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Abstract:

 System entropy describes the dispersal of a system’s energy and is an indication of the disorder of a physical system. Several system entropy measurement methods have been developed for dynamic systems. However, most real physical systems are always modeled using stochastic partial differential dynamic equations in the spatio-temporal domain. No efficient method currently exists that can calculate the system entropy of stochastic partial differential systems (SPDSs) in consideration of the effects of intrinsic random fluctuation and compartment diffusion. In this study, a novel indirect measurement method is proposed for calculating of system entropy of SPDSs using a Hamilton–Jacobi integral inequality (HJII)-constrained optimization method. In other words, we solve a nonlinear HJII-constrained optimization problem for measuring the system entropy of nonlinear stochastic partial differential systems (NSPDSs). To simplify the system entropy measurement of NSPDSs, the global linearization technique and finite difference scheme were employed to approximate the nonlinear stochastic spatial state space system. This allows the nonlinear HJII-constrained optimization problem for the system entropy measurement to be transformed to an equivalent linear matrix inequalities (LMIs)-constrained optimization problem, which can be easily solved using the MATLAB LMI-toolbox (MATLAB R2014a, version 8.3). Finally, several examples are presented to illustrate the system entropy measurement of SPDSs.
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1. Introduction


Information entropy is considered a measure of uncertainty and its maximization guarantees the best solutions for the maximal uncertainty [1,2,3,4,5]. Information entropy characterizes uncertainty caused by random parameters of a random system and measurement noise in the environment [6]. Entropy has been used for information retrieval such as systemic parametric and nonparametric estimation based on real data, which is an important topic in advanced scientific disciplines such as econometrics [1,2], financial mathematics [4], mathematical statistics [3,4,6], control theory [5,7,8], signal processing [9], and mechanical engineering [10,11]. Methods developed within this framework consider model parameters as random quantities and employ the informational entropy maximization principle to estimate these model parameters [6,9].



System entropy describes disorder or uncertainty of a physical system and can be considered to be a significant system property [12]. Real physical systems are always modeled using stochastic partial differential dynamic equation in the spatio-temporal domain [12,13,14,15,16,17]. The entropy of thermodynamic systems has been discussed in [18,19,20]. The maximum entropy generation of irreversible open systems was discussed in [20,21,22]. The entropy of living systems was discussed in [19,23]. The system entropy of stochastic partial differential systems (SPDSs) can be measured as the logarithm of system randomness, which can be obtained as the ratio of output signal randomness to input signal randomness from the entropic point of view. Therefore, if system randomness can be measured, the system entropy can be easily obtained from its logarithm. The system entropy of biological systems modeled using ordinary differential equations was discussed in [24]. However, since many real physical and biological systems are modeled using partial differential dynamic equations, in this study, we will discuss the system entropy of SPDSs. In general, we can measure the system entropy from the system characteristics of a system without measuring the system signal or input noise. For example, a low-pass filter, which is a system characteristic, can be determined from its transfer function or system’s frequency response without measuring its input/output signal. Hence, in this study, we will measure the system entropy of SPDSs from the system’s characteristics. Actually, many real physical and biological systems are only nonlinear, such as the large-scale systems [25,26,27,28], the multiple time-delay interconnected systems [29], the tunnel diode circuit systems [30,31], and the single-link rigid robot systems [32]. Therefore, we will also discuss the system entropy of nonlinear system as a special case in this paper.



However, because direct measurement of the system entropy of SPDSs in the spatio-temporal domain using current methods is difficult, in this study, an indirect method for system entropy measurement was developed through the minimization of its upper bound. That is, we first determined the upper bound of the system entropy and then decreased it to the minimum possible value to achieve the system entropy. For simplicity, we first measure the system entropy of linear stochastic partial differential systems (LSPDSs) and then the system entropy of nonlinear stochastic partial differential systems (NSPDSs) by solving a nonlinear Hamilton–Jacobi integral inequality (HJII)-constrained optimization problem. We found that the intrinsic random fluctuation of SPDSs will increase the system entropy.



To overcome the difficulty in solving the system entropy measurement problem due to the complexity of the nonlinear HJII, a global linearization technique was employed to interpolate several local LSPDSs to approximate a NSPDS; a finite difference scheme was employed to approximate a partial differential operator with a finite difference operator at all grid points. Hence, the LSPDSs at all grid points can be represented by a spatial stochastic state space system and the system entropy of the LSPDSs can be measured by solving a linear matrix inequalities (LMIs)-constrained optimization problem using the MATLAB LMI toolbox [12]. Next, the NSPDSs at all grid points can be represented by an interpolation of several local linear spatial state space systems; therefore, the system entropy of NSPDSs can be measured by solving the LMIs-constrained optimization problem.



Finally, based on the proposed systematic analysis and measurement of the system entropy of SPDSs, two system entropy measurement simulation examples of heat transfer system and biochemical system are given to illustrate the proposed system entropy measurement procedure of SPDSs.




2. General System Entropy of LSPDSs


For simplicity, we will first calculate the entropy of linear partial differential systems (LPDSs). Then, the result will be extended to the measure of NSPDSs. Consider the following LPDS [15,16]:


[image: there is no content]



(1)




where [image: there is no content] is the space variable, [image: there is no content] is the state variable, [image: there is no content] is the random input signal, and [image: there is no content],… [image: there is no content] is the output signal. [image: there is no content] and [image: there is no content] are the space and time variable, respectively. The space domain [image: there is no content] is a two-dimensional bounded domain. The system coefficients are [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]. The Laplace (diffusion) operator [image: there is no content] is defined as follows [15,16]:


[image: there is no content]



(2)







Suppose that the initial value [image: there is no content]. For simplicity, the boundary condition is usually given by the Dirichlet boundary condition, i.e., [image: there is no content] a constant on [image: there is no content], or by the Neumann boundary condition [image: there is no content] on [image: there is no content], where [image: there is no content] is a normal vector to the boundary [image: there is no content] [15,16]. The randomness of the random input signal is measured by the average energy in the domain [image: there is no content] and the entropy of the random input signal is measured by the logarithm of the input signal randomness as follows [1,2,24]:


[image: there is no content]








where E denotes the expectation operator and tf denotes the period of the random input signal, i.e., [image: there is no content]. Similarly, the entropy of the random output signal [image: there is no content] is obtained as:


[image: there is no content]











In this situation, the system entropy S of the LPDS given in Equation (1) can be obtained from the differential entropy between the output signal and input signal, i.e., input signal entropy minus output signal entropy, or the net signal entropy of the LPDS [33]:


S=log1U⋅tfE{∫U∫0tfzT(x,t)z(x,t)dtdx}−log1U⋅tfE{∫U∫0tfvT(x,t)v(x,t)dtdx}=logE{∫U∫0tfzT(x,t)z(x,t)dtdx}E{∫U∫0tfvT(x,t)v(x,t)dtdx}=−logE{∫U∫0tfvT(x,t)v(x,t)dtdx}E{∫U∫0tfzT(x,t)z(x,t)dtdx}.



