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Abstract: In this article, entropy generation of an Eyring–Powell nanofluid through a permeable
stretching surface has been investigated. The impact of magnetohydrodynamics (MHD) and nonlinear
thermal radiation are also taken into account. The governing flow problem is modeled with the help
of similarity transformation variables. The resulting nonlinear ordinary differential equations are
solved numerically with the combination of the Successive linearization method and Chebyshev
spectral collocation method. The impact of all the emerging parameters such as Hartmann number,
Prandtl number, radiation parameter, Lewis number, thermophoresis parameter, Brownian motion
parameter, Reynolds number, fluid parameter, and Brinkmann number are discussed with the help of
graphs and tables. It is observed that the influence of the magnetic field opposes the flow. Moreover,
entropy generation profile behaves as an increasing function of all the physical parameters.
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1. Introduction

In recent years, nanofluid has received more and more attention by various scientists due to its
numerous applications in engineering and various industrial processes. A nanofluid is comprised of a
base fluid with tiny (nanometer) sized nanoparticles, such as carbides or carbon nanotubes, oxides,
and metals, whereas traditional base liquids involve ethylene glycol, oil, and water. A nanofluid
is very helpful in enhancing thermal conductivity and convection of heat transfer coefficient when
it is analyzed with the base fluid. In modern technology, nanomaterials are becoming increasingly
important in the performance of various heat exchangers, such as microelectronics, optical modulators,
and chemical production. Magneto-nanofluids are also remarkable for their use in various applications,
such as tunable optical fiber filters, magneto-optical wavelength filters, optical modulators, and optical
switches. In biomedical engineering, magneto-nanoparticles are also very helpful in cancer therapy,
sink-float separation, hyperthermia, magnetic resonance imaging (MRI), magnetic cell separation, drug
delivery, and magnetic drug targeting. In particular, heat transfer and convective flow are influenced
by the features of nanofluids, such as thermal conductivity and viscosity. Conventional heat transfer
in various Newtonian and non-Newtonian fluids, such as ethylene glycol, oil, water, etc., holds a poor
rate of heat transfer. However, the thermal conductivity of these kinds of fluids plays a significant
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role in the heat transfer coefficient between a heat transfer surface and heat transfer medium. During
the last few decades, an innovative methodology has been used to enhance heat transfer with the
help of ultra-fine solid particles in fluids [1–5]. Makinde et al. [6] studied the buoyancy effect on
stagnation point flow with heat transfer of nanofluids through a convectively shrinking/stretching
sheet. Bachok et al. [7] analyzed the unsteady boundary layer flow and heat transfer of nanofluids over
a permeable shrinking and stretching sheet. Nazar et al. [8] examined the stagnation point flow of
nanofluids towards a shrinking sheet. Malvandi et al. [9] investigated the unsteady boundary layer
flow of nanofluids with heat transfer through a permeable shrinking/stretching sheet. Some additional
studies on the topic can be found in. [10–12], with additional studies referenced therein.

The study of entropy generation with heat transfer has been analyzed by various
researchers [13–15]. In a thermo-dynamic system, due to diffusion, fluid viscosity, chemical reactions,
and friction forces within a system result in energy loss, which involves entropy generation. Such types
of entropy generation have received remarkable interest in different fields such as electronic cooling,
heat exchangers, and turbomachinery. In particular, every thermal process involves some kind of
irreversibility due to the presence of a temperature gradient. It delivers a measured efficiency loss and
results in the reduction of energy quality. According to recent investigations in thermal engineering,
the second law of thermodynamics [16] is more appropriate and efficient in optimizing a given
system as compared to the first law of thermodynamics. Various investigations on the first law of
thermodynamics reveal that it does not provide any variations in energy and only manipulates the
accounting of energy. This is the main reason that differentiates the second law of thermodynamics
from the first law of thermodynamics. In recent years, the impact of irreversibility on the interaction of
energy has received great attention. For instance, Abolbashari et al. [17] analytically investigated the
entropy generation for a Casson nanofluid through a stretching surface. Rashidi et al. [18] studied the
entropy generation in a steady flow of a nanofluid through a porous rotating disk under the impact of
magnetohydrodynamics. Qing et al. [19] numerically investigated the entropy generation on a Casson
nanofluid through a stretching/shrinking surface under the influence of magnetohydrodynamics.
Some additional studies on entropy generation can be found in [20–24].

