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Abstract:

 We show that the general framework proposed by Kleihaus et al. (2015) for the study of asymptotically flat vacuum black objects with [image: there is no content] equal magnitude angular momenta in [image: there is no content] spacetime dimensions (with [image: there is no content]) can be extended to the case of Einstein–Maxwell-dilaton (EMd) theory. This framework can describe black holes with spherical horizon topology, the simplest solutions corresponding to a class of electrically charged (dilatonic) Myers–Perry black holes. Balanced charged black objects with [image: there is no content] horizon topology can also be studied (with [image: there is no content]). Black rings correspond to the case [image: there is no content], while the solutions with [image: there is no content] are black ringoids. The basic properties of EMd solutions are discussed for the special case of a Kaluza–Klein value of the dilaton coupling constant. We argue that all features of these solutions can be derived from those of the vacuum seed configurations.
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1. Introduction


The study of black hole (BH) solutions in more than [image: there is no content] dimensions is a subject of long standing interest in General Relativity. A seminal result in this area was the discovery of the [image: there is no content] black ring (BR) by Emparan and Reall [1,2]. The [image: there is no content] generalizations of the BR were constructed in [3] within an approximation scheme, and fully non-perturbatively in [4,5] (although for [image: there is no content] only). In contrast to the Myers–Perry (MP) BHs [6], which have a spherical horizon topology being natural higher dimensional generalizations of the [image: there is no content] Kerr solution [7], the BRs have an event horizon of [image: there is no content] topology, and possess no four-dimensional counterpart.



The rapid developments following the discovery in [1,2] have revealed the existence of a “zoo” of higher dimensional solutions with various topologies of the event horizon (a review of the existing results can be found in [8,9,10]). In five dimensions a variety of BR solutions with (Abelian) gauge fields and scalars are known in closed form [11]. (See also the Einstein–Maxwell numerical solutions in [12].) However, most of the activity in this area concerns the pure Einstein gravity case without matter fields. In particular, to our knowledge, there is no non-perturbative construction of non-vacuum, singularity-free [image: there is no content] black objects with a non-spherical horizon topology. (Note that the balanced Einstein–Maxwell BHs with [image: there is no content] event horizon topology constructed in [13] are not asymptotically flat.)



The main purpose of this work is to propose a general framework for the study of a class of asymptotically flat black objects in Einstein–Maxwell-dilaton (EMd) theory for a number [image: there is no content] of spacetime dimensions. These black objects possess [image: there is no content] equal magnitude angular momenta and can describe MP-like BHs with spherical horizon topology or balanced black objects with [image: there is no content] horizon topology (with [image: there is no content] and [image: there is no content]). In the absence of matter fields, this framework reduces to that employed in [14] to study BRs ([image: there is no content]) and black ringoids ([image: there is no content]). Here, we show that the approach in [14] can be extended to the EMd case.



Moreover, for a special value of the dilaton coupling constant, all solutions in [14] can be extended to the EMd case in a straightforward way by using a generation technique. This approach has the advantage to easily provide a window into the elusive general EMd case; also, we expect some of the solutions’ properties to be generic.




2. The Framework


2.1. The Action and Field Equations


The action of the D-dimensional EMd theory is ([image: there is no content]):


S=116π∫dDx-gR-12Φ,μΦ,μ-14e-2aΦFμνFμν,



(1)




where a is the dilaton coupling constant and [image: there is no content]. The field equations consist of the Einstein equations


Rμν-12Rgμν=12Tμν,



(2)




with the stress-energy tensor


Tμν=∂μΦ∂νΦ-12gμν∂τΦ∂τΦ+e-2aΦFμτFντ-14gμνFτβFτβ,








the Maxwell equations


∇μe-2aΦFμν=0,



(3)




and the dilaton equation


∇2Φ=-a2e-2aΦFμνFμν.



