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Abstract:



Dan Rudolph showed that for an amenable group, Γ, the generic measure-preserving action of Γ on a Lebesgue space has zero entropy. Here, this is extended to nonamenable groups. In fact, the proof shows that every action is a factor of a zero entropy action! This uses the strange phenomena that in the presence of nonamenability, entropy can increase under a factor map. The proof uses Seward’s recent generalization of Sinai’s Factor Theorem, the Gaboriau–Lyons result and my theorem that for every nonabelian free group, all Bernoulli shifts factor onto each other.
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1. Introduction


Entropy theory in dynamics has recently been extended from actions of the integers (and, more generally, amenable groups) to actions of sofic groups [1] and arbitrary countable groups [2,3,4]. Here, we begin to investigate generic properties of measure-preserving actions of countable groups with an eye towards understanding their entropy theory.



Our starting point is a result due to Rokhlin [5]: the generic automorphism [image: there is no content] has zero entropy. To be precise, [image: there is no content] denotes a Lebesgue probability space and [image: there is no content] is the group of measure-preserving automorphisms [image: there is no content] in which automorphisms that agree almost everywhere are identified. This group has a natural Polish topology: a sequence [image: there is no content] converges to T if for every measurable subset [image: there is no content], [image: there is no content] as [image: there is no content]. The claim is that the subset of all transformations [image: there is no content] that have zero entropy contain a dense [image: there is no content] subset, so that it is residual in the sense of the Baire category.



In order to consider the analogous question for general countable groups, we first need a notion of entropy. Thus, suppose we have a countable group Γ and a probability-measure-preserving action [image: there is no content]. Assuming the action is ergodic, its Rokhlin entropy , denoted [image: there is no content], is the infimum of [image: there is no content] over all generating partitions [image: there is no content]. Recall that a partition [image: there is no content] of X is generating if the smallest Γ-invariant sigma-algebra containing it is the full Borel sigma-algebra (modulo null sets) and the Shannon entropy is defined by


[image: there is no content]











Rokhlin entropy agrees with Kolmogorov–Sinai entropy for essentially free actions whenever Γ is amenable [6], and Rokhlin entropy upper-bounds sofic entropy when Γ is sofic (this is immediate from the definition in [1]).



We also need a space of actions. This can be handled in two different ways. We consider the space [image: there is no content] of all homomorphisms [image: there is no content] equipped with the topology of pointwise convergence (see [7] for details). Alternatively, let Cantor denote the usual middle thirds Cantor set and let Γ act on [image: there is no content] by [image: there is no content] (where [image: there is no content] is represented as a function [image: there is no content]). This action is by homeomorphisms when we equip [image: there is no content] with the product topology. We let [image: there is no content] denote the space of all Γ-invariant Borel probability measures on [image: there is no content] with respect to the weak* topology. A fundamental result of Glasner–King [8], together with the weak Rokhlin property [9], imply that, if [image: there is no content] is any property of actions that is invariant under measure-conjugacy, then the set of all actions [image: there is no content] that have [image: there is no content] is a residual set if and only if the set of all measures [image: there is no content] such that [image: there is no content] has [image: there is no content] is a residual set (more precisely, Glasner and King proved this result with the unit interval in place of the Cantor set. However, in [10], it was shown to hold for any perfect Polish space in place of the unit interval). Therefore, we can choose to study either [image: there is no content] or [image: there is no content], whichever one is most convenient for the problem at hand. For most of the paper, we use [image: there is no content] and state the results in terms of [image: there is no content].



The first result of this paper is:

Theorem 1. 

For any countably infinite group Γ, the subset of actions [image: there is no content] with zero Rokhlin entropy is residual in the sense of Baire category.







As mentioned above, because Rokhlin entropy is an upper bound for sofic entropy, this implies that the generic action [image: there is no content] has nonpositive sofic entropy with respect to all sofic approximations of Γ.



The main difficulty in proving Theorem 1 is showing that the subset of actions with zero entropy is dense. If Γ is amenable, then the argument is due to Rudolph (see the Subclaim after Claim 19 in [11]). It is essentially a consequence of the Rokhlin Lemma which implies if an action [image: there is no content] is essentially free, then its measure-conjugacy class is dense in [image: there is no content]. If Γ is nonamenable, then this no longer holds: for example, if [image: there is no content] is strongly ergodic (e.g., if it is a Bernoulli shift), then the closure of its measure-conjugacy class does not contain any nonergodic actions.



Assuming Γ is nonamenable, we take advantage of the fact that entropy can increase under a factor map. The first example of this phenomenon is due to Ornstein and Weiss [12]; they showed that the two-shift over the rank two free group factors onto the four-shift. This was generalized in several ways: Ball proved that if Γ is any nonamenable group, then there exists some probability space [image: there is no content] with [image: there is no content] such that the Bernoulli shift [image: there is no content] factors onto all Bernoulli shifts over Γ[13]. I proved that if Γ contains a nonabelian free group, then in fact all Bernoulli shifts over Γ factor onto each other [14]. It is still unknown whether this conclusion holds for all nonamenable Γ. Lastly, Seward proved that there is some number [image: there is no content] depending only on Γ such that if [image: there is no content] is an arbitrary measure-preserving action, then there exists another action [image: there is no content] with Rokhlin entropy [image: there is no content] that factors onto it [15]. In other words, every action has an extension with bounded Rokhlin entropy. Our next result shows we can take [image: there is no content]:

Theorem 2. 

If Γ is nonamenable and [image: there is no content] is essentially free, ergodic and probability-measure-preserving, then there exists an action [image: there is no content] with zero Rokhlin entropy that extends [image: there is no content].







Here is a quick sketch of the proof: using the ideas of Gaboriau–Lyons [16] and the fact that, for free groups, all Bernoulli shifts factor onto each other [14], it is shown that there exists an inverse limit of factors of Bernoulli shifts which (a) has zero Rokhlin entropy and (b) factors onto all Bernoulli shifts. By contrast, if [image: there is no content] consequences of Ornstein theory imply that inverse limits and factors of Bernoulli shifts are Bernoulli [17,18]. Without loss of generality, we may assume [image: there is no content] has positive Rokhlin entropy. Using Seward’s recent spectacular generalization of Sinai’s Factor Theorem [19], the extension [image: there is no content] is constructed as a relatively independent joining between [image: there is no content] and the aforementioned inverse limit over a common Bernoulli factor. A standard argument shows that, since [image: there is no content] is a factor of a zero entropy action, it is also a limit of zero entropy actions (see Lemma 8), proving that zero entropy actions are dense.



1.1. Strengthenings of Zero Entropy


Theorem 2 highlights the fact that, if Γ is nonamenable, zero entropy actions can have positive entropy factors. Thus, we consider the following stronger notions of zero entropy for an action [image: there is no content]:

	
[image: there is no content] has completely zero entropy (this means every essentially free factor of [image: there is no content] has zero Rokhlin entropy);



	
[image: there is no content] is disjoint from all Bernoulli shifts over Γ;



	
[image: there is no content] is disjoint from all R-CPE (completely positive Rokhlin entropy) actions of Γ;



	
every factor of every self-joining (including infinite self-joinings) of [image: there is no content] has zero Rokhlin entropy;



	
[image: there is no content] has zero naive entropy (naive entropy is defined in Section 7).








