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Abstract:

 A class of complex self-organizing systems subjected to fluctuations of environmental or intrinsic origin and to nonequilibrium constraints in the form of an external periodic forcing is analyzed from the standpoint of information theory. Conditions under which the response of information entropy and related quantities to the nonequilibrium constraint can be optimized via a stochastic resonance-type mechanism are identified, and the role of key parameters is assessed.
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1. Introduction


One of the principal features of complex self-organizing systems is the multitude of a priori available states [1]. This confers to their evolution an element of unexpectedness, reflected by the ability to choose among several outcomes and the concomitant difficulty of an observer to localize the actual state in state space. This is reminiscent of a central problem of information and communication theories [2], namely how to recognize a particular signal blurred by noise among the multitude of signals emitted by a source.



The connection between self-organization and information finds its origin in the pioneering works of Haken and Nicolis [3,4]. In the present work, we explore this connection in a class of multistable systems subjected to stochastic variability generated by fluctuations of intrinsic or environmental origin, as well as to a systematic nonequilibrium constraint in the form of a weak external periodic forcing. As is well known, stochasticity typically induces transitions between the states [5]. Furthermore, under appropriate conditions, one witnesses sharp, stochasticity-induced amplification of the response to the periodic forcing, referred to as stochastic resonance [6]. Our objective is to relate these phenomena to information processing.



A general formulation of the stochastic dynamics in the presence of a periodic forcing for multistable systems involving one variable is presented in Section 2, where, building on previous work by one of the present authors [7], the classical linear response theory of stochastic resonance in bistable systems is extended to the case of an arbitrary number of simultaneously stable states. In Section 3, a set of entropy-like quantities characterizing the complexity, variability and predictability of the system viewed as an information processor are introduced. Their dynamics as induced by the dynamics of the underlying multistable system is analyzed in Section 4. It is shown that by varying some key parameters the system can attain states of optimal response and predictability. The main conclusions are summarized in Section 5.




2. Self-Organization and Stochastic Resonance in a Periodically-Forced Multistable System


Consider a one-variable nonlinear system subjected to additive periodic and stochastic forcings. The evolution of such a system can be cast in a potential form [1,5],


[image: there is no content]



(1)




where x is the state variable and the stochastic forcing [image: there is no content] is assimilated to a Gaussian white noise of variance [image: there is no content],


<F(t)>=0,<F(t)F(t′)>=q2δ(t−t′)



(2a)







We decompose the generalized potential U as:


[image: there is no content]



(2b)







Here, [image: there is no content] is the potential in absence of the periodic forcing, and ϵ, ω stand for the amplitude and frequency of the forcing, respectively. In the classical setting of stochastic resonance, [image: there is no content] possesses two minima (associated with two stable steady states of the system) separated by a maximum. In the present work, this setting is extended by allowing for the existence of an arbitrary number n of stable steady states and, thus, for a [image: there is no content] possessing n minima [image: there is no content] separated by intermediately situated maxima. Furthermore, we stipulate that the leftmost and rightmost minima one and n are separated from the environment by impermeable boundaries, such that there are no probability fluxes directed from these states to the environment [7].



A simple implementation of this setting amounts to choosing [image: there is no content] in such a way that the successive minima and maxima are equidistant and of equal depth and height, respectively. These conditions become increasingly difficult to fulfill for increasing n if [image: there is no content] has a polynomial form. For the sake of simplicity, we will therefore adopt the following model for [image: there is no content]:


U0(x)=−cosx,0≤x≤2πn



(3a)




with stable and unstable states located respectively at:


π,3π,5π,⋯(3b)2π,4π,6π,⋯











Equations (1) and (2) describe a composite motion consisting of a combination of small-scale diffusion around each of the stable states and of large-scale transitions between neighboring stable states across the intermediate unstable state. The latter is an activated process whose rate depends sensitively on the potential barrier (cf. Equation (2b)):


ΔU=ΔU0−ϵΔxsinωt(4a)=U0(xunst)−U0(xst)−ϵ(xunst−xst)sinωt











As long as the noise is sufficiently weak in the sense of [image: there is no content], the characteristic time scale of this motion is much slower than the characteristic time of diffusion around a given stable state, the corresponding rate being given by Kramers’ formula [1,5],


[image: there is no content]



(4b)




where the accents denote derivatives with respect to x.



