Entropy Generation on MHD Blood Flow of Nanofluid Due to Peristaltic Waves
Abstract
:1. Introduction
2. Mathematical Formulation
3. Entropy Generation Analysis
4. Solution of the Problem
5. Numerical Results and Discussion
6. Conclusions
- The temperature profile increases with the increase in and , while friction force reduces with the increment of these parameters.
- The concentration distribution for chemical reactions parameter is opposite near the walls.
- The temperature profile and velocity profile play vital roles to measure entropy generation by increases in .
- The pressure rise increases with the increase in density Grashof number and thermal Grashof number, but its behavior is opposite for friction forces, which indicates the fact that with the increase in these parameters, pressure rise can be controlled and can also enhance peristaltic pumping performance.
- The pressure rise also increases for nanofluid thermal conductivity, Weissenberg number, and Hartmann number, but friction force behavior for these parameters are totally different. It provides a great importance at the time of surgery and critical operations to control excessive bleeding.
- The present analysis can also be reduced to a Newtonian nanofluid by taking as a special case for our study.
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
velocity components | |
Cartesian coordinate | |
pressure in fixed frame | |
wave amplitude | |
width of the channel | |
wave velocity | |
Prandtl number | |
Reynolds number | |
time | |
basic density Grashof number | |
thermal Grashof number | |
Brownian motion parameter | |
thermophoresis parameter | |
constant | |
Rivilin Erickson tensor | |
magnetic field | |
Weissenberg number | |
radiation parameter | |
volume flow rate | |
temperature and concentration | |
Temperature at centre and at the wall | |
Nanoparticle fraction at centre and at the wall | |
Brinkman number | |
Perturbation parameter | |
acceleration due to gravity | |
Brownian diffusion coefficient | |
thermophoretic diffusion coefficient | |
mean absorption constant | |
Hartman number | |
stress tensor | |
porosity parameter |
Greek Symbols
chemical reaction parameter | |
nanofluid thermal conductivity | |
heat source/sink parameter | |
viscosity of the fluid | |
nano-particle volume fraction | |
electrical conductivity | |
dimensionless temperature difference | |
concentration difference | |
constant parameter | |
diffusive coefficient | |
Second invariant tensor | |
wave number | |
Stefan Boltzmann constant | |
effective heat capacity of nanoparticle | |
nanofluid kinematic viscosity | |
nanoparticle mass density | |
fluid density | |
fluid density at the reference temperature | |
volumetric expansion coefficient of the fluid | |
heat capacity of fluid | |
wavelength | |
Amplitude ratio |
References
- Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. ASME Int. Mech. Eng. Congr. Expos. 1995, 231, 99–106. [Google Scholar]
- Huminic, G.; Huminic, A. Heat transfer characteristics in double tube helical heat exchangers using Nanofluids. Int. J. Heat Mass. Trans. 2011, 54, 4280–4287. [Google Scholar] [CrossRef]
- Duangthongsuk, W.; Wongwises, S. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int. J. Heat Mass. Trans. 2009, 52, 2059–2067. [Google Scholar] [CrossRef]
- Li, J.; Kleinstreuer, C. Thermal performance of nanofluid flow in microchannels. Int. J. Numer. Method Heat 2008, 29, 1221–1232. [Google Scholar] [CrossRef]
- Duangthongsuk, W.; Selim Dalkilic, A.; Wongwises, S. Convective heat transfer of Al2O3-water nanofluids in a microchannel heat sink. Curr. Nanosci. 2012, 8, 317–322. [Google Scholar] [CrossRef]
- Li, J.; Kleinstreuer, C. Microfluidics analysis of nanoparticle mixing in a microchannel system. Microfluid. Nanofluid. 2009, 6, 661–668. [Google Scholar] [CrossRef]