(4)








2.2. The Ansatz


Following [14], we consider the metric Ansatz


ds2=f1(r,θ)dr2+Δ(r)dθ2+f2(r,θ)dΩn2-f0(r,θ)dt2+f3(r,θ)dψ+A-W(r,θ)dt2+f4(r,θ)dΣk2,



(5)




which describes the geometry of black objects with [image: there is no content] equal magnitude angular momenta in [image: there is no content] spacetime dimensions (with [image: there is no content]). The above choice of the Ansatz becomes transparent when considering the Minkowski spacetime limit of Equation (5). This background metric is recovered for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]:


[image: there is no content]



(6)




where [image: there is no content], [image: there is no content] and t is the time coordinate. In addition, [image: there is no content] is the metric on the round [image: there is no content]dimensional sphere, while the metric of a [image: there is no content]-dimensional sphere is written as an [image: there is no content] fibration over the complex projective space [image: there is no content],


[image: there is no content]



(7)




where [image: there is no content] is the metric on the unit [image: there is no content] space and [image: there is no content] is its Kähler form. The fiber is parameterized by the coordinate ψ, which has period [image: there is no content]. In addition, the term [image: there is no content] is absent in Equation (5) for [image: there is no content] (in which case [image: there is no content]). However, the general relations exhibited below are still valid in that case, see [14].



A gauge field Ansatz compatible with the symmetries of the line element Equation (5) reads


A=At(r,θ)dt+Aψ(r,θ)(dψ+A),



(8)




while the dilaton Φ is


[image: there is no content]



(9)








2.3. Boundary Conditions and Quantities of Interest


In this approach, the dependence of the coordinates on the [image: there is no content] and [image: there is no content] parts of the metric factorizes, such that the problem is effectively codimension-2. As a result, the information on the solutions is encoded in the metric functions [image: there is no content] (with [image: there is no content], the gauge potentials [image: there is no content] and the dilaton Φ. (Note that the function [image: there is no content] which enters Equation (5) is an input “background” function which is chosen for convenience by using the residual metric gauge freedom. The numerical solutions have [image: there is no content]).



Then, the resulting EMd equations of motion form a set of nine coupled nonlinear partial differential equations (PDEs) in terms of [image: there is no content] only, which are solved subject to the boundary conditions given below. Note that the metric functions should satisfy a number of extra boundary conditions which guarantee the regularity of the solutions (e.g., the constancy of the Hawking temperature on the horizon, see the discussion in [14]).



The range of the θ-coordinate is [image: there is no content], while [image: there is no content]. The event horizon is located at [image: there is no content], the metric of a spatial cross-section of the horizon being:


dσ2=f1(rH,θ)rH2dθ2+f2(rH,θ)dΩn2+f3(rH,θ)(dψ+A)2+f4(rH,θ)dΣk2.



(10)







At [image: there is no content], the following boundary conditions are satisfied


f0=0,rH∂rf1+2f1=∂rf2=∂rf3=0,W=ΩH,∂rAψ=0,At+ΩHAψ=ΦH,∂rΦ=0.



(11)







As [image: there is no content], the Minkowski spacetime background is recovered, with vanishing matter fields, which implies


f0=f1=1,f2=r2cos2θ,f3=f4=r2sin2θ,W=0,At=Aψ=Φ=0.



(12)







At [image: there is no content], we impose


∂θf0=∂θf1=f2=∂θf3=∂θf4=∂θW=0,∂θAt=Aψ=0,∂θΦ=0.



(13)







The boundary conditions at [image: there is no content] are more complicated, depending on the event horizon topology. In the simplest case of solutions with a spherical horizon topology, one imposes


∂θf0=∂θf1=∂θf2=f3=f4=∂θW=0,∂θAt=Aψ=0,∂θΦ=0.



(14)







However, as discussed at length in [14], the metric Ansatz Equation (5) allows as well for an Sn+1×S2k+1 horizon topology. Such solutions possess a new input parameter [image: there is no content] (which provides a rough measure for the size of the [image: there is no content] sphere on the horizon), with


∂θf0=∂θf1=f2=∂θf3=∂θf4=∂θW=0,∂θAt=∂θAψ=0,∂θΦ=0,



(15)




for [image: there is no content], while, for [image: there is no content], the boundary conditions are given by Equation (14). Thus, for such solutions, the functions [image: there is no content], [image: there is no content] multiplying the [image: there is no content] part of the horizon metric Equation (10) are strictly positive and finite for any [image: there is no content], while [image: there is no content] and thus vanishes at both [image: there is no content] and [image: there is no content]. However, the [image: there is no content] and [image: there is no content] parts in Equation (10) are not round spheres. To obtain a measure for the deformation of the [image: there is no content] sphere, we consider the ratio [image: there is no content], where [image: there is no content] is the circumference at the equator ([image: there is no content], where the sphere is fattest), and [image: there is no content] the circumference along the poles,


Le=2πf2(rH,π/4),Lp=2∫0π/2dθrHf1(rH,θ).