Placing ourselves in this limit, we can map Equation (1) into a discrete state process [5,7] describing the transfer of probability masses [image: there is no content] contained in the attraction basins of the stable states i ([image: there is no content]):


state1⇌k21k12state2⇌k32k23state3⋯⋯staten−1⇌kn,n−1kn−1,nstaten











The corresponding kinetic equations read [7]:


dpidt=Tij(t)pj(i=1,⋯,n)



(5)




where [image: there is no content] is the conditional probability per unit time to reach state i starting from state j. The transfer operator T appearing in this equation is a tridiagonal matrix satisfying the normalization condition [image: there is no content], whose structure can be summarized as follows:

	
Elements along the principal diagonal:


T11=−k12(t),Tnn=−kn,n−1(t)(6a)Tii=−(ki,i−1(t)+ki,i+1(t))2≤i≤n−1











	
Elements along the upper sub-diagonal:


Ti,i+1=ki+1,i(t)1≤i≤n−1



(6b)







	
Elements along the lower sub-diagonal:


Ti−1,i=ki,i−1(t)2≤i≤n



(6c)












The rate constants [image: there is no content] can be evaluated from Equations (4a) and (4b),


[image: there is no content]



(7a)




with:


[image: there is no content]



(7b)






[image: there is no content]



(7c)







Equation (5) constitutes a linear system with time-periodic coefficients. In what follows, we focus on the linear response, which will provide us with both qualitative and quantitative insights into the role of the principal parameters involved in the problem.



The starting point is to expand Equation (7a) in ϵ,


[image: there is no content]



(8a)




with:


[image: there is no content]



(8b)







This induces a decomposition of the transfer operator T and of the probability vector [image: there is no content] in Equation (5) in the form:


[image: there is no content]



(9a)






[image: there is no content]



(9b)







Here, [image: there is no content] and Δ are again tridiagonal matrices with elements given by Equations (6a)–(6c), where [image: there is no content] are replaced by [image: there is no content] and [image: there is no content], respectively. [image: there is no content] is the invariant probability in absence of the periodic forcing and [image: there is no content] the forcing-induced response. Notice that [image: there is no content] and [image: there is no content] are normalized to unity and to zero, respectively. Furthermore, since in absence of the forcing all k’s are equal (cf. Equations (7c) and (3a)), the corresponding invariant probabilities [image: there is no content] are uniform, [image: there is no content].



Substituting Equation (9) into Equation (5) and adopting for compactness a vector notation, we obtain to the first order in ϵ:


[image: there is no content]



(10)







The solution of this equation in the long time limit is of the form:


[image: there is no content]



(11a)




where the components [image: there is no content] and [image: there is no content] of [image: there is no content] and [image: there is no content] determine the amplitudes and phases of the [image: there is no content]’s with respect to the periodic forcing,


δpi(t)=(signBi)Risinωt+ϕi



(11b)






[image: there is no content]



(11c)






[image: there is no content]



(11d)







Substituting Equation (11) into Equation (10) and identifying the coefficients of [image: there is no content] and [image: there is no content], one obtains following the lines of [7] the following explicit expressions of [image: there is no content] and [image: there is no content],


Ai=1N24πk0n2q2∑kevencos(k−1)π2ncos(2i−1)(k−1)π2nωλk2+ω2(12)Bi=1N24πk0n2q2∑kevencos(k−1)π2ncos(2i−1)(k−1)π2nλkλk2+ω2








where [image: there is no content] is given by:


λk=−2k0(1−cos(k−1)πn)k=1,⋯,n



(13)




and [image: there is no content] is the value of the unperturbed rates [image: there is no content].