(3)







Let us denote the system randomness as the following normalized randomness:


[image: there is no content]



(4)







Then, the system entropy [image: there is no content] That is, if system randomness can be obtained, the system entropy can be determined from the logarithm of the system randomness. Therefore, our major work of measuring the entropy of the LPDS given in Equation (1) first involves the calculation of the system randomness [image: there is no content] given in Equation (4). However, it is not easy to directly calculate the normalized randomness [image: there is no content] in Equation (4) in the spatio-temporal domain. Suppose there exists an upper bound of [image: there is no content] as follows:


[image: there is no content]



(5)




and we will determine the condition with that [image: there is no content] has an upper bound [image: there is no content]. Then, we will decrease the value of the upper bound [image: there is no content] as small as possible to approach [image: there is no content], and then obtain the system entropy using [image: there is no content].



Remark 1. (i) From the system entropy of LPDS Equation (1), if the randomness of the input signal [image: there is no content]is larger than the randomness of the output signal [image: there is no content], i.e.,:


[image: there is no content]



(6)




then [image: there is no content]and [image: there is no content]. A negative system entropy implies that the system can absorb external energy to increase the structure order of the system. All the biological systems are of this type, and according to Schrödinger’s viewpoint, biological systems consume negative entropy, leading to construction and maintenance of their system structures, i.e., life can access negative entropy to produce high structural order. (ii) If the randomness of the output signal [image: there is no content] is larger than the randomness of the input signal [image: there is no content], i.e.,:


[image: there is no content]



(7)




then [image: there is no content] and [image: there is no content]. A positive system entropy indicates that the system structure disorder increases and the system can disperse entropy to the environment. (iii) If the randomness of the input signal [image: there is no content] is equal to the randomness of the system signal [image: there is no content], i.e.,:


[image: there is no content]



(8)




then [image: there is no content] and [image: there is no content]. In this case, the system structure order is maintained constantly with zero system entropy. (iv) If the initial value [image: there is no content] then the system randomness [image: there is no content] in Equation (4) should be modified as:


[image: there is no content]



(9)




for a positive Lyapunov function [image: there is no content], and the randomness due to the initial condition [image: there is no content] should be considered a type of input randomness.



Based on the upper bound [image: there is no content] of the system randomness as given in Equation (5), we get the following result:



Proposition 1. For the LPDS in Equation (1), if the following HJII holds for a Lyapunov function [image: there is no content]and with [image: there is no content]:


[image: there is no content]



(10)




then the system randomness [image: there is no content]has an upper bound [image: there is no content]as given in Equation (5).



Proof. See Appendix A.                   ☐



Since [image: there is no content] is the upper bound of [image: there is no content], it can be calculated by solving the following HJII-constrained optimization problem:


[image: there is no content]



(11)







Consequently, we can calculate the system entropy using [image: there is no content].



Remark 2. If the system in Equation (1) is free of a partial differential term [image: there is no content], i.e., in the case of the following conventional linear dynamic system:


[image: there is no content]



(12)




then the system entropy of linear dynamic system in Equation (12) is written as [24]:


[image: there is no content]



(13)







Therefore, the result of Proposition 1 is modified as the following corollary.



Corollary 1. For the linear dynamic system in Equation (12), if the following Riccati-like inequality holds for a positive definite symmetric [image: there is no content]:


[image: there is no content]



(14)




or equivalently (by the Schur complement [12]):


[image: there is no content]



(15)




then the system randomness [image: there is no content]of the linear dynamic system in Equation (12) has an upper bound [image: there is no content].



Proof. See Appendix B.                       ☐



Thus, the randomness [image: there is no content] of the linear dynamic system in Equation (12) is obtained by solving the following LMI-constrained optimization problem:


[image: there is no content]



(16)







Hence, the system entropy of the linear dynamic system in Equation (12) can be calculated using [image: there is no content]. The LMI-constrained optimization problem given in Equation (16) is easily solved by decreasing [image: there is no content] until no positive definite solution [image: there is no content] exists for the LMI given in Equation (15), which can be solved using the MATLAB LMI toolbox [12]. Substituting [image: there is no content] into [image: there is no content] in Equation (14), we get:


[image: there is no content]



(17)







The right hand side of Equation (17) can be considered as an indication of the system stability. If the eigenvalues of [image: there is no content] are more negative (more stable), i.e., the right hand side is more large, then [image: there is no content] and the system entropy [image: there is no content], are smaller. Obviously, the system entropy is inversely related to the stability of the dynamic system. If [image: there is no content] is fixed, then the increase in input signal coupling [image: there is no content] may increase [image: there is no content] and [image: there is no content].



Remark 3. If the LPDS in Equation (1) suffers from the following intrinsic random fluctuation:


[image: there is no content]



(18)




where the constant matrix [image: there is no content] denotes the deterministic part of the parametric variation of system matrix [image: there is no content] and [image: there is no content] is a stationary spatio-temporal white noise to denote the random source of intrinsic parametric variation [34,35], then the LSPDS in Equation (18) can be rewritten in the following [image: there is no content] differential form:


[image: there is no content]



(19)




where [image: there is no content] with [image: there is no content] being the Wiener process or Brownian motion in a zero mean Gaussian random field with unit variance at each location x [15].



For the LSPDS in Equation (19), we get the following result.



Proposition 2. For the LSPDS in Equation (19), if the following HJII holds for a Lyapunov function [image: there is no content]with [image: there is no content]:


[image: there is no content]



(20)




then the system randomness [image: there is no content]has an upper bound [image: there is no content]as given in (5).