(16)







A possible estimate for the deformation of the sphere [image: there is no content] in Equation (10) is given by the ratio [image: there is no content], where


R2k+1(in)=f3(rH,0)f42k(rH,0)12(2k+1),R2k+1(out)=f3(rH,π/2)f42k(rH,π/2)12(2k+1).



(17)







The expressions of the event horizon area [image: there is no content], Hawking temperature [image: there is no content], event horizon velocity [image: there is no content] and the horizon electrostatic potential [image: there is no content] of the solutions are similar for any horizon topology and read


AH=rHV(n)V(2k+1)∫0π/2dθf1f2nf3f42k|r=rH,TH=12πlimr→rH1(r-rH)f0f1,ΩH=W|r=rH,ΦH=(At+ΩHAψ)|r=rH,



(18)




where [image: there is no content] is the area of the unit [image: there is no content] sphere. In addition, one can see that the Killing vector [image: there is no content] is orthogonal and null on the horizon.



The global charges of the system are the mass [image: there is no content], the angular momenta [image: there is no content] and the electric charge [image: there is no content]. They are read from the large[image: there is no content] asymptotics of the metric functions and electric potential, gtt=-1+CtrD-3+⋯,gψt=-f3W=CψrD-3sin2θ+⋯,[image: there is no content], with


M=(D-2)V(D-2)16πCt,J1=⋯=Jk+1=V(D-2)8πCψ=J,QE=(D-2)V(D-2)16πQ.



(19)







For any horizon topology, these black objects satisfy the Smarr relation


[image: there is no content]



(20)




and the 1st law


[image: there is no content]



(21)







In the canonical ensemble, we study solutions holding the temperature [image: there is no content], the electric charge [image: there is no content] and the angular momentum J fixed. The associated thermodynamic potential is the Helmholtz free energy: [image: there is no content] Black objects in a grand canonical ensemble are also of interest, in which case we keep the temperature [image: there is no content], the chemical potential [image: there is no content] and the event horizon velocity [image: there is no content] fixed. In this case, the thermodynamics are obtained from the Gibbs potential: G=M-14THAH-(k+1)ΩHJ-ΦHQE.



Following the usual convention in the literature, we fix the overall scale of the solutions by fixing their mass [image: there is no content]. Then, the solutions are characterized by a set of reduced dimensionless quantities, obtained by dividing out an appropriate power of [image: there is no content]:


j=cjJMD-2D-3,aH=caAHMD-2D-3,wH=cwΩHM1D-3,tH=ctTHM1D-3,q=QEM



(22)




with the coefficients


cj=(D-2)D-2D-3(16π)1D-32D-2D-31+k(D-3)(2k+1)(V(n+1)V(2k+1))1D-3,ca=22D-3(16π)D-2D-3(D-2)D-2D-3D-2k-4D-3(V(n+1)V(2k+1))1D-3,cw=21D-3(D-2)1D-3D-32k+1(16π)1D-3(V(n+1)V(2k+1))1D-3,ct=(D-4)D-322(D-2)D-3(D-2)1D-3(16π)D-2D-3(D-2k-4)32(V(n+1)V(2k+1))1D-3.











For completeness, let us mention that the charged solutions possess also a magnetic moment μ and a dilaton charge [image: there is no content]. These quantities are read again from the far field behavior of the fields, [image: there is no content], [image: there is no content], and do not enter their thermodynamic description. In addition, as usual with charged spinning solutions, a gyromagnetic ratio is defined as:


[image: there is no content]



(23)









3. Solutions—The Kaluza–Klein Case


The only vacuum solutions which can be written within the Ansatz Equation (5) and are known in closed form are the MP BHs and the [image: there is no content] BR spinning in a single plane. Apart from that, the References [4,5,12,14] gave numerical evidence for the existence of BRs and black ringoids for several values of [image: there is no content].



Given the above formulation of the problem, EMd generalizations of these configurations can be constructed numerically, by employing the numerical scheme developed in [14] for the vacuum case (see also [15,16]). Indeed, charged MP BHs were considered in [17], while BR solutions have been studied in [12], in both cases for [image: there is no content] spacetime dimensions and a pure Einstein–Maxwell theory. By using a similar approach, we have found (preliminary) numerical evidence for the existence of [image: there is no content], [image: there is no content] balanced black ringoids, again in the Einstein–Maxwell theory.



However, a numerical investigation of the generic EMd solutions is a complicated task beyond the purposes of this work. In what follows, we shall restrict ourselves to the special case of an EMd model with a Kaluza–Klein value of the dilaton coupling constant a,


a=D-12(D-1)(D-2).