Figure 1a–c depicts the maxima [image: there is no content] and the phases of [image: there is no content] as a function of i, keeping n and [image: there is no content] fixed as obtained by numerical evaluation of the analytic expressions (12). The plot of the coefficient [image: there is no content] as a function of i in Figure 1b shows that this coefficient is subjected to several changes in sign. This entails that the corresponding response (Equation (11b)) will be subjected to an additional phase shift of π in regions where [image: there is no content] is negative. As can be seen, the maximal response is obtained for the boundary states one and n. This is due to the fact that while the intermediate states are depleted by transferring probability masses to both of their neighbors, for the boundary states, the depletion is asymmetric. Furthermore, for given noise strength [image: there is no content], the response is more pronounced in the range of low frequencies, as expected to be the case in stochastic resonance. Note that for n odd, the response in the middle state is strictly zero. Finally, varying [image: there is no content] for fixed ω provides an optimal value [image: there is no content] for which the amplitude of the response is maximized.


Figure 1. Amplitude scaled by [image: there is no content]: (a) of the response [image: there is no content] (Equation (11c)); (b) of the coefficient [image: there is no content] (Equation (12)); and (c) the behavior of the phase [image: there is no content] (Equation (11d)) in the case of [image: there is no content] coexisting stable states for different values of the ratio [image: there is no content] = 0.01 (full lines), 0.1 (dashed lines) and 1 (dotted lines).



[image: Entropy 18 00172 g001 1024]







3. Multistability, Information Entropy, Information Production and Information Transfer


In this section, we introduce a set of quantities serving as measures of the choice and unexpectedness associated with self-organization and, in particular, with the multiplicity of available states of the system introduced in Section 2. We start with information (Shannon) entropy [1,2,3,4]:


[image: there is no content]



(14)




where the probabilities [image: there is no content] of the various states are defined by Equations (5), (9b) and (11). As a reference, we notice that in the absence of the nonequilibrium constraint provided by the external forcing, the probabilities are uniform, [image: there is no content], and [image: there is no content] in this state of full randomness attains its maximum value:


[image: there is no content]



(15)




The deviation from full randomness, and thus, the ability to reduce errors, is conveniently measured by the redundancy:


[image: there is no content]



(16)




We come next to the link with dynamics. Differentiating both sides of Equation (14) with respect to time and utilizing Equation (5), we obtain a balance equation for the rate of change of [image: there is no content].


dSIdt=−∑idpidtlnpi=−∑ijTijpjlnpi








Setting:


Tij=wiji≠j(17)Tii=−∑i≠jTji=wii








we can rewrite this equation in the more suggestive form:


dSIdt=−∑ijlnpi(wijpj−wjipi)=12∑ijlnpjpi(wijpj−wjipi)











Writing:


[image: there is no content]








we finally obtain:


[image: there is no content]



(18a)




where the information entropy production [image: there is no content] and the associated flux [image: there is no content] are defined by [8,9]:


[image: there is no content]



(18b)






[image: there is no content]



(18c)







We notice the bilinear structure of [image: there is no content] in which the factors within the sum can be viewed as generalized (probability) fluxes and their associated generalized forces. This is reminiscent of the expression of entropy production of classical irreversible thermodynamics [10]. As a reference, in the state of equipartition realized in the absence of the external forcing, one has [image: there is no content], [image: there is no content], and [image: there is no content] vanishes along with all individual generalized fluxes and forces. This property of detailed balance, characteristic of thermodynamic equilibrium, breaks down in the presence of the forcing, which introduces a differentiation in [image: there is no content] and an asymmetry in the [image: there is no content]. [image: there is no content] measures, therefore the distance between equilibrium and nonequilibrium on the one side and between direct (i to j) and reverse (j to i) process on the other. In this latter context [image: there is no content] is also closely related to the Kullback information.