Proof. See Appendix C.          ☐



Since [image: there is no content] is the upper bound of [image: there is no content], it could be calculated by solving the following HJII-constrained optimization problem:


[image: there is no content]



(21)







Hence, the system entropy of LSPDS in Equations (18) or (19) could be obtained using [image: there is no content], where [image: there is no content] is the system randomness solved from Equations (21).



Remark 4. Comparing the HJII in Equation (20) with the HJII in Equation (10) and replacing [image: there is no content] with [image: there is no content], we find that Equation (20) has an extra positive term [image: there is no content] due to the intrinsic random parametric fluctuation given in Equation (18). To maintain the left-hand side of Equation (20) as negative, the system randomness [image: there is no content] in Equation (20) must be larger than the randomness [image: there is no content] in Equation (10), i.e., the system entropy of the LPDS in Equations (18) or (19) is larger than that of the LPDS in Equation (1) because the intrinsic random parametric variation [image: there is no content] in Equation (18) can increase the system randomness and the system entropy.



Remark 5. If the LSPDS in Equation (18) is free of the partial differential term [image: there is no content], i.e., in the case of the conventional linear dynamic system:


[image: there is no content]



(22)




or the following [image: there is no content] form:


[image: there is no content]



(23)




then we modify Proposition 2 as the following corollary.



Corollary 2. For the linear dynamic system in Equations (22) or (23), if the following Riccati-like inequality holds for a positive definite symmetric [image: there is no content]:


[image: there is no content]



(24)




or equivalently:


[image: there is no content]



(25)




then the system randomness [image: there is no content]of the linear dynamic system in Equations (22) or (23) has a upper bound [image: there is no content].



Proof. See Appendix D.          ☐



Therefore, the system randomness [image: there is no content] of the linear stochastic system in Equations (22) or (23) can be obtained by solving the following LMI-constrained optimization problem:


[image: there is no content]



(26)







Hence, the system entropy Equation (13) of the linear stochastic system in Equations (22) or (23) can be calculated using [image: there is no content], where the system randomness [image: there is no content] is the optimal solution of Equation (26).



By substituting [image: there is no content] calculated by Equation (26) into Equation (24), we can get:


[image: there is no content]



(27)







Remark 6. Comparing Equation (27) with Equation (17), it can be seen that the term [image: there is no content] due to the intrinsic random parametric fluctuation [image: there is no content] in Equation (22) can increase the system randomness [image: there is no content] which consequently increases the system entropy [image: there is no content].




3. The System Entropy Measurement of LSPDSs via a Semi-Discretization Finite Difference Scheme


Even though the entropy of the linear systems in Equations (12) and (22) can be easily measured by solving the optimization problem in Equations (16) and (26), respectively, using the LMI toolbox in MATLAB, it is still not easy to solve the HJII-constraint optimization problem in Equations (11) and (21) for the system entropy of the LPDS in Equation (1) and the LSPDS in Equation (18), respectively. To simplify this system entropy problem, the main method is obtaining a more suitable spatial state space model to represent the LPDSs. For this purpose, the finite difference method and the Kronecker product are used together in this study. The finite difference method is employed to approximate the partial differential term [image: there is no content] in Equation (1) in order to simplify the measurement procedure of entropy [14,16].



Consider a typical mesh grid as shown in Figure 1. The state variable [image: there is no content] is represented by [image: there is no content] at the grid node [image: there is no content], where [image: there is no content] and [image: there is no content], i.e., [image: there is no content] at the grid point [image: there is no content], and the finite difference approximation scheme for the partial differential operator can be written as follows [14,16]:


[image: there is no content]



(28)




.


Figure 1. Finite difference grids on the spatio-domain [image: there is no content].



[image: Entropy 18 00099 g001 1024]






Based on the finite difference approximation in Equation (28), the LPDS in Equation (1) can be represented by the following finite difference system:


ddtyk,l(t)≃κ1Δx2[yk+1,l(t)+yk−1,l(t)+yk,l+1(t)+yk,l−1(t)−4yk,l(t)]+Ayk,l(t)+Bvk,l(t),k=1,…N1, l=1,…N2,



(29)




[image: there is no content].



Let us denote:


[image: there is no content]



(30)




then we get:


[image: there is no content]



(31)







For the simplification of entropy measurement for the LPDS in Equation (1), we will define a spatial state vector [image: there is no content] at all grid node in Figure 1. For the Dirichlet boundary conditions [16], the values of [image: there is no content] at the boundary are fixed. For example, [image: there is no content], where [image: there is no content]. We have [image: there is no content] at [image: there is no content] or [image: there is no content]. Therefore, the spatial state vector [image: there is no content] for state variables at all grid nodes is defined as follows:


[image: there is no content]



(32)




where [image: there is no content]. Note that [image: there is no content] is the dimension of the vector [image: there is no content] for each grid node and [image: there is no content] is the number of grid nodes. For example, let [image: there is no content] and [image: there is no content], then we have [image: there is no content][image: there is no content]. To simplify the index of the node [image: there is no content] in the spatial state vector [image: there is no content], we will denote the symbol [image: there is no content] to replace [image: there is no content]. Note that the index [image: there is no content] is from 1 to N, i.e.:


[image: there is no content]








where [image: there is no content] in Equation (32). Thus, the linear difference model of two indices in Equation (31) could be represented with only one index as follows:


[image: there is no content]



(33)




where [image: there is no content] with [image: there is no content] and [image: there is no content] is defined as follows:


[image: there is no content]



(34)




where [image: there is no content] and [image: there is no content] denote the [image: there is no content] zero matrix and [image: there is no content] identity matrix, respectively.



We will collect all states [image: there is no content] of the grid nodes given in Equation (33) to the spatial state vector given in Equation (32). The Kronecker product can be used to simplify the representation. Using the Kronecker product, the systems at all grid nodes given in Equation (33) can be represented by the following spatial state space system (i.e., the linear dynamic systems of Equation (33) at all grid points within domain [image: there is no content] in Figure 1 are represented by a spatial state space system [14]):


[image: there is no content]



(35)




where [image: there is no content], [image: there is no content], and [image: there is no content] denotes the Kronecker product between [image: there is no content] and [image: there is no content].