In the past few years, non-Newtonian fluids have received considerable attention by various
researchers due to its several applications in industry. Various materials such as polymer solutions,
melting polymers, paints, toothpaste, and various biological fluids are common examples of
non-Newtonian fluids. These types of fluids involve various complexities that arise due to their
nonlinear relation between strain rate and stress. However, due to such forms of difficulties, many
authors are investigating the flow of non-Newtonian fluids. The boundary layer flowing through
stretching surfaces has various applications in metal and plastic industry such as rubber sheets,
hot rolling, continuous cooling of fiber spinning, wire drawing, thinning and annealing of copper
wires, sketching on stretching sheets, and the extrusion process of plastic films. A few pertinent recent
studies regarding boundary layer flow through a stretching surface can be found in [25–27].

On the other hand, the study of magnetohydrodynamics (MHD) was firstly applied only to
geophysical and astrophysical problems. Later on, magnetohydrodynamics (MHD) attracted a number
of researchers due to is wide applications found in petroleum and agricultural engineering. MHD is
found in various engineering problems such as the cooling process of liquid metals in nuclear reactors,
the casting process of electromagnetics, and plasma confinement. Various devices have been invented
that work on the mechanism of magnetohydrodynamics, such as MHD sensors, MHD generators,
MHD pumps, etc. MHD is also very helpful in controlling the velocity of fluid flow. Nadeem et al. [28]
studied the combined effects of MHD and thermal radiation on nanofluids across a stretching sheet
with convective boundary conditions. Rashidi et al. [29] studied the simultaneous influence of MHD
and buoyancy on nanofluids over a stretching sheet with thermal radiations. Rashidi et al. [30] analyzed
the mixed convective heat transfer for MHD viscoelastic fluid flow through a porous wedge under
the influence of thermal radiation. Turkyilmazoglu [31] presented a mathematical analysis on MHD
permeable heat and fluid flow fields induced by shrinking or stretching two-three dimensional objects.
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He obtained the exact solutions for the governing flow problem. He also presented multiple solutions
for the non-MHD stretching plate problem. A few recent studies on MHD can be found in [31–34],
with a few additional studies referenced therein. According to the best of our knowledge, no such
attempt has been made on studying entropy generation of a MHD Eyring–Powell fluid through a
permeable stretching sheet.

With motivation from the above analysis in mind, the aim of the present study was to analyze the
entropy generation of a MHD Eyring nanofluid over a stretching surface. The governing flow problem
comprises of the momentum equation, energy equation, and nanoparticle concentration equation,
which are further transformed into ordinary differential equations using similarity transformation
variables. The reduced ordinary coupled differential equations are solved numerically with the help of
the Successive linearization method (SLM) and Chebyshev spectral collocation method. This paper
is organized as follows: after the introduction in Section 1, Section 2 consists of the mathematical
formulation of the problem, Section 3 deals with the physical quantities, Section 4 explains the
methodology of the problem, Section 5 characterize the entropy generation analysis, and finally
Section 6 is devoted to the numerical results and discussion.

2. Mathematical Formulation

Consider the MHD boundary layer flow of an Eyring–Powell nanofluid over a permeable
stretching surface near a stagnation point at y “ 0. The MHD flow occurs in the domain at y ą 0.
The fluid is electrically conducting due to an externally applied magnetic field, although the induced
magnetic charge is very small, and is thereby taken to be zero. A cartesian coordinate is chosen in a
way such that the x-axis is considered along the direction of the sheet whereas the y-axis is considered
normal to it (see Figure 1). Suppose that rTw and rCw are the temperature and nanoparticle fraction at
the sheet, respectively, while the temperature and nano-particle fraction at infinity are rT8 and rC8,
respectively. The velocity of the sheet is considered along the x-direction.
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The governing equations of the MHD Eyring–Powell nanofluid model can be written as [35]