Finally, in an information theory perspective, one is led to consider the information transfer between a part of the system playing the role of “transmitting set” X and a “receiver set” Y separated by a “noisy channel” [2,4]. In the dynamical perspective developed in this work, the analogs are two states, say i and j, and a conditional probability matrix, [image: there is no content]. The information transfer is then simply the sum of the Shannon entropy and the Kolmogorov–Sinai entropy [1,4]:


[image: there is no content]



(19)







To relate h with the quantities governing the evolution of our multistable system, we need to relate the transition probabilities [image: there is no content] to the transition rates (probabilities per unit time) [image: there is no content] featured in Equations (6) and (17). This requires in turn to map the continuous time process of the previous section to a discrete-time Markov chain. To this end, we introduce the discretized expression of the time derivative in Equation (5), utilize Equation (17) and choose the time step [image: there is no content] as a fraction of the Kramers time associated with the passage over the potential barriers as discussed in Section 2:


[image: there is no content]



(20)







This leads to the discrete master-type equation:


[image: there is no content]



(21)




where the stochastic matrix W is defined by:


Wi±1,i=ki,i±1κ(22a)Wii=ki+1,i+ki−1,iκ2≤i≤n−1










W21=k12κ,W11=1−k12κ



(22b)






Wn−1,n=kn,n−1κ,Wnn=1−kn,n−1κ



(22c)







Introducing again as a reference the state in the absence of the forcing, one sees straightforwardly that [image: there is no content], [image: there is no content] and [image: there is no content] for [image: there is no content], [image: there is no content] for [image: there is no content] and [image: there is no content]. Expression (19) reduces then to:


[image: there is no content]



(23)




where the two terms on the right-hand side account, respectively, for the contributions of the intermediate states and of the boundary states one and n.



It is worth noting that for n, even the Markov chain associated with the forcing-free system is lumpable [11], in the sense that upon grouping the original states, one can reduce Equation (21) into a system of just two states a and b, with [image: there is no content] and [image: there is no content]. In other words, in the absence of the nonequilibrium constraint, the intermediate states play no role. The presence of the forcing will change this situation radically by inducing non-trivial correlations and information exchanges within the system.




4. Nonequilibrium Dynamics of Information and Stochastic Resonance


Our next step is to evaluate the quantities introduced in the preceding section in the presence of the nonequilibrium constraint provided by the external forcing with emphasis on the roles of key parameters, such as forcing amplitude and frequency, noise strength and number of states.



4.1. Information Entropy and Redundancy


Substituting expression Equation (9b) into Equation (14) and using the property [image: there is no content], one sees straightforwardly that the [image: there is no content] contributions to [image: there is no content] cancel identically. Keeping the first non-trivial (i.e., [image: there is no content]) parts, one obtains:


[image: there is no content]



(24a)




where:


[image: there is no content]



(24b)




and:


[image: there is no content]



(24c)







Using expression Equation (11b) for [image: there is no content], we may further decompose [image: there is no content] into its time average part [image: there is no content] and a periodic modulation [image: there is no content] around the average:


[image: there is no content]



(25a)






δSI=ϵ2n4∑iRi2cos(2(ωt+ϕi))(25b)=Reff2cos(2ωt+ψeff)








where the effective amplitude [image: there is no content] and phase [image: there is no content] of the modulation are expressed in terms of [image: there is no content] and [image: there is no content].



The evaluation of the redundancy, Equation (16), follows straightforwardly from that of [image: there is no content], leading to:


[image: there is no content]



(26)




where [image: there is no content] is given by Equations (24c) and (25).