Definition 1. [17,36]: Let [image: there is no content], [image: there is no content]. Then the Kronecker product of [image: there is no content] and [image: there is no content] is defined as the following matrix:


[image: there is no content]











Remark 7. Since the spatial state vector [image: there is no content] in Equation (32) is used to represent [image: there is no content] at all grid points, in this situation, [image: there is no content], [image: there is no content], and [image: there is no content][image: there is no content] in the measurement of system randomness in Equations (5) or (9) could be modified by the temporal forms [image: there is no content], [image: there is no content], and [image: there is no content], respectively, for the spatial state space system in (35), where the Lyapunov function [image: there is no content] is related to the Lyapunov function [image: there is no content] as [image: there is no content][image: there is no content]. Therefore, for the spatial state space system in Equation (35), the system randomness in Equations (5) or (9) is modified as follows:


[image: there is no content]



(36)




or:


[image: there is no content]



(37)







Hence, our entropy measurement problem of the LPDS in Equation (1) becomes the measurement of the entropy of the spatial state system Equation (35), as given below.



Proposition 3. For the linear spatial state space system in Equation (35), if the following Riccati-like inequality holds for a positive definite matrix [image: there is no content]:


[image: there is no content]



(38)




or equivalently:


[image: there is no content]



(39)




where [image: there is no content], then the system randomness [image: there is no content]in Equations (36) or (37) of linear spatial state space system in Equation (35) has the upper bound [image: there is no content].



Proof. The proof is similar to the proof of Corollary 1 in Appendix B and can be obtained by replacing [image: there is no content], and [image: there is no content] with [image: there is no content], and [image: there is no content], respectively.      ☐



Therefore, the randomness [image: there is no content] of the linear spatial state space system in Equation (35) can be obtained by solving the following LMI-constrained optimization problem:


[image: there is no content]



(40)







Hence, the system entropy [image: there is no content] of the linear spatial state space system in Equation (33) can be calculated using [image: there is no content].



Remark 8. (i) The Riccati-like inequality in Equation (38) or the LMI in Equation (39) is an approximation of the HJII in Equation (10) with the finite difference scheme given in Equation (28). If the finite difference, shown in Equation (28), [image: there is no content], then [image: there is no content] in Equation (40) will approach [image: there is no content] in Equation (11). (ii) Substituting [image: there is no content] into Equation (38), we get:


[image: there is no content]



(41)







If the eigenvalues of [image: there is no content] are more negative (more stable), the randomness[image: there is no content] as well as the entropy [image: there is no content] is smaller. Similarly, the LSPDS in Equation (18) can be approximated by the following stochastic spatial state space system via finite difference scheme [14]:


[image: there is no content]



(42)




where [image: there is no content], and the Hadamard product of matrices (or vectors) [image: there is no content] and [image: there is no content] of the same size is the entry-wise product denoted as [image: there is no content].



Then we can get the following result.



Corollary 3. For the linear stochastic spatial state space system Equation (42), if the following Riccati-like inequality holds for a positive definite symmetric [image: there is no content]:


[image: there is no content]



(43)




or equivalently, the following LMI has a positive definite symmetric solution [image: there is no content]:


[image: there is no content]



(44)




then the system randomness [image: there is no content]of the stochastic state space system in Equation (42) has an upper bound [image: there is no content], where [image: there is no content].



Proof. The proof is similar to the proof of Corollary 2 in Appendix D.               ☐



Therefore, the system randomness [image: there is no content] of the linear stochastic state space system Equation (42) can be obtained by solving the following LMI-constrained optimization problem:


[image: there is no content]



(45)




and hence the system entropy [image: there is no content] of the stochastic spatial state space system in Equation (42) can be obtained using [image: there is no content]. Substituting [image: there is no content] into (43), we get:


[image: there is no content]



(46)







Remark 9. Comparing Equation (41) with Equation (46), because of the term [image: there is no content] from the intrinsic random fluctuation, it can be seen that the LSPDS with random fluctuations will lead to a larger [image: there is no content] and a larger system entropy S.         ☐




4. System Entropy Measurement of NSPDSs


Most partial dynamic systems are nonlinear; hence, the measurement of the system entropy of nonlinear partial differential systems (NPDSs) will be discussed in this section. Consider the following NPDSs in the domain [image: there is no content]:


[image: there is no content]



(47)




where [image: there is no content], [image: there is no content] and [image: there is no content] are the nonlinear functions with [image: there is no content], [image: there is no content], and [image: there is no content], respectively. The nonlinear diffusion functions [image: there is no content] satisfy [image: there is no content], and [image: there is no content]. If the equilibrium point of interest is not at the origin, for the convenience of analysis, the origin of the NPDS must be shifted to the equilibrium point (shifted to zero). The initial and boundary conditions are the same as the LPDS in Equation (1); then, we get the following result.



Proposition 4. For the NPDS in Equation (47), if the following HJII holds for a Lyapunov function [image: there is no content]with [image: there is no content]:


[image: there is no content]



(48)




then the system randomness [image: there is no content]of the NPDS in Equation (47) has an upper bound [image: there is no content] as given in Equation (5).



Proof. See Appendix E.                    ☐



Based on the condition of upper bound [image: there is no content] given in Equation (48), the system randomness [image: there is no content] could be obtained by solving the following HJII-constrained optimization problem:


[image: there is no content]



(49)







Hence, the system entropy of NPDS in Equation (47) can be obtained using [image: there is no content]. If the NPDS in Equation (47) is free of the diffusion operator [image: there is no content] as with the following conventional nonlinear dynamic system:


[image: there is no content]



(50)




then the result of Proposition 4 is reduced to the following corollary.



Corollary 4. For the nonlinear dynamic system Equation (50), if the following HJII holds for a positive Lyapunov function [image: there is no content]with [image: there is no content]:


[image: there is no content]



(51)




then the system randomness [image: there is no content]of the nonlinear dynamic system in Equation (50) has an upper bound [image: there is no content]



Proof. The proof is similar to that of Proposition 4 without consideration of the diffusion operator [image: there is no content] and spatial integration on the domain [image: there is no content].