If Γ is amenable, then all five notions agree with zero entropy. In Section 8, it is shown that (for any group Γ) [image: there is no content] and [image: there is no content]. Moreover, if Γ is sofic, then [image: there is no content]. It is an open problem whether all of these properties are equivalent.



To state the next result, recall that a group Γ has property MD if the measure conjugacy class of [image: there is no content] is dense in the space [image: there is no content] of actions [20] where [image: there is no content] denotes the action of Γ on its profinite completion and [image: there is no content] denotes the trivial action on the unit interval. For example, free groups, surface groups and fundamental groups of hyperbolic three-manifolds have MD (Theorem 8 below). The final result shows that, for some groups, zero naive entropy is generic:

Theorem 3. 

Suppose Γ either has property MD or has the form [image: there is no content] where H is an infinite amenable residually finite group. Then, the subset of all actions [image: there is no content] with zero naive entropy is residual in the sense of Baire category.







It is an open problem whether this conclusion holds for every group Γ. Indeed, it is unknown whether every group Γ admits an essentially free action with zero naive entropy.



The notion of weak containment of actions was introduced by Kechris [20] as an analog to weak containment of unitary representations. For a given action, [image: there is no content], it is an open problem whether the generic action that is weakly equivalent to [image: there is no content] has zero Rokhlin entropy. However, if [image: there is no content] is a Bernoulli shift, then we show this is the case in the last section, Section 10.




1.2. Organization


Section 2 introduces notation and recalls important terminology. Section 3 reviews Rokhlin entropy and proves that zero Rokhlin entropy is a [image: there is no content] condition for essentially free, ergodic actions. Section 4 constructs an inverse limit of factors of Bernoulli shifts that has zero Rokhlin entropy and factors onto all Bernoulli shifts. Section 5 proves Theorem 2. Section 6 proves Theorem 1. Section 7 introduces naive entropy. Section 8 introduces five strengthenings of zero entropy. Section 9 proves Theorem 3. The last section Section 10 formulates the open problem: for a given weak equivalence classes of actions, is zero entropy generic?





2. Preliminaries


Throughout this paper, Γ always denotes a countable discrete group and [image: there is no content] denote standard probability spaces. We are mainly concerned with probability-measure-preserving actions which is abbreviated as “pmp actions”. Let Cantor denote the standard middle thirds Cantor set, [image: there is no content] the action [image: there is no content]. This action is by homeomorphisms when [image: there is no content] is given the product topology. We let [image: there is no content] denote the space of Γ-invariant Borel probability measures on [image: there is no content]. We give [image: there is no content] the weak* topology which means that a sequence [image: there is no content] converges to a measure μ if and only if ∫fμn→∫fdμ for every continuous function f on [image: there is no content]. In this topology, [image: there is no content] is compact and metrizable (by the Banach–Alaoglu Theorem). When discussing measures [image: there is no content], we say such a measure is essentially free, ergodic or has zero Rokhlin entropy to mean that the associated action [image: there is no content] is essentially free, ergodic or has zero Rokhlin entropy.



Given a topological space X, a subset [image: there is no content] is a [image: there is no content] if it can be expressed as a countable intersection of open sets. A subset [image: there is no content] is residual in X if it contains a dense [image: there is no content] subset. If [image: there is no content], then the statement ‘the generic element of X is contained in [image: there is no content]’ means that [image: there is no content] is residual.



All functions, partitions and actions considered in this paper are measurable unless explicitly stated otherwise. If [image: there is no content] is a partition of a measure space [image: there is no content], [image: there is no content] is a pmp action and [image: there is no content] is finite, then [image: there is no content] is the coarsest partition containing [image: there is no content] for all [image: there is no content]. If T is infinite, then [image: there is no content] is the smallest sigma-algebra containing [image: there is no content] for all [image: there is no content].



Let [image: there is no content] denote the Borel sigma-algebra on X. If [image: there is no content] is a sigma-algebra and [image: there is no content] is a partition, then the Shannon entropy of [image: there is no content] relative to [image: there is no content] is


Hμ(P|F)=∫-logE[χP(x)|F](x)dμ(x),








where [image: there is no content] denotes the part of [image: there is no content] containing x, [image: there is no content] denotes the characteristic function of [image: there is no content] and [image: there is no content] denotes the conditional expectation of [image: there is no content] with respect to [image: there is no content].




3. Rokhlin Entropy


For any subcollection [image: there is no content], we let [image: there is no content] denote the sub-sigma-algebra generated by [image: there is no content] and, if [image: there is no content] is a measurable action, then we let [image: there is no content] denote the smallest sub-sigma-algebra containing [image: there is no content] for every [image: there is no content] and [image: there is no content]. We do not distinguish between sigma-algebras that agree up to null sets. Thus, we write [image: there is no content] if [image: there is no content] and [image: there is no content] agree up to null sets.



Definition 1. 

The Rokhlin entropy of an ergodic pmp action [image: there is no content] is defined by


[image: there is no content]








where the infimum is over all partitions [image: there is no content] with [image: there is no content]. For any Γ-invariant [image: there is no content], the relative Rokhlin entropy is defined by


[image: there is no content]








where the infimum is over all partitions [image: there is no content] such [image: there is no content]. If [image: there is no content] is nonergodic, then the Rokhlin entropy is defined by


[image: there is no content]








where [image: there is no content] is the sigma-algebra of Γ-invariant Borel sets. Given a collection [image: there is no content] of Borel subsets of X, the outer Rokhlin entropy relative to [image: there is no content] is defined by


[image: there is no content]








where the infimum is over all partitions [image: there is no content] such that [image: there is no content]. We also write [image: there is no content] instead of [image: there is no content] when [image: there is no content] is trivial. These notions were introduced and studied by Seward in the series [3,4].





Lemma 1. 

The subset of ergodic measures in [image: there is no content] is a [image: there is no content] set.





Proof. 

This is well-known. Here is a short proof for the reader’s convenience. Fix a metric d on [image: there is no content]. For [image: there is no content], let [image: there is no content] be the set of all measures [image: there is no content] such that there exist measures [image: there is no content] with [image: there is no content] and [image: there is no content]. Thus, [image: there is no content] is a closed subset and [image: there is no content] is an [image: there is no content] set. The lemma now follows from the fact that the subset of ergodic measures is the complement of [image: there is no content]. ☐





Next, we prove that the set of ergodic measures in [image: there is no content] with zero Rokhlin entropy form a [image: there is no content] subset. For the next three lemmas, we assume [image: there is no content] is an ergodic pmp action and [image: there is no content] are measurable partitions of X with finite Shannon entropy.



Lemma 2. 



[image: there is no content]













Proof. 

Corollary 2.6 of [3] implies


[image: there is no content]








☐





Let [image: there is no content] denote the set of all partitions of [image: there is no content] with finite Shannon entropy in which we identify partitions that agree up to measure zero. Given partitions [image: there is no content], define


[image: there is no content]











This is the Rokhlin metric. It is a complete, separable metric on [image: there is no content].



Lemma 3. 

Let [image: there is no content] be a dense subset of [image: there is no content]. Then,


hΓ,μRok(P)=supϵ>0inf{Hμ(Q):Q∈D,Hμ(P|σ-algΓ(Q))<ϵ}.













Proof. 