Bru
Bx
`
Brv
By
“ 0, (1)

ru
Bru
Bx
` rv

Brv
By
“

ˆ

v`
1

ρBC

˙

B2
ru

By2 ´
1

2ρBC3

ˆ

Bru
By

˙2
B2
ru

By2 ` rue
drue

dx
`

σB2
0

ρ
prue ´ ruq, (2)

ru
BrT
Bx
` rv

BrT
By
“ α

B2
rT

By2 ` τ

¨

˝DB
B rC
By
BrT
By
`

DT
T8

˜

BrT
By

¸2
˛

‚´
1

ρcp

Bqr

By
, (3)



Entropy 2016, 18, 224 4 of 14

ru
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By2 `
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T8
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By2 . (4)

The nonlinear radiative heat flux can be written as

qr “ ´
4σ

3k
BrT4

By
“ ´

16σrT3

3k
BrT
By

, (5)

and their respective boundary conditions are

ru “ uw “ ax, rv “ rvw, rT “ rTw, rC “ rCw at y “ 0, (6)

ru “ rue “ bx, rv “ 0, rT Ñ rT8, rC Ñ rC8 as y Ñ8, (7)

where b “ a is considered for the present study. The steam function satisfying Equation (1) is defined
as pru, rvq “

´

Bϕ
By ,´Bϕ

Bx

¯

. Defining the following similarity transformation variables
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ruw
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νruw
x f pζq , θ “
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and using Equation (8) in relation to Equations (1)–(7), we get
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˘
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Their corresponding boundary conditions are

f p0q “ S, f 1 p0q “ α, f 1 p8q “ 1, (12)

θ p0q “ 1, θ p8q “ 0, (13)

φ p0q “ 1, φ p8q “ 0, (14)

where Pr “ v
a M “

B2
0σ

aρ Le “
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3. Physical Quantities of Interest

The physical quantities of interest for the governing flow problem are the local Nusselt number
and local Sherwood number which can be written as

Nux “
xqw

κprTw ´ rT8q
, Shx “

xqm

DBpCw ´ C8q
, (15)

where qw and qm are described as
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With the help of dimensionless transformation in Equation (8), we have

Nur “
Nux

Re
1
2
x

“ ´p1` Nrq θ1 p0q , Shr “
Shx

Re
1
2
x

“ ´φ1 p0q , (17)

where Shr and Nur are the dimensionless Sherwood number and local Nusselt number, respectively,
and Rex “ ruwx{ν is the local Reynolds number.

4. Numerical Method

We apply the Successive linearization method to Equation (9) with their boundary conditions in
Equation (12), by setting [19,25]

f pζq “ f I pζq `
I´1
ÿ

N“0

fN pζq , pI “ 1, 2, 3, . . .q , (18)

where f I are unknown functions which are obtained by iteratively solving the linearized version of
the governing equation and assuming that f I p0 ď N ď I ´ 1q are known from previous iterations.
Our algorithm starts with an initial approximation f0 which satisfies the given boundary conditions in
Equation (13) according to SLM. The suitable initial guess for the governing flow problem is

f0 “ ´1`
1´ α

eζ
` ζ ` α` S. (19)

We write the equation in general form as

L
`

f , f 1, f 2 , f 3
˘

`N
`

f , f 1, f 2 , f 3
˘

“ 0, (20)

where
L
`

f , f 1, f 2 , f 3
˘

“ f 3 , (21)

and
N
`

f , f 1, f 2 , f 3
˘

“ 1´ γβp f 2 q
2 f 3 ´ f 12 ` f f 2 `M

`

1´ f 1
˘

, (22)

where L and N are the linear and non-linear part of Equation (9). By substituting Equation (18) into
Equation (9) and taking the linear terms only, we get

f 3

I ` A0,I´1 f 2

I ` A1,I´1 f 1I ` A2,I´1 f I “ rI´1, (23)

and the corresponding boundary conditions becomes

f I p0q “ 0, f 1I p0q “ 0, f I 1 p8q “ 0. (24)

We solve Equation (23) numerically by the Chebyshev spectral collocation method. For numerical
implementation, the physical region r0,8q is truncated to r0, Γs ; we can take Γ to be sufficient
large. With the help of subsequent transformations this region is further transformed into r´1, 1s,
and we have