Hence, the system randomness of the nonlinear dynamic system in Equation (50) can be obtained by solving the following HJII-constrained optimization problem:


[image: there is no content]



(52)




and the system entropy is obtained using [image: there is no content]. If the NPDS in Equation (47) suffers from random intrinsic fluctuations as with the NSPDSs:


∂y(x,t)∂t=κ(y(x,t))∇2y(x,t)+f(y(x,t))+g(y(x,t))v(x,t)+H(y(x,t))y(x,t)w(x,t)z(x,t)=C(y(x,t))y(x,t),



(53)




where [image: there is no content] denotes the random intrinsic fluctuation, then the NSPDS in Equation (53) can be written in the following [image: there is no content] form:


∂y(x,t)=(κ(y(x,t))∇2y(x,t)+f(y(x,t))+g(y(x,t))v(x,t))∂t+H(y(x,t))y(x,t)∂W(x,t)z(x,t)=C(y(x,t))y(x,t).



(54)







Therefore, we can get the following result:



Proposition 5. For the NSPDS in Equations (53) or (54), if the following HJII holds for a Lyapunov function [image: there is no content]with [image: there is no content]:


[image: there is no content]



(55)




then the system randomness [image: there is no content]of the NSPD S in Equations (53) or (54) can be obtained by solving the following HJII-constrained optimization problem:


[image: there is no content]



(56)







Proof. See Appendix F.                           ☐



Remark 10. By comparing the HJII in Equation (48) with the HJII in Equation (55), due to the extra term [image: there is no content] from the random intrinsic fluctuation [image: there is no content] in Equation (53), it can be seen that the system randomness of the NSPDS in Equation (53) must be larger than the system randomness of the NPDS in Equation (47). Hence, the system entropy of the NSPDS in Equation (53) is larger than that of the NPDS in Equation (47).




5. System Entropy Measurement of NSPDS via Global Linearization and Semi-Discretization Finite Difference Scheme


In general, it is very difficult to solve the HJII in Equations (48) or (55) for the system entropy measurement of the NPDS in Equation (47) or the NSPDS in Equation (53), respectively. In this study, the global linearization technique and a finite difference scheme were employed to simplify the entropy measurement of the NPDS in Equation (47) and NSPDS in Equation (53). Consider the following global linearization of the NPDS in Equation (47), which is bounded by a polytope consisting of L vertices [12,37]:


[image: there is no content]



(57)




where [image: there is no content] denotes the convex hull of a polytope with [image: there is no content] vertices defined in Equation (57). Then, the trajectories of [image: there is no content] for the NPDS in Equation (47) will belong to the convex combination of the state trajectories of the following [image: there is no content] linearized PDSs derived from the vertices of the polytope in Equation (57):


[image: there is no content]



(58)







From the global linearization theory [16,37], if Equation (57) holds, then every trajectory of the NPDS in Equation (47) is a trajectory of a convex combination of [image: there is no content] linearized PDSs in Equation (58), and they can be represented by the convex combination of [image: there is no content] linearized PDSs in Equation (58) as follows:


[image: there is no content]



(59)




where the interpolation functions are selected as [image: there is no content] and they satisfy [image: there is no content] and [image: there is no content]. That is, the trajectory of the NPDS in Equation (47) can be approximated by the trajectory of the interpolated local LPDS given in Equation (59).



Following the semi-discretization finite difference scheme in Equations (28)–(34), the spatial state space system of the interpolated PDS in Equation (59) can be represented as follows:


[image: there is no content]



(60)




where [image: there is no content] and [image: there is no content] are defined in (35). That is, the NPDS in Equation (47) is interpolated through local linearized PDSs in Equation (59) to approximate the NPDS in Equation (47) using global linearization and semi-discretization finite difference scheme.



Remark 11. In fact, there are many interpolation schemes for approximating a nonlinear dynamic system with several local linear dynamic systems such as Equation (60); for example, fuzzy interpolation and cubic spline interpolation methods [13]. Then, we get the following result.                   ☐



Proposition 6. For the linear dynamic systems in Equation (60), if the following Riccati-like inequalities hold for a positive definite symmetric [image: there is no content]:


[image: there is no content]



(61)




or equivalently:


[image: there is no content]



(62)




where [image: there is no content], [image: there is no content], and [image: there is no content]are defined as [image: there is no content], and [image: there is no content], respectively, then the system randomness [image: there is no content]of the NPDSs in Equation (47) or the interpolated dynamic systems in Equation (60) have an upper bound [image: there is no content].



Proof. See Appendix G.          ☐



Therefore, the system randomness [image: there is no content] of the NPDSs in Equation (47) or the interpolated dynamic systems in Equation (60) can be obtained by solving the following LMIs-constrained optimization problem:


[image: there is no content]



(63)







Hence, the system entropy [image: there is no content] of the NPDSs in Equation (47) or the interpolated dynamic systems in Equation (60) can be obtained using [image: there is no content]. By substituting [image: there is no content] into the Riccati-like inequalities in Equation (61), we can obtain:


[image: there is no content]



(64)







Obviously, if the eigenvalues of local system matrices [image: there is no content] are more negative (more stable), the randomness [image: there is no content] is smaller and the corresponding system entropy [image: there is no content] is also smaller, and vice versa.



The NSPDs given in Equation (54) can be approximated using the following global linearization technique [12,37]:


[image: there is no content]



(65)







Then, the NSPDs with the random intrinsic fluctuation given in Equation (53) can be approximated by the following interpolated spatial state space system [14]:


dy(t)dt=∑i=1Lαi(y){[IN⊗κi]T+[IN⊗Ai]}y(t)+[IN⊗Bi]v(t) +[IN⊗Hi]y(t)∘dW(t)z(t)=∑i=1Lαi(y)[IN⊗Ci]y(t),



(66)




i.e., we could interpolate [image: there is no content] local interpolated stochastic spatial state space systems to approximate the NSPDs in Equation (53). Then, we get the following result.



Proposition 7. For the NSPDs in Equation (54) or the linear interpolated stochastic spatial state space systems in (66), if the following Riccati-like inequalities hold for a positive definite symmetric [image: there is no content]:


[image: there is no content]



(67)




or equivalently:


[image: there is no content]



(68)




where [image: there is no content], then the system randomness [image: there is no content]of the NSPDs in Equation (53) or the interpolated stochastic systems in Equation (66) can be obtained by solving the following LMIs-constrained optimization problem:


[image: there is no content]



(69)







Then, the system entropy [image: there is no content]of NSPD in Equation (53) or the interpolated stochastic systems in Equation (66) could be obtained as [image: there is no content].