(24)







In this limit, the EMd solutions can be generated by using the (vacuum) Einstein black objects as seeds. (A similar approach has been used in [18,19] to study the MP BHs in EMd theory with a dilaton coupling constant given by Equation (24) and [image: there is no content] BRs and black Saturns have been constructed in [20,21], in the same model.) The procedure is well known in the literature and works as follows: we first embed the D-dimensional vacuum solutions into a [image: there is no content] spacetime with a trivial extra coordinate U,


dsD+12=dU2+ds2.



(25)







Then, we perform a boost in the t-U plane with [image: there is no content], [image: there is no content]. In the next step, we consider the following parametrization of the resulting in a [image: there is no content]-dimensional boosted metric:


dsD+12=e22(D-1)(D-2)Φgμνdxμdxν+e-2(D-2)2(D-1)(D-2)Φ(dU+Aνdxν)2,



(26)




which allows for a straightforward reduction to D-dimensions with respect to the Killing vector [image: there is no content]. Then, [image: there is no content], [image: there is no content], and Φ are identified with the D-dimensional metric, the D-dimensional Maxwell potential, and the dilaton function, respectively. In addition, they satisfy the EMd Equations (2)–(4) in D spacetime dimensions.



Considering a vacuum Einstein gravity solution described by the metric Ansatz Equation (5), a direct computation leads to the following expression of the EMd solution:


f0=1+(1-f0(0)+f3(0)W(0)2)sinh2α1D-21+(1-f0(0))sinh2αf0(0),(f1;f2;f4)=1+(1-f0(0)+f3(0)W(0)2)sinh2α1D-2(f1(0);f2(0);f4(0)),f3=1+(1-f0(0))sinh2α1+(1-f0(0)+f3(0)W(0)2)sinh2αD-3D-2f3(0),W=coshα1+(1-f0(0))sinh2αW(0),



(27)




together with


At=(1-f0(0)+f3(0)W(0)2)sinhαcoshα1+(1-f0(0)+f3(0)W(0)2)sinh2α,Aψ=-f3(0)W(0)sinhα1+(1-f0(0)+f3(0)W(0)2)sinh2α,Φ=-12(D-2)2(D-1)(D-2)log1+(1-f0(0)+f3(0)W(0)2)sinh2α,



(28)




where the superscript [image: there is no content] stands for the pure Einstein gravity seed metric. One can easily see that these functions satisfy the boundary conditions (Equations (11)–(15)), since the seed solution is also subject to the same set of conditions.



For both the MP BHs and [image: there is no content] BR seed solutions, it is straightforward to write down the corresponding closed form EMd generalizations. For example, in the MP case, one replaces in Equations (27) and (28) the following expression of the vacuum seed configuration [14]:


f0(0)=Δ(r)(r2+a2)P(r,θ),f1(0)=r2+a2cos2θΔ(r),f2(0)=r2cos2θ,f3(0)=(r2+a2)sin2θP(r,θ),f4(0)=(r2+a2)sin2θ,W(0)=MrD-(2k+5)a(r2+a2)k+1(r2+a2cos2θ)P(r,θ),



(29)




[image: there is no content] being two input parameters and


Δ(r)=(r2+a2)1-MrD-(2k+5)(r2+a2)k+1,P(r,θ)=1+MrD-(2k+5)a2sin2θ(r2+a2)k+1(r2+a2cos2θ),








where a different choice for Δ is employed.



Having derived the expressions of the geometry and matter functions, it is straightforward to study all properties of the solutions. For example, in Figure 1, we show the quantities [image: there is no content] and [image: there is no content] which encode the deformation of the horizon (see Equations (16) and (17)) for [image: there is no content] black ring(oid)s and several values of the boosting parameter α. One can see that the charged solutions share the pattern of the neutral ones, being shifted to smaller values of j. For example, in the [image: there is no content] case, the hole inside the ring shrinks to zero while the outer radius goes to infinity as a critical configuration is approached. (All results for MP BHs and D = 5 BRs shown in the plots in this work are found by using the closed form expression of the vacuum seed solutions. For D = 5 BRs, a comparison between the exact solution and the numerically generated one can be found in Appendix B of [16].)