Ω “ ´1`
2ζ

Γ
. (25)

We define the following discretization between the interval r´1, 1s. Now, we can apply
Gause–Lobatto collocation points to define the nodes between r´1, 1s by

ΩJ “ cos
π J
N

, pJ “ 0, 1, 2, 3 . . . Nq , (26)



Entropy 2016, 18, 224 6 of 14

with pN ` 1q number of collocation points. The Chebyshev spectral collocation method is based on the
concept of differentiation matrix D. This differentiation matrix maps a vector of the function values
G “ r f pΩ0q , . . . , f pΩNqs

T the collocation points to a vector G1 is defined as

G1 “
N
ÿ

K´0

DKJ f pΩKq “ DG, (27)

the derivative of p order for the function f pΩq can be written as

f p pΩq “ DpG. (28)

The entries of matrix D can be computed by the method proposed by Bhatti et al. [25]. Now,
applying the spectral method, with derivative matrices on linearized Equations (23) and (24), we get
the following linearized matrix system

AI´1GI “ RI´1, (29)

and the boundary conditions takes the following form

f I pΩNq “ 0,
N
ÿ

K“0

DNK f I pΩKq “ 0,
N
ÿ

K“0

D0K f I pΩKq “ 0,
N
ÿ

K“0

D2
0K f I pΩKq “ 0, (30)

where
AI´1 “ D3 ` A0,I´1D2 ` A1,I´1D` A2,I´1. (31)

In the above equation As,I´1 ps “ 0, 1, . . . 3q are pN ` 1q ˆ pN ` 1q diagonal matrices with
As,I´1

`

ΩJ
˘

on the main diagonal and

GI “ f I
`

ΩJ
˘

, RI “ rI
`

ΩJ
˘

. pJ “ 0, 1, 2, 3, . . . Nq (32)

After employing Equation (31), the solutions for f I are obtained by iteratively solving
Equation (30). We obtain the solution for f pζq from solving Equation (31) and Equations (10) and (11)
are now linear; therefore we will apply Chebyshev pseudo-spectral method directly, and by doing so
we get

BH “ S, (33)

with their corresponding boundary conditions boundary conditions

θ pΩNq “ 1, θ pΩ0q “ 0, (34)

φ pΩNq “ 1, φ pΩ0q “ 0, (35)

where H “
`

θ
`

ΩJ
˘

, φ
`

ΩJ
˘˘

, B is the set of linear coupled equations of temperature and nanoparticle
concentration, S is a vector of zeros, and all vectors in Equation (33) are converted to a diagonal
matrix. We imposed the boundary conditions in Equations (34) and (35) on the first and last rows of
B and S, respectively.

5. Entropy Generation Analysis

The volumetric entropy generation of the Eyring–Powell nanofluid is given by [36]

S3

gen “
κ
rT2

8

„

´

BrT
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¯2
` 16σrT3

3k

´

BrT
By
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`
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ˆ

´

1` 1
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BrT
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BC
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BrT
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.
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In the above equation, the entropy generation consists of three effects: (i) conduction effect (also
known as heat transfer irreversibility, (HTI)); (ii) fluid friction irreversibility (FFI); and (iii) diffusion
(also known as diffusive irreversibility, (DI)). The entropy generation characteristics can be written as

S3

0 “
κ p∆Tq2

L2rT2
8

. (37)

With the help of Equation (8), the entropy generation in dimensionless form can be written as

NG “
S3

gen

S3

0
“ Re p1` Nrq θ12 pζq ` ReBr

Ω

´

p1` γq f
22 pζq ´

γβ
3 f

24 pζq
¯

`
ReBr

Ω M f 12 pζq

`Reλ1
` χ

Ω
˘2

φ12 pζq `Reλ1
` χ

Ω
˘

θ1 pζq φ1 pζq .
(38)

These numbers are given in the following form

Re “
ruLL2

ν
, Br “

µruw
2

κ∆T
, Ω “

∆T
rT8

, χ “
∆C
C8

, λ1 “
RDC8

κ
. (39)