Proof. See Appendix H.                   ☐



Substituting [image: there is no content] into in Equation (67), we get:


[image: there is no content]



(70)







Comparing (64) with Equation (70), [image: there is no content] of the NSPDS in Equation (53) is larger than [image: there is no content] of the NPDS in Equation (47), i.e., the random intrinsic fluctuation [image: there is no content] will increase the system entropy of the NSPDS. Based on the above analysis, the proposed system entropy measurement procedure of NSPDSs is given as follows:

	Step 1: 

	
Given the initial value of state variable, the number of finite difference grids, the vertices of the global linearization, and the boundary condition.




	Step 2: 

	
Construct the spatial state space system in Equation (60) by finite difference scheme.




	Step 3: 

	
Construct the interpolated state space system Equation (66) by global linearization method.




	Step 4: 

	
If the error between the original model Equation (54) and the approximated model Equation (66) is too large, we could adjust the density of grid nodes of finite difference scheme and the number of vertices of global linearization technique and return to Step 1.




	Step 5: 

	
Solve the eigenvalue problem in Equation (69) to obtain [image: there is no content] and [image: there is no content], and then system entropy [image: there is no content].










6. Computational Example


Based on the aforementioned analyses for the system entropy of the considered PDSs, two computational examples are given below for measuring the system entropy.



Example 1. Consider a heat transfer system in a 1m × 0.5m thin plate with a surrounding temperature of 0 °C as follows [38]:


[image: there is no content]



(71)




[image: there is no content] and y(x,t) = 0 °C, ∀ t, ∀ x on the boundary of U =[0,1]×[0,0.5]. Here, y(x,t) is the temperature function, location x is in meters, time t is in s, [image: there is no content] is the thermal diffusivity [4,5,6,7,9], and the term [image: there is no content] with [image: there is no content] denotes the thermal dissipation when the temperature of the plate is greater than the surrounding temperature, i.e., [image: there is no content] °C, or the thermal absorption when the temperature on the plate is less than the surrounding temperature, i.e., [image: there is no content] °C. The output coupling [image: there is no content]. [image: there is no content] is the environmental thermal fluctuation input with [image: there is no content]. We can estimate the system entropy of the heat transfer system in Equation (71). Based on Proposition 3 and the LMI-constrained optimization problem Equation (40), we can calculate the system entropy of the heat transfer system in Equation (71) as [image: there is no content]. In this calculation of the system entropy, the grid spacing [image: there is no content] of the finite difference scheme was chosen as 0.125m such that there are [image: there is no content] interior grid points and 24 boundary points in [image: there is no content]. The temperature distributions [image: there is no content] of the heat transfer system in Equation (71) at [image: there is no content], 10, 30 and 50 s are shown in Figure 2 with [image: there is no content][image: there is no content]. Due to the diffusion term [image: there is no content], the heat temperature of transfer system Equation (71) will be uniformly distributed gradually. Even if the thin plate has initial value (heat source) or some other influences like input signal and intrinsic random fluctuation, the temperature of the thin plate will gradually achieve a uniform distribution to increase the system entropy. This phenomenon can be seen in Figure 2, Figure 3, Figure 4 and Figure 5.


Figure 2. The temperature distribution [image: there is no content] of the heat transfer system given in Equation (71) at [image: there is no content] 1, 10, 30 and 50 s. Due to the diffusion term [image: there is no content], the temperature of heat system will be uniformly distributed gradually to increase the system entropy.



[image: Entropy 18 00099 g002 1024]





Figure 3. The temperature distribution [image: there is no content] of heat transfer system in Equation (72) at [image: there is no content] 1, 10, 30 and 50 s. Obviously, the temperature distribution of stochastic heat transfer system in Equation (72) is with more random fluctuations and with more system entropy than the heat transfer system in Equation (71). The temperature distribution is also uniformly distributed gradually to increase the system entropy as time goes on. In general, the temperature in Figure 3 is more random than Figure 2, i.e., with more system randomness and entropy.



[image: Entropy 18 00099 g003 1024]





Figure 4. (a) Spatial-time profiles of the real biochemical system in Equation (73); (b) Spatial-time profiles of the approximated system in Equation (60) based on the finite difference scheme and global linearization technique; (c) The error between the real biochemical system in Equation (73) and the approximated system in Equation (60). Obviously, the approximated system based on finite difference scheme and global linearization method can approximate the biochemical enzyme system quite well.



[image: Entropy 18 00099 g004 1024]





Figure 5. (a) Spatial-time profiles of the real biochemical system in Equation (74); (b) Spatial-time profiles of the approximated system in Equation (66) based on the finite difference scheme and global linearization technique; (c) The error between the real biochemical system in Equation (74) and the approximated system in Equation (66). Obviously, the approximated system in Equation (66) could approximate the real system in Equation (74) quite well.



[image: Entropy 18 00099 g005 1024]






Suppose that the heat transfer system in Equation (71) suffers from the following random intrinsic fluctuation:


[image: there is no content]



(72)




where the term [image: there is no content] with [image: there is no content] is due to the random parameter variation of the term [image: there is no content]. Then, the temperature distributions [image: there is no content] of the heat transfer system in Equation (72) at [image: there is no content] 1, 10, 30 and 50 s are shown in Figure 3. Based on the Corollary 3 and the LMI-constrained optimization problem in Equation (45), we can calculate the system entropy of the stochastic heat transfer system in Equation (72) as [image: there is no content]. Obviously, it can be seen that the system entropy of the stochastic heat transfer system in Equation (72) is larger than the heat transfer system in Equation (71) without intrinsic random fluctuation.



