])i=([image: there is no content][image: there is no content])j for all i,j∈supp([image: there is no content]) appears as one of the ESS criteria in [41]; the diversity maximization algorithm of Remark 1 closely resembles the method for finding ESSs in [42]; and the positive definiteness conditions in Section 11 are related to negative definiteness conditions in the ESS literature (such as [41]). Can results on evolutionary games be translated to give new results—or improved proofs of existing results—on maximizing diversity? In particular, the evolutionary game literature contains results on local extrema of quadratic forms [43], which (for [image: there is no content], at least) may be useful in answering the question of constrained maximization posed in the previous paragraph.



Fourth, we have confined ourselves to considering a single, static population and its diversity. In ecological situations, what is the relationship between diversity maximization and population dynamics? This is a very broad question, but there has been work in ecology on the entropy–dynamics connection. For instance, Zhang and Harte [44] used the principle that Boltzmann entropy should be maximized to predict population dynamics under resource constraints, incorporating into their model a parameter that reflects distinguishability within species relative to distinguishability between species.



Fifth, we have seen that every symmetric matrix [image: there is no content] satisfying conditions (2) (for instance, every symmetric matrix of positive reals) has attached to it a real number, the maximum diversity Dmax([image: there is no content]). What is the significance of this invariant?



We know that it is closely related to the magnitude of matrices. This has been most intensively studied in the context of metric spaces. By definition, the magnitude of a finite metric space X is the magnitude of the matrix [image: there is no content]=(e-d(i,j))i,j∈X; see [13,38,45], for instance. In the metric context, the meaning of magnitude becomes clearer after one extends the definition from finite to compact spaces (which is done by approximating them by finite subspaces). Magnitude for compact metric spaces has recognizable geometric content: for example, the magnitude of a 3-dimensional ball is a cubic polynomial in its radius (Theorem 2 of [15]) and the magnitude of a homogeneous Riemannian manifold is closely related to its total scalar curvature (Theorem 11 of [17]).



Thus, it is natural to ask: can one extend Theorem 1 to some class of “infinite matrices” [image: there is no content]? (For instance, [image: there is no content] might be the form [image: there is no content] arising from a compact metric space. In this case, the maximum diversity of order 2 is a kind of capacity, analogous to classical definitions in potential theory; for a compact subset of [image: there is no content]n, it coincides with the Bessel capacity of an appropriate order [16].) And if so, what is the geometric significance of maximum diversity in that context?



There is already evidence that this is a fruitful line of enquiry. In [16], Meckes gave a definition of the maximum diversity of order 2 of a compact metric space, and used it to prove a purely geometric theorem relating magnitude to fractional dimensions of subsets of [image: there is no content]n. If this maximum diversity can be shown to be equal to the maximum diversity of all other orders then further geometric results may come within reach.



The final question concerns interpretation. Throughout, we have interpreted qD[image: there is no content]([image: there is no content]) in terms of ecological diversity. However, there is nothing intrinsically biological about any of our results. For example, in an information-theoretic context, the “species” might be the code symbols, with two symbols seen as similar if one is easily mistaken for the other; or if one wishes to transmit an image, the “species” might be the colours, with two colours seen as similar if one is an acceptable substitute for the other (much as in rate distortion theory [46]). Under these or other interpretations, what is the significance of the theorem that the diversities of all orders can be maximized simultaneously?
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