The inequality ≤ follows from Lemma 2. To see the opposite inequality, let [image: there is no content] and let [image: there is no content] be a partition with [image: there is no content] and [image: there is no content]. Since [image: there is no content], there exists a finite subset [image: there is no content] such that [image: there is no content] Since [image: there is no content] is dense, there exists a partition [image: there is no content] such that [image: there is no content]. Since


[image: there is no content]










[image: there is no content]








Therefore,


[image: there is no content]













It follows that


inf{Hμ(Q):Q∈D,H(P|σ-algΓ(Q))<ϵ}≤Hμ(R)≤Hμ(S)+dRok(R,S)≤hΓ,μRok(P)+2ϵ.











The Lemma follows by taking the limit as [image: there is no content] on both sides. ☐



Lemma 4. 

Suppose [image: there is no content] are an increasing sequence of partitions of [image: there is no content] with finite Shannon entropy such that [image: there is no content] is the Borel sigma-algebra. Then, [image: there is no content] if and only if [image: there is no content] for all n.





Proof. 

The definitions of Rokhlin and outer Rokhlin entropy imply [image: there is no content] for every n. This proves one implication. To see the other, suppose [image: there is no content] for all n. Let [image: there is no content]. For every n, there exists a partition [image: there is no content] of X such that [image: there is no content] and [image: there is no content]. Therefore, [image: there is no content] is generating and has entropy [image: there is no content]. This shows [image: there is no content]. Since ϵ is arbitrary, [image: there is no content]. ☐





Lemma 5. 

The set


E0:={μ∈ProbΓ(CantorΓ):hΓRok(CantorΓ,μ)=0andΓ↷(CantorΓ,μ)ergodic}








is a [image: there is no content] set.





Proof. 

Let [image: there is no content] be an increasing sequence of finite partitions of [image: there is no content] such that all elements of [image: there is no content] are clopen (=closed and open) and [image: there is no content] is the full Borel sigma-algebra. Let


En:={μ∈ProbΓ(CantorΓ):hΓ,μRok(Pn)=0andΓ↷(CantorΓ,μ)ergodic}.













By Lemma 4, [image: there is no content]. Thus, it suffices to show each [image: there is no content] is a [image: there is no content]. Let [image: there is no content] denote the collection of clopen partitions of [image: there is no content]. Then, [image: there is no content] is dense in [image: there is no content] for every Borel probability measure μ. For any [image: there is no content] and finite [image: there is no content], the maps [image: there is no content] and [image: there is no content] are continuous (because all partitions involved are clopen). Thus, for any [image: there is no content], the set


{μ∈ProbΓ(CantorΓ):Hμ(Pn|QF)<ϵ}








is open. Let [image: there is no content] denote the set of all measures [image: there is no content] such that there exist [image: there is no content] and finite [image: there is no content] with [image: there is no content] and [image: there is no content]. Then, [image: there is no content] is open. By Lemma 3,


En=⋂m=1∞O(1/m)∩{μ:Γ↷(CantorΓ,μ)ergodic}.








By Lemma 1, this implies [image: there is no content] is a [image: there is no content]. ☐




4. A Zero Entropy Action That Factors onto Every Bernoulli Shift


Bernoulli shifts are defined as follows: let [image: there is no content] denote a standard probability space and [image: there is no content] the product measure space. Let Γ act on [image: there is no content] by [image: there is no content] for [image: there is no content]. This action is measure-preserving and is called the Bernoulli shift over Γ with base [image: there is no content]. This section constructs a zero Rokhlin entropy action that factors onto all Bernoulli shifts (assuming Γ is nonamenable). The main part of the argument is in the next proposition: that there are factors of Bernoulli shifts with little entropy that factor onto all Bernoulli shifts.



Proposition 1. 

Let Γ be a countable nonamenable group. Then, for every [image: there is no content] there exists a pmp action [image: there is no content] satisfying:

	
[image: there is no content] is a factor of a Bernoulli shift,



	
[image: there is no content],



	
[image: there is no content] factors onto every Bernoulli shift over Γ.










The proof uses the fact that, for nonabelian free groups, all Bernoulli shifts factor onto each other. In order to apply this, we need some concepts from measured equivalence relations. Thus, given an action [image: there is no content], the orbit-equivalence relation is the relation RΓ:={(x,γx)∈X×X:x∈X,γ∈Γ}. A subequivalence relation is any measurable subset [image: there is no content] that is an equivalence relation in its own right. It is finite if for almost every [image: there is no content] the [image: there is no content]-class of x is finite. It is hyperfinite if there exists an increasing sequence [image: there is no content] of finite subequivalence relations such that [image: there is no content]. A subset [image: there is no content] is [image: there is no content]-saturated if Y is a union of [image: there is no content]-equivalence classes. The subequivalence [image: there is no content] is ergodic if every measurable [image: there is no content]-saturated subset is either null or co-null. A graphing of [image: there is no content] is a subset [image: there is no content] such that

	
[image: there is no content],



	
for every [image: there is no content] there exists [image: there is no content] such that [image: there is no content] for all [image: there is no content].








A graphing [image: there is no content] determines a graph with vertex set X and edges consisting of unordered pairs [image: there is no content] such that [image: there is no content]. If the connected components of this graph are trees, then [image: there is no content] is called a treeing and [image: there is no content] is said to be treeable. Intuitively, graphings are treated in a manner similar to Cayley graphs and treeable subequivalence relations are analogous to free subgroups.



Lemma 6. 

Let [image: there is no content] be an essentially free factor of a Bernoulli shift and suppose that its orbit-equivalence relation contains a non-hyperfinite treeable subequivalence relation [image: there is no content]. Then, for every pair of probability spaces [image: there is no content], the direct product action


[image: there is no content]








factors onto the Bernoulli shift [image: there is no content].





Proof. 

I claim that we can choose [image: there is no content] to be ergodic. Since [image: there is no content] is non-hyperfinite, Γ must be nonamenable. Then, the main result of [21] implies that there exists a measurable subset [image: there is no content] with positive measure such that [image: there is no content] restricted to Y is ergodic. Let [image: there is no content] be any measurable map such that (a) the graph of φ is contained in the orbit-equivalence relation and (b) φ restricted to Y is the identity map. Now, let [image: there is no content] be the equivalence relation given by [image: there is no content] if and only if [image: there is no content]. This is a subequivalence relation of the orbit-equivalence relation; it is ergodic because any nonnull [image: there is no content]-invariant measurable subset necessarily contains Y (since [image: there is no content] is ergodic and [image: there is no content]) and therefore contains X (up to measure zero). It is also treeable. Indeed, if [image: there is no content] is a treeing of [image: there is no content], then we define a treeing [image: there is no content] of [image: there is no content] by G′=G∪{(x,ϕ(x)),(ϕ(x),x):x∈X-Y}. Thus, we can choose [image: there is no content] to be ergodic.