Example 2. A biochemical enzyme system is used to describe the concentration distribution of the substrate in a biomembrane. For the enzyme system, the thickness [image: there is no content] of the artificial biomembrane is 1 μm. The concentration of the substrate is uniformly distributed inside the artificial biomembrane. Since the biomembrane is immersed in the substrate solution, the reference axis is chosen to be perpendicular to the biomembrane. The biochemical system can be formulated as follows [13]:


∂y(x,t)∂t=κ(y(x,t))∇2y(x,t)−VMy(x,t)KM+y(x,t)+y2(x,t)/KS+g(y(x,t))v(x,t)z(x,t)=Cy(x,t),



(73)




where [image: there is no content] is the concentration of the substrate in the biomembrane, [image: there is no content] is the substrate diffusion coefficient, [image: there is no content] is the maximum activity in one unit of the biomembrane, [image: there is no content] is the Michaelis constant, and [image: there is no content] is the substrate inhibition constant. The parameters of the biochemical enzyme system are given by [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and the output coupling [image: there is no content]. Note that the equilibrium point in Example 2 is at zero. The concentration of the initial value of the substrate is given by [image: there is no content]. The boundary conditions used to restrict the concentration are zero at [image: there is no content] and [image: there is no content], i.e., [image: there is no content], [image: there is no content]. A more detailed discussion about the enzyme can be found in [13]. Suppose that the biochemical enzyme system is under the effect of an external signal [image: there is no content]. For the convenience of computation, the external signal [image: there is no content] is assumed as a zero mean Gaussian noise with a unit variance. The influence function of external signal is defined as [image: there is no content] at [image: there is no content] and [image: there is no content] (μm). Based on the global linearization in Equation (57), we get [image: there is no content] and [image: there is no content], as shown in detail in Appendix I. The concentration distributions [image: there is no content] of the real system and approximated system are given in Figure 4 with [image: there is no content], i.e., [image: there is no content]. Clearly, the approximated system based on the global linearization technique and finite difference scheme efficiently approach the nonlinear function. Based on Proposition 6 and the LMIs-constrained optimization given in Equation (63), we can obtain [image: there is no content] as shown in detail in Appendix J and calculate the system entropy of the enzyme system in Equation (73) as [image: there is no content].



Therefore, it is clear that the approximated system in Equation (60) can efficiently approximate biochemical enzyme system in Equation (73). In this simulation, [image: there is no content]. Suppose that the biochemical system in Equation (73) suffers from the following random intrinsic fluctuation:


∂y(x,t)∂t=κ(y(x,t))∇2y(x,t)−VMy(x,t)KM+y(x,t)+y2(x,t)/KS+g(y(x,t))v(x,t)+H(y(x,t))y(x,t)w(x,t)z(x,t)=Cy(x,t),



(74)




where the term [image: there is no content] with [image: there is no content] is the random parameter variation from the term [image: there is no content]. Based on the global linearization in Equation (65), we can get [image: there is no content] as shown in detail in Appendix K. Based on the Proposition 7 and the LMIs-constrained optimization given in Equation (69), we can solve [image: there is no content] as shown in detail in Appendix L and calculate the system entropy of the enzyme system in Equation (74) as [image: there is no content].



Clearly, because of the intrinsic random parameter fluctuation, the system entropy of the stochastic enzyme system given in Equation (74) is larger than that of the enzyme system given in Equation (73).



The computation complexities of the proposed LMI-based indirect entropy measurement method is about [image: there is no content] in solving LMIs, where [image: there is no content] is the dimension of [image: there is no content], [image: there is no content] is the number of global interpolation points. We also calculate the elapsed time of the simulations examples by using MATLAB. The computation times including the drawing of the corresponding figures to solve the LMI constrained optimization problem are given as follows: in Example 1, the case of heat transfer system in Equation (71) is 183.9 s; the case of heat transfer system with random fluctuation in Equation (72) is 184.6 s. In Example 2, the case of biochemical system in Equation (73) is 17.7 s, the case of biochemical system with random fluctuation in Equation (74) is 18.6 s. The RAM of the computer is 4.00 GB, the CPU we used is AMD A4-5000 CPU with Radeon(TM) HD Graphics, 1.50 GHz. The results are reasonable. Because the dimension of grid nodes in Example 1 is [image: there is no content] and the dimension of grid nodes in Example 2 is [image: there is no content], obviously, the computation time in Example 1 is much larger than in Example 2. Further, the time spent of the system without the random fluctuation is slightly faster than the system with the random fluctuation. The conventional algorithms of calculating entropy have been applied in image processing, digital signal processing, and particle filters, like in [39,40,41]. The conventional algorithms for calculating entropy just can be used in linear discrete systems, but in fact many systems are nonlinear and continuous. The indirect entropy measurement method we proposed can deal with the nonlinear stochastic continuous systems. Though the study in [24] is about the continuous nonlinear stochastic system, many physical systems are always modeled using stochastic partial differential dynamic equation in the spatio-temporal domain. The indirect entropy measurement method we proposed can be employed to solve the system entropy measurement in nonlinear stochastic partial differential system problem.




7. Conclusions


In this study, the system entropy of stochastic partial differential systems (SPDSs) was introduced as the difference between input signal entropy and output signal entropy and was found to be the logarithm of the output signal randomness-to-input signal randomness ratio. We found that the system stability was inversely related to the system entropy and that intrinsic random fluctuation could increase the system entropy. If the eigenvalues of the system matrices are further in the left-hand side of the s-complex domain, then the SPDS has lower system entropy, and vice versa. If the output and the input signal randomness values are equal and the system is independent of the initial value, then the system entropy is zero. To estimate the system entropy of nonlinear stochastic partial differential systems (NSPDSs), the global linearization technique and finite difference scheme were employed to represent the NSPDS using the spatial state space system given in Equation (66). Therefore, the system entropy measurement problem of NPDSs became the problem of solving the HJII-constrained optimization problem given in Equation (55), which can be replaced by a simple LMIs-constrained optimization problem given in Equation (69). Hence, using the LMI-toolbox of MATLAB, we could easily calculated the system entropy of NSPDS. Finally, two examples were provided to illustrate the measurement procedure of the system entropy and to confirm that the PDSs with intrinsic random fluctuation possess greater system entropy.
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Appendixes


Lemma 1. [12]: For any matrices (or vectors) [image: there is no content], and a symmetric matrix [image: there is no content]with appropriate dimensions, we have:


[image: there is no content]








for any positive constant [image: there is no content].             ☐



Lemma 2. [42]: Let [image: there is no content]be any matrix with appropriate dimension and [image: there is no content]be the interpolation function for the [image: there is no content]th local system and [image: there is no content]. Then, we have:


[image: there is no content]











With Lemma 2, the LMI-constrained optimization in Equations (62) or (68) can be solved efficiently.                   ☐





Appendix A.


Proof of Proposition 1.