In Figure 2a,b, the time averaged excess entropy [image: there is no content] and redundancy [image: there is no content] are plotted as a function of the number n of states using expressions Equations (11)–(13). In all cases, [image: there is no content] is negative and [image: there is no content] positive, reflecting the enhancement of predictability induced by the nonequilibrium constraint. Furthermore, and similarly to Figure 1a, for given noise strength [image: there is no content], the enhancement is more pronounced in the range of low frequencies ω and is further amplified when the conditions of stochastic resonance are met. Interestingly, for given [image: there is no content] and ω, the enhancement exhibits a clear-cut extremum for a particular value of the number of states. This unexpected result suggests that to optimize its function our multistable system, viewed as an information processor, should preferably be endowed with a number of states (essentially a “variety”) that is neither very small nor too large. Finally in Figure 3, the time evolution of the full [image: there is no content] in the low frequency range is plotted using expression Equations (11)–(13) and (25).


Figure 2. Time average excess entropy [image: there is no content] (Equation (25a)) (a) and redundancy [image: there is no content] (Equation (26)); (b) as a function of the number n of states present for different values of the ratio [image: there is no content]= 0.01 (full lines), 0.1 (dashed lines) and 1 (dotted lines). Normalization parameter α as in Figure 1.



[image: Entropy 18 00172 g002 1024]





Figure 3. Time evolution of the full excess entropy [image: there is no content] (Equation (24c)) in the case of [image: there is no content] coexisting states with [image: there is no content] = 0.01, corresponding to the minimum of the full line of Figure 2a.



[image: Entropy 18 00172 g003 1024]







4.2. Information Entropy Production


Our starting point is Equation (18b). We have shown in the preceding section that the zeroth order part of [image: there is no content] vanishes, since it corresponds to a state where detailed balance holds. To obtain the first non-trivial contribution, we need therefore to expand both [image: there is no content] and [image: there is no content] in the forcing amplitude ϵ. Actually, since each of the two factors in the expression of [image: there is no content] vanishes for [image: there is no content], it suffices to take each of them to [image: there is no content] in order to obtain the dominant, [image: there is no content] contribution. Substituting Equation (9b) along with the analogous expressions for [image: there is no content]:


wij=wij(0)+δwij(j=i±1)



(27)




where [image: there is no content] and [image: there is no content], we obtain:


ΔσI=n2k0{∑i[k0(δpi+1−δpi)+1n(δwi,i+1−δwi+1,i)]2(28)+∑i[k0(δpi−1−δpi)+1n(δwi,i−1−δwi−1,i)]2}








where [image: there is no content] is given by Equations (11)–(13) and (see Equations (6), (7) and (17)):


[image: there is no content]



(29)







Taking the time average [image: there is no content] over a period of the forcing and denoting for compactness sign [image: there is no content], one finally obtains:


ΔσI¯ϵ2/(2k0)=16k02π2(n−1)nq4+k02n(12(R12+R22)−s1s2R1R2cos(ϕ2−ϕ1))+4k02πq2(s2R2cosϕ2−s1R1cosϕ1)+k02n(12(Rn−12+Rn2)−sn−1snRn−1Rncos(ϕn−1−ϕn))+4k02πq2(sn−1Rn−1cosϕn−1−snRncosϕn)+∑i=2n−1{k02n[12(Ri+12+Ri−12+2Ri2)−siRi(si+1Ri+1cos(ϕi+1−ϕi)+si−1Ri−1cos(ϕi−1−ϕi))]+4k02πq2(siRi+1cosϕi+1−si−1Ri−1cosϕi−1)}



(30)







Figure 4 depicts the dependence of [image: there is no content], scaled by the factor [image: there is no content], as a function of a number of states n for different values of the forcing frequency. We observe a trend similar to that of Figure 2a,b: an enhancement under nonequilibrium conditions near stochastic resonance for an optimal number of intermediate states and practically no effect of the nonequilibrium constraint for higher frequencies. Since the time average of [image: there is no content] in Equation (18a) is necessarily zero, it follows that the information flux [image: there is no content] (Equation(18c)) will display a similar behavior albeit with an opposite sign, i.e., a pronounced dip for low frequencies and for an optimal number of states. In a sense, the excess information produced remains confined within the system at the expense of a negative excess information flux, in much the same way as in the entropy balance of classical irreversible thermodynamics [10].