By [16] (Proposition 14), the existence of an ergodic non-hyperfinite treeable subequivalence relation implies the existence of an essentially free ergodic pmp action [image: there is no content] of the rank two free group whose orbits are contained in Γ-orbits (the main part of this argument is due to Hjorth [22]). Let [image: there is no content] denote the cocycle


[image: there is no content]








In addition, for [image: there is no content] and [image: there is no content], define [image: there is no content] by


[image: there is no content]











By [14] there exists a factor map [image: there is no content]. Thus, we define [image: there is no content] by


[image: there is no content]











It is routine to check that this is the required factor. For the sake of clarity, here is an explanation without the algebra. An element [image: there is no content] has the property that its Γ-orbit is partitioned into [image: there is no content]-orbits. We consider an element [image: there is no content] as a coloring of Γ with colors in K. By identifying Γ with the orbit of x, we may also think of y as a coloring of the orbit of x. This coloring does not change if we replace the pair [image: there is no content] with [image: there is no content] for [image: there is no content]. By restriction, we can also view y as a coloring of the [image: there is no content]-orbits that make up the Γ-orbit of x. By identifying each [image: there is no content]-orbit with [image: there is no content] itself we can view y as a coloring of [image: there is no content] (actually several copies of [image: there is no content], one for each [image: there is no content]-orbit making up the Γ-orbit). We can apply Φ to such a coloring to obtain a new coloring of (several copies of) [image: there is no content] with values in L. By identifying each such copy of [image: there is no content] with the [image: there is no content]-orbits in [image: there is no content], we obtain again a coloring of the [image: there is no content]-orbits of x contained in the Γ-orbit of x and therefore, we obtain a coloring of Γ by L. This is what the map Ψ does. ☐



In order to use the lemma above to prove Proposition 1, we need to construct the factor [image: there is no content] in such a way that its orbit equivalence relation contains a non-hyperfinite treeable subequivalence relation. This will be accomplished through percolation theory for which we will need a bit of background. Thus, let [image: there is no content] be a graph and [image: there is no content] a parameter. The Bernoulli bond percolation with parameter p is the random subset [image: there is no content] defined by: if [image: there is no content] is an edge, then [image: there is no content] with probability p. Moreover, the events {e∈ωp:e∈E} are jointly independent. This is also called p-bond percolaton. We consider [image: there is no content] to be a random subgraph of G. A cluster is a connected component of [image: there is no content]. The critical bond percolation of G is the number [image: there is no content] equal to the infimum over all [image: there is no content] such that Bernoulli bond percolation with parameter p has an infinite cluster almost surely. See [23] for background.



Lemma 7. 

Let [image: there is no content] be an integer. There exists [image: there is no content] such that the following holds. Let G be a tree such that every vertex in G has degree at least 3 and at most D. Then, almost surely α-Bernoulli bond percolation on G has an infinite cluster and every such cluster is a tree with infinitely many ends. In addition, for any vertex v of G, the probability (with respect to α-bond percolation) that v is contained in a finite cluster is at least β.





Proof. 

Note that G contains a copy of the three-regular tree [image: there is no content]. Therefore, [image: there is no content]. It is well-known that [image: there is no content]. This follows, for example, from the more general statement that [image: there is no content] whenever H is the Cayley graph of a nonamenable group [24] (observe that [image: there is no content] is the Cayley graph of [image: there is no content]). Thus, let [image: there is no content]. Let [image: there is no content] denote α-bond percolation on G. Since G is a tree, ω is a forest a.s. By [25], each infinite cluster of ω has infinitely many ends a.s. (for a simpler proof, see [26]).





The probability that a vertex v is contained in a finite cluster of ω is at least the probability that v is itself a cluster. The latter probability is [image: there is no content]. ☐



Proof of Proposition 1. 

Let [image: there is no content] be a finitely generated nonamenable subgroup. By [27], there exists a finite generating set [image: there is no content] such that bond-percolation on the Cayley graph [image: there is no content] has a nontrivial uniqueness phase. In other words, there exists [image: there is no content] such that p-bond-percolation on [image: there is no content] has infinitely many infinite clusters. It follows by inclusion that p-bond-percolation on [image: there is no content] also has infinitely many infinite clusters. Here, [image: there is no content] is the graph with vertex set Γ and edges of the form [image: there is no content] for [image: there is no content]. This need not be a connected graph since S need not generate Γ.





Let [image: there is no content] denote the set of edges of p-bond-percolation on [image: there is no content]. By [25], each infinite cluster of [image: there is no content] has infinitely many ends a.s. (for a simpler proof, see [26]). For [image: there is no content], let [image: there is no content] denote the cluster of [image: there is no content] containing x.



By [23] (Lemma 7.4), there exists a percolation [image: there is no content] such that conditioned on the cluster [image: there is no content] being infinite, the cluster [image: there is no content] of [image: there is no content] containing x is a tree with infinitely many ends (almost surely). Moreover, the proof shows that we can choose [image: there is no content] to be the minimal spanning forest associated with an iid process. In particular, we can choose [image: there is no content] so that its law is a factor of a Bernoulli process. After removing some edges if necessary, we may also assume that every finite cluster of [image: there is no content] consists of a single vertex.



Let [image: there is no content] be as in Lemma 7.



Claim. 

There exist random subgraphs [image: there is no content] satisfying:

	
each infinite cluster of [image: there is no content] is a tree with infinitely many ends (a.s.),



	
every finite cluster of [image: there is no content] is a single vertex,



	
the probability that [image: there is no content] is contained in an infinite cluster of [image: there is no content] is at most [image: there is no content] times the probability that [image: there is no content] is contained in an infinite cluster of [image: there is no content],



	
each [image: there is no content] is a factor of a Bernoulli shift.










Proof. 

For induction, we assume [image: there is no content] has been constructed.





We cannot directly apply Lemma 7 because some vertex might have degree [image: there is no content] in [image: there is no content]. After repeatedly removing all edges incident to a degree 1 vertex if necessary, we may assume that no vertex of [image: there is no content] has degree 1. Next, define [image: there is no content] as follows: the vertices of [image: there is no content] are the vertices of [image: there is no content] that have degree at least 3. There is an edge in [image: there is no content] from v to w if there is a path in [image: there is no content] from v to w such that all of the intermediate vertices have degree 2.



Let [image: there is no content] be the random subgraph obtained from Bernoulli α-bond-percolation on [image: there is no content]. By Lemma 7, [image: there is no content] contains infinite clusters a.s. Moreover, each infinite cluster is a tree with infinitely many ends (since each infinite cluster of [image: there is no content] is a tree with infinitely many ends). We let [image: there is no content] be the subgraph of [image: there is no content] that is induced from [image: there is no content]. More precisely, recall that every edge e of [image: there is no content] corresponds to a path [image: there is no content] of edges in [image: there is no content] such that each intermediate vertex has degree 2. We let [image: there is no content] be the subgraph containing all such edges [image: there is no content]. Finally, we let [image: there is no content] be the subgraph obtained from [image: there is no content] by removing all edges that are contained in finite clusters. The properties in the claim are easily verified for [image: there is no content]. This completes the induction. ☐



Let [image: there is no content] be such that


[image: there is no content]











It follows from the claim above that there exists a random subgraph [image: there is no content] of [image: there is no content] (for some n) such that:

	
the probability that [image: there is no content] does not contain any edges incident to [image: there is no content] is at least [image: there is no content],



	
the law of [image: there is no content] is a factor of a Bernoulli shift,



	
with probability one, some cluster of [image: there is no content] is a tree with infinitely many ends.