- Leong, K.Y.; Saidur, R.; Kazi, S.; Mamun, A.H. Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Appl. Therm. Eng. 2010, 30, 2685–2692. [Google Scholar] [CrossRef]
- Ali, M.; El-leathy, A.; Al-Sofyany, Z. The effect of nanofluid concentration on the cooling system of a vehicles radiator. Adv. Mech. Eng. 2014. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Keimanesh, M.; Rajvanshi, S.C. Study of pulsatile flow in a porous annulus with the homotopy analysis method. Int. J. Numer. Method Heat 2012, 22, 971–989. [Google Scholar] [CrossRef]
- Abbas, M.A.; Bai, Y.Q.; Bhatti, M.M.; Rashidi, M.M. Three dimensional peristaltic flow of hyperbolic tangent fluid in non-uniform channel having flexible walls. Alex. Eng. J. 2015. [Google Scholar] [CrossRef]
- Cosmi, F.; Di Marino, F. Modelling of the mechanical behaviour of porous materials: A new approach. Acta Bioeng. Biomech. 2001, 3, 55–66. [Google Scholar]
- Bég, O.A.; Keimanesh, M.; Rashidi, M.M.; Davoodi, M.; Branch, S.T. Multi-Step dtm simulation of magneto-peristaltic flow of a conducting Williamson viscoelastic fluid. Int. J. Appl. Math. Mech. 2013, 9, 1–24. [Google Scholar]
- Majchrzak, E.; Dziatkiewicz, G.; Paruch, M. The modelling of heating a tissue subjected to external electromagnetic field. Acta Bioeng. Biomech. 2008, 10, 29–37. [Google Scholar] [PubMed]
- Nicoll, P.A. The anatomy and behavior of the vascular systems in Nereis virens and Nereis limbata. Biol. Bull. 1954, 106, 69–82. [Google Scholar] [CrossRef]
- Blair, G.S. An equation for the flow of blood, plasma and serum through glass capillaries. Nature 1959, 183, 613–614. [Google Scholar] [CrossRef] [PubMed]
- Misra, J.C.; Sinha, A.; Shit, G.C. Theoretical analysis of blood flow through an arterial segment having multiple stenosis. J. Mech. Med. Biol. 2008, 8, 265–279. [Google Scholar] [CrossRef]
- Ibsen, S.; Sonnenberg, A.; Schutt, C.; Mukthavaram, R.; Yeh, Y.; Ortac, I.; Heller, M.J. Recovery of Drug Delivery Nanoparticles from Human Plasma Using an Electrokinetic Platform Technology. Small 2015, 11, 5088–5096. [Google Scholar] [CrossRef] [PubMed]
- Akbar, N.S.; Nadeem, S. Simulation of heat and chemical reactions on Reiner Rivlin fluid model for blood flow through a tapered artery with a stenosis. Heat Mass Transf. 2010, 46, 531–539. [Google Scholar] [CrossRef]
- Bugliarello, G.; Sevilla, J. Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 1970, 7, 85–107. [Google Scholar] [PubMed]
- Misra, J.C.; Pandey, S.K. Peristaltic transport of blood in small vessels: Study of a mathematical model. Comput. Math. Appl. 2002, 43, 1183–1193. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Keimanesh, M.; Bég, O.A.; Hung, T.K. Magnetohydrodynamic biorheological transport phenomena in a porous medium: A simulation of magnetic blood flow control and filtration. Int. J. Numer. Method Biomed. Eng. 2011, 27, 805–821. [Google Scholar] [CrossRef]
- Abbas, M.A.; Bai, Y.Q.; Rashidi, M.M.; Bhatti, M.M. Application of drug delivery in Magnetohydrodynamics peristaltic blood flow of nanofluid in a non-uniform channel. J. Mech. Med. Biol. 2015, 16, 1650052. [Google Scholar] [CrossRef]
- Wada, S.; Karino, T. Computational studies on LDL transfers from flowing blood to arterial walls. In Clinical Application of Computational Mechanics to the Cardiovascular System; Springer: Tokyo, Japan, 2000; pp. 157–173. [Google Scholar]
- Agarwal, H.L.; Anwaruddin, B. Peristaltic flow of blood in a branch. Ranchi Univ. Math. J. 1984, 15, 111–121. [Google Scholar]
- Sud, V.K.; Sekhon, G.S.; Mishra, R.K. Pumping action on blood by a magnetic field. Bull. Math. Biol. 1977, 39, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, F.M.; Hayat, T.; Alsaedi, A.; Ahmed, B. Soret and Dufour effects on peristaltic transport of MHD fluid with variable viscosity. Appl. Math. Inf. Sci. 2014, 8, 211–219. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Freidoonimehr, N.; Momoniat, E.; Rostami, B. Study of nonlinear MHD tribological squeeze film at generalized magnetic Reynolds numbers using DTM. PLoS ONE 2015, 10, e0135004. [Google Scholar] [CrossRef] [PubMed]