[image: there is no content]



(A1)







From the fact that [image: there is no content], we have:


[image: there is no content]



(A2)







From Lemma 1:


[image: there is no content]



(A3)







Substituting Equation (A3) into Equation (A2), we get:


[image: there is no content]



(A4)







If the HJII in given Equation (10) holds, then the system randomness in Equation (9) holds. If [image: there is no content] and [image: there is no content], then the HJII in Equation (10) will lead to the inequality in Equation (5). ☐





Appendix B.


Proof of Corollary 1


In the conventional linear dynamic system in Equation (12), which is independent on [image: there is no content], the HJII in Equation (10) for the system randomness to have an upper bound [image: there is no content] becomes the following inequality:


[image: there is no content]



(B1)







If we choose the Lyapunov function as [image: there is no content], then the HJII for the existence of the upper bound [image: there is no content] in (B1) becomes:


[image: there is no content]



(B2)




or:


[image: there is no content]



(B3)







Therefore, if the Riccati-like inequality in Equation (14) holds, then the inequality in Equation (B3) also holds and the system randomness of the linear dynamic system in Equation (12) has an upper bound [image: there is no content].              ☐





Appendix C.


Proof of Proposition 2


For the LSPDS given in Equation (18), from the [image: there is no content] formula [34,35], we get


∂V(y(x,t))∂t=(∂V(y(x,t))∂y)T(κ∇2y(x,t)+Ay(x,t)+Bv(x,t))+Hy(x,t)w(x,t)+12yT(x,t)HT∂2V(y(x,t))∂y2Hy(x,t).



(C1)







In this situation, we will follow the proof procedure in Appendix A:


[image: there is no content]



(C2)







From the fact that [image: there is no content] and [image: there is no content], substituting Equation (C1) into Equation (C2), we get:


[image: there is no content]



(C3)







By using the inequality Equation (A3), we get:


[image: there is no content]



(C4)







Therefore, if the HJII given in Equation (20) holds, then the inequality of system randomness in Equation (9) holds. If the initial condition [image: there is no content], then [image: there is no content], and the inequality of the system randomness in Equation (5) holds.       ☐





Appendix D.


Proof of Corollary 2


For the linear stochastic system in Equation (22), the HJII in Equation (20) for [image: there is no content] with an upper bound [image: there is no content] becomes:


[image: there is no content]



(D1)







If we choose the Lyapunov function as [image: there is no content], then the condition Equation (D1) for [image: there is no content] with an upper bound [image: there is no content] becomes:


[image: there is no content]











Therefore, if the Riccati-like inequality in Equation (24) holds, then the system randomness [image: there is no content] has an upper bound [image: there is no content].                 ☐





Appendix E.


Proof of Proposition 4.




[image: there is no content]



(E1)







From the fact that


[image: there is no content]



(E2)







From Lemma 1:


[image: there is no content]



(E3)







Substituting Equation (E3) into Equation (E2), we get:


[image: there is no content]



(E4)







If the HJII in Equation (48) holds, then [image: there is no content] has an upper bound [image: there is no content] as shown in Equation (9). If [image: there is no content], then [image: there is no content], and the HJII in Equation (48) and Equation (E4) will lead to Equation (5).             ☐





Appendix F.


Proof of Proposition 5


For the NPDS given in Equation (54), by using the [image: there is no content] formula, we get:


∂V(y(x,t))∂t=(∂V(y(x,t))∂y)T(κ(y(x,t))∇2y(x,t)+f(y(x,t))+g(y(x,t))v(x,t)+H(y(x,t))y(x,t)dW(x,t))+12yT(x,t)HT(y(x,t))∂2V(y(x,t))∂y2H(y(x,t))y(x,t).



(F1)







From the fact that [image: there is no content] and by following a similar procedure explained in Appendix E, we get:


[image: there is no content]



(F2)







If the HJII in Equation (55) holds, then the system randomness [image: there is no content] of the NSPDSs in Equations (53) or (54) has an upper bound [image: there is no content] as Equation (5) or Equation (9). ☐





Appendix G.


Proof of Proposition 6.




[image: there is no content]



(G1)







From the fact of the following inequality:


[image: there is no content]



(G2)




from Lemma 2, and the choice of [image: there is no content], we get:


[image: there is no content]



(G3)







If the inequalities in Equations (61) or (62) holds, then we get Equation (36) if [image: there is no content] or Equation (37) if [image: there is no content]; i.e., [image: there is no content] has an upper bound [image: there is no content] as shown in Equations (36) or (37). ☐





Appendix H.


Proof for Proposition 7.




E{∫0tfzT(t)z(t)dt}=E{V(0)−V(y(tf))+∫0tf(∑i=1L∑j=1Lαi(y)αj(y)yT(t)C¯iTC¯jy(t)+∂V(y(t))∂y)dt}.



(H1)







Using the I[image: there is no content]o formula [34,35]:


∂V(y(t))∂t=∂V(y(t))∂ydy(t)+12∑i=1Lαi(y)yT(t)H¯iT∂2V(y(t))∂y2H¯iy(t)=(∂V(y(t))∂t)T(∑i=1Lαi(y)(A¯iy(t)+B¯iv(t)+H¯iy(t)⋅W(t)))+12∑i=1Lαi(y)yT(t)H¯iT∂2V(y(t))∂y2H¯iy(t).



(H2)







From the fact that [image: there is no content], [image: there is no content], Equation (G2), Lemma 2, and the choice of [image: there is no content][image: there is no content], we get:


[image: there is no content]



(H3)







From the Riccati-like inequalities in Equation (67), we get Equation (36) if [image: there is no content] or Equation (37) if [image: there is no content]. Then, we can find that [image: there is no content] has an upper bound [image: there is no content] given in Equations (36) or (37).                  ☐






Appendix I. The Values of the Matrices [image: there is no content], and [image: there is no content] in Example 2




[image: there is no content]










[image: there is no content]










[image: there is no content]










[image: there is no content]










[image: there is no content]










[image: there is no content]














Appendix J. The Values of the Matrix [image: there is no content] in Example 2 without the Random Fluctuation [image: there is no content]




[image: there is no content]














Appendix K. The Values of the Matrices [image: there is no content] is in Example 2




[image: there is no content]










[image: there is no content]










[image: there is no content]














Appendix L. The Value of the Matrix [image: there is no content] is in Example 2 with the Random Fluctuation [image: there is no content]




[image: there is no content]
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