Figure 4. Information entropy production averaged over the period of the forcing (Equation (30)), scaled by [image: there is no content] as a function of the number of states n present and for different values of the ratio [image: there is no content] = 0.01 (full line), 0.1 (dashed line) and 1 (dotted line).



[image: Entropy 18 00172 g004 1024]







4.3. Information Transfer and Kolmogorov–Sinai Entropy


We begin by decomposing [image: there is no content] and [image: there is no content] in Equation (19) into a reference part and a deviation arising from the presence of the nonequilibrium constraint:


pi=pi(0)+δpiWij=Wij(0)+δWij



(31)




where [image: there is no content] and the [image: there is no content]’s have been evaluated in Section 3. Using Equations (7), (8) and (22), one can establish the following properties:

	
[image: there is no content] vanish for the intermediate states [image: there is no content].



	
The contributions of [image: there is no content] coming from second order terms in the expansion of Equation ((7a) in powers of ϵ do not contribute up to order [image: there is no content] to [image: there is no content], which can therefore be limited for our purposes to its first order in ϵ part [image: there is no content].



	
[image: there is no content], [image: there is no content] and [image: there is no content] satisfy the symmetry relations:


[image: there is no content]



(32)












Substituting into Equation (19) and using the symmetry property [image: there is no content] along with the normalization condition [image: there is no content], one obtains after some straightforward manipulations:


[image: there is no content]



(33)




with:


[image: there is no content]



(34)







Taking the average of Equation (33) over a period of the forcing leads to the following expression for the mean excess Kolmogorov–Sinai entropy:


[image: there is no content]



(35)







In Figure 5, the dependence of [image: there is no content], scaled by a factor [image: there is no content], on the number of states is plotted for various values of the forcing frequency. We find a trend similar to the one in Figure 2, Figure 3 and Figure 4, namely an optimal response for frequency values close to conditions of stochastic resonance and for a particular number of intermediate states. The negative values of [image: there is no content] reflect the reduction of randomness (of which h is a characteristic measure) induced by the nonequilibrium constraint.


Figure 5. Kolmogorov–Sinai entropy averaged over the period of the forcing (Equation (35)) as a function of the number of states n present and for different values of the ratio [image: there is no content] = 0.01 (full line), 0.1 (dashed line) and 1 (dotted line). Normalization parameter α as in Figure 1.



[image: Entropy 18 00172 g005 1024]








5. Conclusions


In this work, a nonlinear system subjected to a nonequilibrium constraint in the form of a periodic forcing, giving rise to complex behavior in the form of fluctuation-induced transitions between multiple steady states and of stochastic resonance, was considered. Mapping the dynamics into a discrete-state Markov process allowed us to view the system as an information processor. Subsequently, the link between the dynamics and, in particular, the self-organization induced by the nonequilibrium constraint, on the one side, and quantities of interest in information theory, on the other side, was addressed. It was shown that the nonequilibrium constraint leaves a clear-cut signature on these quantities by reducing randomness and by enhancing predictability, which is maximized under conditions of stochastic resonance. Of special interest is the a priori unexpected existence of an optimum for a particular number of simultaneously stable states suggesting the existence of optimal alphabets on which information is to be generated and transmitted.



In summary, it appears that when viewed in a dynamical perspective, generalized entropy-like quantities as used in information theory can provide useful characterizations of self-organizing systems led to choose among a multiplicity of possible outcomes. Conversely and in line with the pioneering work in [3,4], information constitutes in turn one of the basic attributes emerging out of the dynamics of wide classes of self-organizing systems and conveying to them their specificity.
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