Let X be the space of all subgraphs of [image: there is no content] and μ the law of [image: there is no content]. For [image: there is no content], let [image: there is no content]. Let [image: there is no content] be the partition of X induced by φ: this means that [image: there is no content] are in the same part of [image: there is no content] if and only if [image: there is no content]. The Shannon entropy of [image: there is no content] satisfies the bound:


[image: there is no content]








(because there are [image: there is no content] subsets of S and the probability that [image: there is no content] is empty (when [image: there is no content] is random with law μ) is at least [image: there is no content]). The partition [image: there is no content] is generating for [image: there is no content]. Therefore,


[image: there is no content]











Because each [image: there is no content] contains an infinite tree with infinitely many ends, the orbit-equivalence relation of [image: there is no content] contains a non-hyperfinite treeable subequivalence relation. To see this, let [image: there is no content] be the set of all [image: there is no content] such that [image: there is no content] is in an infinite cluster of ω. Let [image: there is no content] be the Borel equivalence relation on Y given by [image: there is no content] if and only if [image: there is no content] and [image: there is no content] are in the same infinite cluster of ω. This is a non-hyperfinite treeable equivalence relation since its equivalence classes are in one-to-one bijection with the infinite clusters of ω. Let [image: there is no content] be any Borel map with graph contained in the orbit-equivalence relation of Γ such that Φ restricted to Y is the identity map. Finally, let [image: there is no content] be the equivalence relation [image: there is no content] if and only if [image: there is no content]. Then, [image: there is no content] is the required non-hyperfinite treeable subequivalence relation. In fact, if [image: there is no content] is a treeing of [image: there is no content], then G˜:=G∪{(x,Φ(x)):x∈X} is a treeing of [image: there is no content].



If [image: there is no content] is not essentially free, then let [image: there is no content] be a nontrivial probability space with Shannon entropy small enough so that the Rokhlin entropy of the direct product [image: there is no content] is [image: there is no content]. Because [image: there is no content] is a factor of a Bernoulli shift, this direct product is also a factor of a Bernoulli shift. Moreover, it is essentially free. In addition, its orbit-equivalence relation contains a non-hyperfinite treeable subequivalence relation (this can be obtained by pulling back a non-hyperfinite treeable subequivalence relation of [image: there is no content] by way of the projection map). Thus, without loss of generality, we may assume [image: there is no content] is essentially free.



Let [image: there is no content] be any nontrivial probability space with Shannon entropy [image: there is no content]. Lemma 6 now implies that the product action


[image: there is no content]








satisfies the statement of the Theorem. ☐



Corollary 1. 

Let Γ be any countable nonamenable group. There exists a pmp action [image: there is no content] satisfying:

	
[image: there is no content] is an inverse limit of factors of Bernoulli shifts,



	
[image: there is no content]



	
[image: there is no content] factors onto all Bernoulli shifts over Γ.










Proof. 

By Proposition 1 there exists a sequence [image: there is no content] ([image: there is no content]) of pmp actions satisfying

	
each [image: there is no content] is a factor of a Bernoulli shift,



	
[image: there is no content],



	
each [image: there is no content] factors onto all Bernoulli shifts over Γ.










It follows that there exist factor maps [image: there is no content] for [image: there is no content]. Let [image: there is no content] denote the inverse limit of this system. It suffices to show [image: there is no content]. This follows from [3] (Corollary 4.9). Alternatively, it can be proven directly as follows. Let [image: there is no content]. Then, there exists an infinite subsequence [image: there is no content] such that


[image: there is no content]











Let [image: there is no content] be a generating partition of [image: there is no content] with [image: there is no content]. By pulling back, we may consider [image: there is no content] to be a partition of Z. Then, [image: there is no content] is a generating partition for [image: there is no content] and


[image: there is no content]








Because [image: there is no content] is arbitrary, this proves [image: there is no content]. ☐




5. Zero Entropy Extensions


Theorem 4. 

Let Γ be a nonamenable countable group and [image: there is no content] a free ergodic action. Then, there exists a free ergodic action [image: there is no content] that factors onto [image: there is no content] and has zero Rokhlin entropy.





Remark 1. 

Seward [15] proved, under the same hypotheses as Theorem 4, the existence of an extension [image: there is no content] of [image: there is no content] such that [image: there is no content] admits a generating partition with at most n parts where [image: there is no content] depends only on Γ. By Seward’s generalization of Krieger’s Generator Theorem [4], Theorem 4 implies that we can take [image: there is no content].





We will need Seward’s generalization of Sinai’s Factor Theorem [19]:

Theorem 5. 

(Seward [19]). For any countable group Γ and any ergodic essentially free action [image: there is no content] with positive Rokhlin entropy, there exists a Bernoulli factor such that the Rokhlin entropy of [image: there is no content] relative to this Bernoulli factor is zero.







Proof of Theorem 4. 

Without loss of generality, we may assume [image: there is no content] has positive Rokhlin entropy. By Theorem 5, there exists a Bernoulli factor [image: there is no content] of [image: there is no content] such that


[image: there is no content]








where [image: there is no content] denotes the sigma-algebra associated with B. Let [image: there is no content] be as in Corollary 1. Fix a factor map of [image: there is no content] onto [image: there is no content]. Let [image: there is no content] be the independent joining of [image: there is no content] and [image: there is no content] over [image: there is no content].





It suffices to show [image: there is no content]. By [3] (Corollary 2.6),


[image: there is no content]











Because outer Rokhlin entropy is upper-bounded by the Rokhlin entropy of any intermediate factor,


[image: there is no content]








Thus, it suffices to prove [image: there is no content].



Let [image: there is no content], α be a generating partition of Z with [image: there is no content] and let β be a partition of X with [image: there is no content] such that [image: there is no content] (up to measure zero). By pulling back, we may consider α and β as partitions on [image: there is no content]. Clearly, [image: there is no content] is generating for the action [image: there is no content] and [image: there is no content]. Since [image: there is no content] is arbitrary, this implies the claim. ☐




6. Zero Entropy Is Generic


In this section, the proof of Theorem 1 is completed. Most of our results so far hold only for essentially free ergodic actions. In order to generalize them, first we show that essentially free actions are generic. The next lemma will be helpful twice.



Lemma 8. 

Let [image: there is no content] be a pmp action and [image: there is no content]a Γ-equivariant measurable map. Then, there exists a sequence of measures [image: there is no content]such that

	
[image: there is no content] is measurably-conjugate to [image: there is no content] for all i,



	
[image: there is no content] in the weak* topology as [image: there is no content].










Proof. 

Let [image: there is no content] be a Γ-equivariant measurable map such that [image: there is no content] is measurably conjugate to [image: there is no content]. To see that such a map exists, identify Cantor with [image: there is no content] (where the latter has the product topology). We consider an element [image: there is no content] to be a function [image: there is no content]. Choose a sequence [image: there is no content] of measurable maps such that for all distinct elements [image: there is no content] there exists some i such that [image: there is no content]. Then, define [image: there is no content] and in general, define [image: there is no content]. It is routine to check that this satisfies the claim.





Define Γ-equivariant maps [image: there is no content] so that the first n-coordinates of [image: there is no content] agree with those of [image: there is no content] and the last coordinates agree with [image: there is no content]. In other words, for every [image: there is no content],


[image: there is no content]











As above, we are identifying Cantor with [image: there is no content]. Clearly, [image: there is no content] is Γ-equivariant, is an isomorphism onto its image and [image: there is no content]. To finish the lemma, set [image: there is no content]. ☐



Let [image: there is no content] denote the subset of ergodic measures.



Lemma 9. 

The subset of all essentially free measures in [image: there is no content] is a [image: there is no content] set. Moreover, this subset is dense in [image: there is no content] and its intersection with [image: there is no content] is dense in [image: there is no content].