Figure 1. The ratios [image: there is no content] and [image: there is no content], which encode the deformation of the horizon, are shown [image: there is no content] the reduced angular momentum j for (a) [image: there is no content], (b) [image: there is no content] black ring solutions and (c) [image: there is no content] charged black ringoids in EMd theory. The red curves correspond to the vacuum solutions. The other curves are for charged solutions with the boosting parameters (from right to left) [image: there is no content] and 2.



[image: Entropy 18 00187 g001a 1024][image: Entropy 18 00187 g001b 1024]






Moreover, for both closed form and numerical solutions, the quantities which enter the first law result from those of the corresponding vacuum seed configurations. A direct computation leads to


M=1+D-3D-2sinh2αM(0),J=coshαJ(0),ΩH=1coshαΩH(0),TH=1coshαTH(0),AH=coshαAH(0),QE=D-3D-2sinhαcoshαM(0),ΦH=tanhα,



(30)




and


j=D-2D-2+(D-3)sinh2αD-2D-3coshαj(0),aH=D-2D-2+(D-3)sinh2αD-2D-3coshαaH(0),tH=1+(D-3)(D-2)sinh2α1D-31coshαtH(0),wH=1+(D-3)(D-2)sinh2α1D-31coshαwH(0),andq=(D-3)sinhαcoshαD-2+(D-3)sinh2α



(31)




for the scaled variables.



One can see that the boosting parameter α is a monotonic function of the horizon electrostatic potential [image: there is no content] (or, equally, is uniquely fixed by the reduced charge q). In addition, given a mass [image: there is no content], the electric charge [image: there is no content] cannot be arbitrarily large, with [image: there is no content]. The limit [image: there is no content] corresponds to singular black objects, with [image: there is no content], [image: there is no content] and [image: there is no content]. Moreover, one can show that the Gibbs potential of the charged solutions equals that of the seed vacuum configurations [image: there is no content], while [image: there is no content].



It follows that, for any finite α, some basic thermodynamic properties of these EMd solutions are qualitatively similar to the vacuum seed case. For example, as shown in Figure 2, Figure 3 and Figure 4, the [image: there is no content] and [image: there is no content] diagrams of the charged solutions have the same shape for any value of q. However, the curves in the phase diagram get shifted to lower [image: there is no content] and j as the charge parameter q is increased.


Figure 2. (a) The reduced area [image: there is no content], (b) the reduced temperature [image: there is no content] and (c) the reduced angular velocity [image: there is no content] are shown [image: there is no content] the reduced angular momentum j for [image: there is no content] charged black rings (BR) and Myers–Perry (MP) black holes.



[image: Entropy 18 00187 g002 1024]





Figure 3. Same as Figure 2 for [image: there is no content] dimensions. (a) the reduced area [image: there is no content]; (b) the reduced temperature [image: there is no content]; (c) the reduced angular velocity [image: there is no content].



[image: Entropy 18 00187 g003 1024]





Figure 4. Same as Figure 2 for charged black ringoids (Br) and Myers–Perry (MP) black holes in [image: there is no content] dimensions (both with two equal magnitude angular momenta). (a) the reduced area [image: there is no content]; (b) the reduced temperature [image: there is no content]; (c) the reduced angular velocity [image: there is no content].



[image: Entropy 18 00187 g004 1024]






In addition, a generic property of the solutions is the occurrence of a cusp in the [image: there is no content] black ring(oid) diagram, where a branch of “fat” black ring(oid) solutions emerges, with the existence of a minimally spinning solution. A comparison of the results (with the set of MP-like solutions included), suggests that, similar to the vacuum case, the [image: there is no content] black ringoids with [image: there is no content] horizon topology are the natural counterparts of the [image: there is no content] BRs. As noticed in [21], the branch of “fat” [image: there is no content] charged BRs ends in a limiting singular solution with [image: there is no content] and nonzero j. The same configuration is also approached by the charged MP BHs with maximal j. The existing data strongly suggest that this is the picture also for the [image: there is no content] charged Br and MP solutions. (It is interesting to note that, similar to the vacuum case, the reduced angular momentum j is bounded from above for charged MP BHs with [image: there is no content] equal magnitude angular momenta in [image: there is no content] only.)



However, a different pattern is found for [image: there is no content] solutions. There, the charged “fat” BRs exhibit a different limiting behavior; similar to the vacuum case, they end in a critical merger configuration [3], where a branch of “pinched” BHs is approached in a horizon topology changing transition. The “pinched” BHs possess a spherical horizon topology and can also be studied within the framework in Section 2. Such solutions have been constructed in [5] (in the vacuum case), branching off from a critical MP solution along the stationary zero-mode perturbation of the Gregory–Laflamme-like instability [22,23]. The results in [5] together with Equations (27) and (28) show that the critical merger EMd solution has a finite, nonzero area, while the temperature stays also finite and nonzero.