- Makinde, O.D.; Eegunjobi, A.S.; Tshehla, M.S. Thermodynamics Analysis of Variable Viscosity Hydromagnetic Couette Flow in a Rotating System with Hall Effects. Entropy 2015, 17, 7811–7826. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Rashidi, M.M.; Ganji, D.D. Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model. J. Mol. Liq. 2015, 212, 117–126. [Google Scholar] [CrossRef]
- Sonnino, G.; Evslin, J.; Sonnino, A. Minimum Dissipation Principle in Nonlinear Transport. Entropy 2015, 17, 7567–7583. [Google Scholar] [CrossRef]
- Bejan, A. Second law analysis in heat transfer. Energy 1980, 5, 720–732. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Revellin, R.; Lips, S.; Khandekar, S.; Bonjour, J. Local entropy generation for saturated two-phase flow. Energy 2009, 34, 1113–1121. [Google Scholar] [CrossRef]
- Salas, H.; Cuevas, S.; de Haro, M.L. Entropy generation analysis of magnetohydrodynamics induction devices. J. Phys. D Appl. Phys. 1999, 32. [Google Scholar] [CrossRef]
- Ibáñez, G.; Cuevas, S.; de Haro, M.L. Optimization analysis of an alternate Magnetohydrodynamics generator. Energy Convers. Manag. 2002, 43, 1757–1771. [Google Scholar] [CrossRef]
- Lee, M.Y.; Kim, H.J. Heat Transfer Characteristics of a Speaker Using Nano-Sized Ferrofluid. Entropy 2014, 16, 5891–5900. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Bagheri, S.; Momoniat, E.; Freidoonimehr, N. Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet. Ain Shams Eng. J. 2015. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Kleinstreuer, C.; Moh’d, A.; Pop, I.; Sahin, A.Z.; Wongwises, S. A review of entropy generation in Nanofluid flow. Int. J. Heat Mass Transf. 2013, 65, 514–532. [Google Scholar] [CrossRef]
- Shapiro, A.H.; Jaffrin, M.Y.; Weinberg, S.L. Peristaltic pumping with long wavelength at low Reynolds number. J. Fluid Mech. 1969, 37, 799–825. [Google Scholar] [CrossRef]
- Srivastava, L.M.; Srivastava, V.P. Peristaltic transport of a power-law fluid: Application to the ductus efferentes of the reproductive tract. Rheol Acta 1988, 27, 428–433. [Google Scholar] [CrossRef]
- Gupta, B.B.; Seshadri, V. Peristaltic pumping in non-uniform tubes. J. Biomech. 1976, 9, 105–109. [Google Scholar] [CrossRef]
- Mekheimer, K.S. Peristaltic flow of blood under effect of a magnetic field in a non-uniform channels. Appl. Math. Comput. 2004, 153, 763–777. [Google Scholar] [CrossRef]
Plasma/Living Cells | Range |
---|---|
Erythrocytes | 4.5–5.2 × 106/mm3 |
Protids | 70–80 g/L |
Leukocytes | 4–10 × 103/mm3 |
Ions | 295–310 mEq/L |
Eosinophils | 1%–2% |
Lipids | 5–7 g/L |
Lymphocytes | 20%–40% |
Glucids | 0.8–1.1 g/L |
Neutrophils | 40%–70% |
Osmotic pressure | 280–300 mOsm |
Basophils | 0.5%–1% |
pH | 7.39–7.41 |
Monocytes | 2%–10% |
Hematocrit | 41%–47% |
Platelets | 2–4 × 105/mm3 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashidi, M.M.; Bhatti, M.M.; Abbas, M.A.; Ali, M.E.-S. Entropy Generation on MHD Blood Flow of Nanofluid Due to Peristaltic Waves. Entropy 2016, 18, 117. https://doi.org/10.3390/e18040117
Rashidi MM, Bhatti MM, Abbas MA, Ali ME-S. Entropy Generation on MHD Blood Flow of Nanofluid Due to Peristaltic Waves. Entropy. 2016; 18(4):117. https://doi.org/10.3390/e18040117
Chicago/Turabian StyleRashidi, Mohammad Mehdi, Muhammad Mubashir Bhatti, Munawwar Ali Abbas, and Mohamed El-Sayed Ali. 2016. "Entropy Generation on MHD Blood Flow of Nanofluid Due to Peristaltic Waves" Entropy 18, no. 4: 117. https://doi.org/10.3390/e18040117
APA StyleRashidi, M. M., Bhatti, M. M., Abbas, M. A., & Ali, M. E. -S. (2016). Entropy Generation on MHD Blood Flow of Nanofluid Due to Peristaltic Waves. Entropy, 18(4), 117. https://doi.org/10.3390/e18040117