Proof. 

For any element [image: there is no content], let Fix(g)={x∈CantorΓ:gx=x}. Then, [image: there is no content] is compact in [image: there is no content]. By the Portmanteau Theorem, for every [image: there is no content], the set [image: there is no content] is open. Therefore,


⋂g∈Γ-{1Γ}⋂n=1∞{μ∈ProbΓ(CantorΓ):μ(Fix(g))<1/n}








is a [image: there is no content] set. The above set is the same as the subset of essentially free measures. This proves the first claim.





To prove the second claim, let [image: there is no content] be arbitrary. We observe that the direct product of [image: there is no content] with a Bernoulli shift is essentially free and factors onto [image: there is no content].



Moreover, this product is ergodic if μ is ergodic. Thus, Lemma 8 implies that μ is a weak* limit of essentially free measures and these measures can be chosen to be ergodic if μ is ergodic. ☐



The next step shows that the generic ergodic measure has zero Rokhlin entropy.



Proposition 2. 

The subset of measures [image: there is no content] such that the corresponding action [image: there is no content] is essentially free and has zero Rokhlin entropy, is a dense [image: there is no content] subset of [image: there is no content].





Proof. 

Lemmas 9 and 5 show that this subset is a [image: there is no content]. If Γ is nonamenable, then it is dense by Lemmas 8, 9 and Theorem 4. If Γ is amenable, then the result is due to Rudolph (see the Subclaim after Claim 19 in [11]). This uses the fact that Rokhlin entropy agrees with classical entropy by [6]. ☐





Next, we prove that any property that is residual for ergodic measures is automatically residual for all measures. To make this precise, let


[image: there is no content]










[image: there is no content]








denote the barycenter map and the ergodic decomposition map respectively. To be precise,


β(ω):=∫μdω(μ),








and π is the inverse of β.



Proposition 3. 

Let [image: there is no content] be Borel and define


Z={μ∈ProbΓ(CantorΓ):π(μ)(Z0)=1}.








If [image: there is no content] is residual in [image: there is no content], then [image: there is no content] is residual in [image: there is no content].





First, we need a lemma:

Lemma 10. 

The barycenter map β is continuous. The ergodic decomposition map π is continuous if and only if Γ has property (T) in which case it is a homeomorphism.







Proof. 

The first statement is straightforward. The main result of [28] states that if Γ has property (T), then [image: there is no content] is a closed (and therefore compact) subset of [image: there is no content]. On the other hand, if Γ does not have (T), then [image: there is no content] is dense in [image: there is no content]. Since β and π are bijective, these two statements imply the lemma. ☐





Proof of Proposition 3. 

Case 1. Suppose Γ does not have property (T). By [28], [image: there is no content] is dense in [image: there is no content]. By Lemma 1, [image: there is no content] is a [image: there is no content]. Therefore, [image: there is no content] is residual in [image: there is no content]. Thus, [image: there is no content] is residual in [image: there is no content]. Since [image: there is no content], this proves [image: there is no content] is also residual.



Case 2. Suppose Γ has property (T). Let


Y={ω∈Prob(ProbΓerg(CantorΓ)):ω(Z0)=1}.













By Lemma 10, it suffices to prove that [image: there is no content] is residual. Since [image: there is no content] contains a dense [image: there is no content], we may assume without loss of generality that [image: there is no content] is a dense [image: there is no content]. Thus, the portmanteau Theorem implies [image: there is no content] is a [image: there is no content] subset.



Let d be a continuous metric on [image: there is no content]. Because [image: there is no content] is dense in [image: there is no content], for every [image: there is no content], there exists a Borel map [image: there is no content] with [image: there is no content] for all x. Then, for every [image: there is no content], [image: there is no content] in the weak* topology as [image: there is no content]. Since [image: there is no content], this proves [image: there is no content] is dense. ☐



Proof of Theorem 1. 

The main theorem of [2] implies that an action has zero Rokhlin if and only if almost every ergodic component has zero Rokhlin entropy. In addition, [3] (Corollary 4.4) shows that [image: there is no content] is Borel (where [image: there is no content] is the set of measures with zero Rokhlin entropy). Thus, Theorem 1 follows from Propositions 2 and 3. ☐





Remark 2. 

Here is a brief sketch of an alternative proof of Theorem 1. Using the nonergodic version of Seward’s generalization of Sinai’s Theorem [19] in the proof of Theorem 4, it can be shown that every essentially free pmp action admits a zero Rokhlin entropy extension (ergodicity is not required). The theory of weak equivalence of actions shows that the measure conjugacy class of any action in [image: there is no content] contains the conjugacy class of each of its factors. Because essentially free actions are dense in [image: there is no content], it follows that zero Rokhlin entropy actions are also dense in [image: there is no content]. In [2] (Lemma 8.7), it is proven that the subset of all zero-Rokhlin entropy actions in [image: there is no content] is a [image: there is no content] subset. Alternatively, this can be proven in a manner similar to the proof of Lemma 5.






7. Naive Entropy


This section introduces naive entropy. The main result is that zero naive entropy is closed under factors, self-joinings and inverse limits.



Definition 2. 

Let [image: there is no content] be a pmp action and [image: there is no content] a partition of X. The naive entropy of [image: there is no content] is


[image: there is no content]








where [image: there is no content] means “a finite subset of”. The naive entropy of [image: there is no content] is


[image: there is no content]








where the supremum is over all finite-entropy partitions [image: there is no content].





It is an exercise to show that, if Γ is amenable, then naive entropy coincides with Kolmogorov–Sinai entropy (we will not need this fact). However, if Γ is nonamenable, the situation is very different:

Theorem 6. 

If Γ is nonamenable, then every pmp action of Γ has naive entropy in [image: there is no content].







Proof. 

Suppose [image: there is no content] and there is a finite-entropy partition [image: there is no content] of X with [image: there is no content]. Let [image: there is no content] be finite. Then,


[image: there is no content]













Since Γ is nonamenable, for every real number, [image: there is no content], there is a finite [image: there is no content], such that


[image: there is no content]











Hence, [image: there is no content], proving the theorem. ☐



Definition 3. 

Let [image: there is no content] be pmp actions (for [image: there is no content] where I is some index set). We always assume I is at most countable. A joining of these actions is a Γ-invariant Borel probability measure on the produce space [image: there is no content] whose i-th marginal is [image: there is no content]. Here, Γ acts on the product diagonally: [image: there is no content]. We also refer to the action [image: there is no content] as a joining. The joining is said to be finite if I is finite and infinite otherwise. In the special case that [image: there is no content] for all [image: there is no content], the joining is called a self-joining.





The main result here is:

Proposition 4. 

Zero naive entropy is closed under factors, self-joinings (both finite and infinite) and inverse limits.







We will need the following lemma showing that naive entropy is Lipschitz in the space of partitions.



Lemma 11. 

Let [image: there is no content] be a pmp action and [image: there is no content] be measurable partitions of X with finite Shannon entropy. Then, for any finite [image: there is no content],


[image: there is no content]








Thus,


[image: there is no content]













Proof. 

Recall that


[image: there is no content]








Subtracting, we obtain


Hμ(PF)-Hμ(QF)=Hμ(PF|QF)-Hμ(QF|PF)≤Hμ(PF|QF)≤∑f∈FHμ(f-1P|QF)≤|F|Hμ(P|Q).