The (area-temperature-charge) diagram of the MP, BRs and black ringoids is shown in Figure 5, Figure 6 and Figure 7 (in principle, the equation of state [image: there is no content] can be deduced from there). One can notice that the five-dimensional case is special, since, as [image: there is no content], [image: there is no content] for [image: there is no content], while [image: there is no content] for [image: there is no content].


Figure 5. The (area-temperature-charge) diagram is shown for charged Myers–Perry black holes (a) and black rings (b) in [image: there is no content] dimensions. All quantities are normalized with respect to the mass of the black objects.



[image: Entropy 18 00187 g005 1024]





Figure 6. Same as Figure 5 for [image: there is no content] charged Myers–Perry black holes (a) and black rings (b).



[image: Entropy 18 00187 g006 1024]





Figure 7. Same as Figure 5 for [image: there is no content] charged Myers–Perry black holes (a) and black ringoids (b).



[image: Entropy 18 00187 g007 1024]






Finally, let us mention that, for any event horizon topology, the gyromagnetic ratio (Equation (23)) has a remarkable simple expression in terms of α only,


[image: there is no content]



(32)




and varies between [image: there is no content] (for maximally charged solutions [image: there is no content], [image: there is no content][image: there is no content]) and [image: there is no content] (for solutions with an infinitesimally small charge [image: there is no content], [image: there is no content], [image: there is no content]). Note that this is consistent with the general results obtained in [24].




4. Conclusions


Fifteen years after the discovery of the BR by Emparan and Reall [1,2], the study of BHs with a non-spherical horizon topology continues to be a source of excitement in higher dimensional General Relativity. However, most of the black objects with a nonspherical horizon topology studied in the literature describe vacuum configurations only. (Higher-dimensional rotating BHs in Einstein gravity coupled to a 2-form or 3-form field strength and to a dilaton with arbitrary coupling have been studied in [19]. These solutions are constructed within the blackfold approach and describe charged MP BHs and various black objects with a non-spherical horizon topology.) Moreover, it is worth noticing that, even for the case of an event horizon with spherical topology, very few solutions with matter fields are known in closed form. (For example, the higher dimensional generalization of the Kerr–Newman solution is only known numerically [17,25,26,27].)



The main purpose of this work was to generalize the non-perturbative framework used in [14] for the study of several classes of vacuum black objects with [image: there is no content] equal angular momenta, to the case of Einstein–Maxwell-dilaton theory. Our results show that, similar to the pure Einstein gravity case, for the general dilaton coupling constant, the problem reduces to solving a set of coupled PDEs with suitable boundary conditions on a rectangular domain, employing an adequate numerical scheme [14].



As a preliminary step before considering the generic case, we have studied solutions of EMd theory with the Kaluza–Klein value of the dilaton coupling constant. In this special limit, the action in D dimensions is obtained by reducing the [image: there is no content] dimensional vacuum Einstein action, while the solutions are found by embedding the D dimensional vacuum solutions in [image: there is no content] dimensions and boosting in the extra direction.



The resulting EMd solutions are asymptotically flat, and either possess a regular horizon of spherical topology (and thus represent charged generalizations of MP BHs), or an [image: there is no content] topology (and thus represent charged BRs and black ringoids). These black objects are characterized by their global charges: their mass, their [image: there is no content] equal magnitude angular momenta, and their electric charge.



As mentioned above, these results were obtained only for a particular value of the dilaton coupling constant. Note that an extension of the generating technique in Section 3 can be used to construct (toroidally compactified) heterotic string theory generalizations of the vacuum black objects within the Ansatz Equation (5). In that case, an approach to obtain the charged solutions from the neutral ones was presented in [28]. Again, the properties of the new configurations can be derived from the corresponding vacuum solutions. It remains a challenge to generalize EMd solutions to arbitrary values of the dilaton coupling constant, including the pure Einstein–Maxwell case. The construction of more general configurations ([image: there is no content], higher dimensional generalizations of the [image: there is no content] dipole BRs [29], solutions with a Chern–Simons term or black objects coupled with a p-form field (with [image: there is no content])) is another important open question, just like the inclusion of a cosmological constant. We hope to return elsewhere with a systematic study of these aspects.
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