This proves the first inequality. The second one follows from the first (observe that we need only consider a sequence of Fs that realize the naive entropy for [image: there is no content]). ☐



Proof of Proposition 4. 

Let us suppose that [image: there is no content] is an inverse limit of actions [image: there is no content] having zero naive entropy. We will show [image: there is no content] has zero naive entropy. Let [image: there is no content] be the Borel sigma-algebra of [image: there is no content]. After pulling back under the factor map, we may identify [image: there is no content] as a sub-sigma-algebra of the Borel sub-sigma-algebra of X which is denoted here by [image: there is no content]. Thus, [image: there is no content] is an increasing sequence of Γ-invariant sigma-algebras and [image: there is no content]. Because each action [image: there is no content] has zero naive entropy, if [image: there is no content] is any partition of X satisfying [image: there is no content] for some i and [image: there is no content], then, necessarily, [image: there is no content].





Let [image: there is no content] be an arbitrary measurable partition of X with finite Shannon entropy. Since [image: there is no content], for any [image: there is no content], there exists an i and a partition [image: there is no content] with finite Shannon entropy such that [image: there is no content]. By Lemma 11, [image: there is no content]. Since ϵ and [image: there is no content] are arbitrary, this implies [image: there is no content] has zero naive entropy and therefore zero naive entropy is closed under inverse limits.



Next, suppose [image: there is no content] has zero naive entropy and let λ be a self-joining of [image: there is no content]. We regard λ as a measure on [image: there is no content]. If [image: there is no content] is any partition of [image: there is no content] with [image: there is no content] and [image: there is no content] is arbitrary, then there exists a partition [image: there is no content] of X with finite Shannon entropy such that [image: there is no content]. Thus, Lemma 11 implies


[image: there is no content]











Since [image: there is no content],


hλnaive(Q×Q)=infF⊂⊂ΓHλ((Q×Q)F)|F|=infF⊂⊂ΓHλ(QF×QF)|F|≤infF⊂⊂ΓHλ(QF×{X})+Hλ({X}×QF)|F|=infF⊂⊂Γ2Hμ(QF)|F|=2hμnaive(Q)=0.











Thus, [image: there is no content]. Since ϵ and [image: there is no content] are arbitrary, this implies λ has zero naive entropy and, by induction, zero naive entropy is closed under finite self-joinings. Any infinite self-joining is an inverse limit of finite self-joinings. Thus, the above results show that zero naive entropy is closed under infinite self-joinings. It is immediate from the definitions that zero naive entropy is closed under factors. ☐



I do not know whether zero naive entropy is closed under joinings. For example, if two actions have zero naive entropy, does their direct product also have zero naive entropy?




8. Five Strengthenings of Zero Entropy


Here, we introduce five strengthenings of the notion of zero entropy. First, we need the following definitions:

Definition 4. 

An action [image: there is no content] has completely positive Rokhlin entropy (denoted R-CPE) if every nontrivial factor has positive Rokhlin entropy.







Definition 5. 

Two actions are said to be disjoint if the only joining between them is the product joining.





Theorem 7. 

Let [image: there is no content] be an ergodic essentially free pmp action. Consider the following five properties:

	1. 

	
[image: there is no content] has completely zero entropy (this means every essentially free factor of [image: there is no content] has zero Rokhlin entropy),




	2. 

	
[image: there is no content] is disjoint from all Bernoulli shifts over Γ,




	3. 

	
[image: there is no content] is disjoint from all R-CPE actions of Γ,




	4. 

	
every factor of every self-joining (including infinite self-joinings) of [image: there is no content] has zero Rokhlin entropy,




	5. 

	
[image: there is no content] has zero naive entropy.






Then, [image: there is no content] and [image: there is no content]. Moreover, if Γ is sofic, then [image: there is no content].





Remark 3. 

When Γ is amenable, all five properties listed above are equivalent because naive entropy and Rokhlin entropy agree with Kolmogorov–Sinai entropy (at least for ergodic essentially free actions). However, when Γ is nonamenable, it is an open problem whether any or all of the implications above can be reversed.





Remark 4. 

If Γ is nonsofic, then we do not know whether Bernoulli shifts over Γ have positive Rokhlin entropy. This is why we cannot say whether [image: there is no content] unconditionally. See [3] for partial results on this problem.





Proof. 

([image: there is no content]) This is immediate from Seward’s generalization of Sinai’s Factor Theorem 5, which states that any ergodic essentially free action with positive entropy factors onto a Bernoulli shift. Thus, if [image: there is no content] has a factor with positive entropy, then it has a Bernoulli factor [image: there is no content]. The corresponding factor joining is the measure [image: there is no content]. This is a non-product joining. ([image: there is no content], assuming Γ is sofic) Since Γ is sofic, Bernoulli shifts have completely positive entropy by [29]. This uses the fact that sofic entropy is a lower bound for Rokhlin entropy.





([image: there is no content]) Let [image: there is no content] be another pmp action of Γ and suppose that [image: there is no content] and [image: there is no content] admit a nonproduct joining. It follows from the relative independence theorem [30] (Theorem 6.25) that there exists an infinite self-joining λ of [image: there is no content] such that [image: there is no content] and [image: there is no content] admit a nontrivial common factor. Therefore, [image: there is no content] cannot be R-CPE.



([image: there is no content]) This follows from Proposition 4 and [31] (Theorem 1.5) which states that the naive entropy of a generating partition is an upper bound for the Rokhlin entropy. Therefore, zero naive entropy implies zero Rokhlin entropy. ☐




9. Zero Naive Entropy


For an arbitrary group Γ, it is an open problem whether Γ has an essentially free pmp action with zero naive entropy. However for special classes of groups, we will show that not only do such actions exist, they are generic. First, we need a definition:

Definition 6. 

The profinite completion of Γ is the inverse limit of the groups of the form [image: there is no content] where [image: there is no content] has finite index in Γ. It is a compact group on which Γ acts by left translations. The group Γ is said to be residually finite if any one of the following equivalent conditions hold:

	
the action of Γ on its profinite completion is essentially free,



	
for every non-identity element [image: there is no content] there exists a finite-index subgroup [image: there is no content] such that [image: there is no content],



	
there exists a decreasing sequence of finite-index normal subgroups [image: there is no content] such that [image: there is no content].












Definition 7. 

Let [image: there is no content] denote the action of Γ on its profinite completion by left-translations. This is a pmp action where the measure on the profinite completion is its Haar measure. In addition, let ι denote the trivial action of Γ on the unit interval with respect to Lebesgue measure (the trivial action is the action in which every group element fixes every point).





A group Γ has MD if the measure conjugacy class of the direct product action [image: there is no content] is dense in the space of actions [image: there is no content]. Equivalently, Γ has MD if the subset of measures in [image: there is no content] with finite support is dense in the weak* topology. This definition is due to Kechris [20]; it is a strengthening of property FD which was considered earlier by Lubotzky–Shalom [32] in their study of unitary representations.



Theorem 8. 

Free groups, surface groups and fundamental groups of closed hyperbolic three-manifolds have MD.





Proof. 

The case of free groups was proven independently by Kechris [20] and Bowen [33]. The rest was proven in [34]. The case of fundamental groups of closed hyperbolic 3-manifolds relies on Agol’s virtual fibering Theorem [35]. ☐





Let ZNE denote the subset of measures [image: there is no content] with zero naive entropy.



Lemma 12. 

For any countable group Γ, ZNE is a [image: there is no content] subset of [image: there is no content].





Proof. 

Let [image: there is no content] be an increasing sequence of finite clopen partitions of [image: there is no content] such that [image: there is no content] is the Borel sigma-algebra. Recall that clopen means every part of [image: there is no content] is both closed and open. Let [image: there is no content] be the subset of all measures [image: there is no content] such that [image: there is no content]. We claim that [image: there is no content]. Clearly, [image: there is no content]. Suppose [image: there is no content]. Let [image: there is no content] be an arbitrary partition of [image: there is no content] with [image: there is no content]. Then, for every [image: there is no content] there exists n such that [image: there is no content]. By Lemma 11, [image: there is no content]. Since ϵ and [image: there is no content] are arbitrary this proves [image: there is no content] and therefore, [image: there is no content] as claimed.





It now suffices to show each [image: there is no content] is a [image: there is no content] subset. Indeed, this follows from the definition:


[image: there is no content]








and the fact that [image: there is no content] is weak* continuous for every finite [image: there is no content]. The reason this is weak* continuous uses the fact that if [image: there is no content] is clopen, then its characteristic function is continuous and therefore induces a continuous functional on [image: there is no content]. ☐



Definition 8. 

The kernel of an action [image: there is no content] is the subgroup Ker(a):={g∈Γ:gx=xfora.e.x∈X}.





Lemma 13. 

If [image: there is no content] has infinite kernel, then it has zero naive entropy.





Proof. 

Let [image: there is no content] be an arbitrary partition of X with finite Shannon entropy. Then, [image: there is no content] (up to measure zero) for every [image: there is no content]. Therefore,


[image: there is no content]








In particular, if [image: there is no content] is infinite, then [image: there is no content]. ☐





Proof of Theorem 3. 

By the Glasner–King correspondence mentioned in the introduction, it suffices to show that ZNE is a dense [image: there is no content] subset of [image: there is no content]. By Lemma 12, it is a [image: there is no content]. If Γ has property MD, then, by definition, the subset of all measures [image: there is no content] with finite support is dense in [image: there is no content]. Each such measure has infinite kernel. Thus, Lemma 13 implies ZNE is dense. Thus, we assume [image: there is no content], where H is infinite, amenable and residually finite.





Because H is residually finite, there exists a sequence [image: there is no content] of normal finite-index subgroups of H with [image: there is no content]. By [36] (Theorem 1), because H is amenable, there exist right fundamental domains [image: there is no content] for [image: there is no content] such that [image: there is no content] forms a Følner sequence. This means: (1) H is the disjoint union of [image: there is no content] over [image: there is no content] and (2) for any finite [image: there is no content],


limi→∞|{f∈Fi:fK⊂Fi||Fi|=1.











Let [image: there is no content] be arbitrary. We will show that it is a weak* limit of measures with zero Rokhlin entropy. For [image: there is no content], define [image: there is no content] by [image: there is no content], where [image: there is no content] and [image: there is no content] is the unique element satisfying [image: there is no content]. Observe that [image: there is no content] is [image: there is no content]-invariant and [image: there is no content] is G-equivariant. Therefore, the pushforward measure [image: there is no content] is [image: there is no content]-invariant. In addition, observe that [image: there is no content] is a left fundamental domain in the sense that H is the disjoint union of [image: there is no content] over [image: there is no content]. Therefore,


[image: there is no content]








is Γ-invariant. Since [image: there is no content] is normal, the kernel of the action [image: there is no content] contains [image: there is no content]. By Lemma 13, this action has zero naive entropy.



We claim that [image: there is no content] as [image: there is no content]. To see this, let [image: there is no content] denote the graph of [image: there is no content]:


[image: there is no content]











Let [image: there is no content]. Because [image: there is no content] is a joining of μ and [image: there is no content], it suffices to show that for every [image: there is no content],


λi({(x,y):x(g,h)=y(g,h)})→1








as [image: there is no content]. Thus, fix [image: there is no content]. To simplify notation, we let


Δ={(x,y)∈CantorΓ×CantorΓ:x(g0,h0)=y(g0,h0)}.











It suffices to show that for any [image: there is no content],


#{f∈Fi:(1G,fi-1)Φi(x)∈Δ}#Fi≥|{f∈Fi:fh0∈Fi}||Fi|,








since the latter tends to 1 uniformly in x. This follows from


{f∈Fi:(1G,fi-1)Φi(x)∈Δ}⊃{f∈Fi:fh0∈Fi},








which follows directly from the definitions: if [image: there is no content] and [image: there is no content], then


[image: there is no content]











This proves the claim. This implies that [image: there is no content] as [image: there is no content] in the weak* topology. Indeed, if [image: there is no content] is any finite subset and [image: there is no content] any continuous function, then the function [image: there is no content] defined by composing the restriction map [image: there is no content] with f satisfies ∫f˜dμi→∫fdμ. Since such functions are dense in the space of all continuous functions, it follows that [image: there is no content] as claimed. Because μ is arbitrary, this implies ZNE is dense. ☐




10. Weak Containment


Given any pmp action [image: there is no content], let [image: there is no content] denote the set of all measures [image: there is no content] such that there is a Γ-equivariant measurable map [image: there is no content] with [image: there is no content]. This is the set of factor measures. Let [image: there is no content] be the weak* closure of [image: there is no content].



Now, suppose [image: there is no content] is another pmp action. We say [image: there is no content] is weakly contained in [image: there is no content], denoted [image: there is no content], if [image: there is no content]. If [image: there is no content] and [image: there is no content], then we say [image: there is no content] and [image: there is no content] are weakly equivalent. This notion was introduced in [20]. In [37], it is proven that the definition given in this paper is equivalent to the one introduced in [20]. Some basic facts: all Bernoulli shifts over Γ are weakly equivalent. In fact, the Abert–Weiss Theorem [38] states: if [image: there is no content] is any essentially free action of Γ, then [image: there is no content] weakly contains a Bernoulli shift. There exists an action [image: there is no content] that weakly contains all actions of Γ (this is called the weak Rokhlin property, see [9]).



It is an open problem whether, for a given action, [image: there is no content], the set of all measures [image: there is no content] with zero Rokhlin entropy is residual. Of course, this is true if [image: there is no content] by Theorem 1. It is also true if [image: there is no content] is a Bernoulli shift:



Corollary 2. 

Let [image: there is no content] be a Bernoulli shift. Then, the generic measure [image: there is no content] has zero Rokhlin entropy.





Proof. 

If Γ is amenable, then [image: there is no content]. Thus, the result follows from Theorem 1. Thus, we may assume Γ is nonamenable. In this case, [image: there is no content] is strongly ergodic and therefore every measure [image: there is no content] is ergodic. By Lemma 5, the set of all measures [image: there is no content] with zero Rokhlin entropy is a [image: there is no content] subset. By Corollary 1, there exists an action [image: there is no content] that is an inverse limit of factors of Bernoulli shifts that factors onto all Bernoulli shifts and has zero Rokhlin entropy. By Lemma 8, [image: there is no content]. By Lemma 8 again, the set of measures in [image: there is no content] with zero Rokhlin entropy is dense. ☐
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