6. Results and Discussion

This section deals with the theoretical and graphical behavior of different physical quantities that
are obtained in the present flow problems. The computational software Matlab has been utilized to
investigate the novelties of all the physical parameters, such as the Hartmann number, fluid parameter,
Prandtl number, radiation parameter, Lewis number, thermophoresis parameter, Brownian motion
parameter, Reynolds number, and Brinkmann number. In particular, we discuss their influence on
velocity profile, temperature profile, nanoparticle concentration profile, and entropy profile. For this
purpose, Figures 1–10 are drawn, where Figure 1 shows the geometry of the problem. Table 1 shows
the numerical computation of the Nusselt number and Sherwood number for different values of
the Prandtl number, radiation parameter, Brownian motion parameter, thermophoresis parameter,
and Lewis number. Table 2 represents a numerical comparison with the existing published results [26]
by taking γ “ M “ 0 as a special case of our study. From this table, we can see that our results are in
excellent agreement, which confirms the validity of our present methodology.
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Figure 2. Velocity profile for different values of ܯ	  and ܵ	  when ܲݎ = 5, ܰ = 1, ߛ = ߚ				,0.1 =0.5, ܰ = 0.2, ௧ܰ = 0.2	 and 	ܮ = 1. Solid black line: 	ܯ = 0, S = 	0; Dashed black line: 	ܯ = 0, S =	1; Solid red line: 	ܯ = 0.5, S = 	0; Dashed red line: 	ܯ = 0.5, S = 	1; Solid green line: 	ܯ = 1.0, S =	0; Dashed green line: 	ܯ = 1.5, S = 	1. 

 

Figure 3. Velocity profile for different values of ܵ	  and ߛ	  when ܲݎ = 5, ܰ = 1, ߚ = 0.6,				 ܰ =0.2, ௧ܰ = 0.2, ܮ = 1	 and ܯ = 0.1. Solid black line: 	ߛ = 0, S = 	0; Dashed black line: 	ߛ = 0.6, S = 	0; 
Solid red line: 	ߛ = 0, S = 	1;  Dashed red line: 	ߛ = 0.6, S = 	1;  Solid green line: 	ߛ = 0, S = 	2 ; 
Dashed green line: 	ߛ = 0.6, S = 	2. 

Figure 2. Velocity profile for different values of M and S when Pr “ 5, Nr “ 1, γ “ 0.1,
β “ 0.5, Nb “ 0.2, Nt “ 0.2 and Le “ 1. Solid black line: M “ 0, S “ 0; Dashed black line:
M “ 0, S “ 1; Solid red line: M “ 0.5, S “ 0; Dashed red line: M “ 0.5, S “ 1; Solid green line:
M “ 1.0, S “ 0; Dashed green line: M “ 1.5, S “ 1.
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Figure 7. Concentration profile for different values of Nt and Nb when Pr “ 5, Nr “ 1, γ “ 0.2,
β “ 0.6, Le “ 1 and M “ 0.1. Solid black line: Nt “ 0.1, Nb “ 0.3; Dashed black line: Nt “ 0.1,
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Figure 8. Entropy profile for different values of S and Nr when Pr “ 5, Nr “ 1, γ “ 0.2, β “ 0.6,
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Figure 10. Entropy profile for different values of Re and M when Pr “ 5, Nr “ 1, γ “ 0.2,
β “ 0.6, Nb “ 0.2, Nt “ 0.2 and Le “ 1. Solid black line: M “ 0, Re “ 0.5; Dashed black
line: M “ 0.8, Re “ 0.5; Solid red line: M “ 0, Re “ 1.0; Dashed red line: M “ 0.8, Re “ 1.0;
Solid green line: M “ 0, Re “ 1.5; Dashed green line: M “ 0.8, Re “ 1.5.

Table 1. Numerical values of reduced Nusselt number and local Sherwood number for various values
of Pr, Nr, Nb, Le, and Nt.

Pr Nr Nb Nt Le Nur Shr

1 1 - - - 1.4998 -
2 - - - 1.7638 -
10 - - - 2.0890 -
- 2 - - - 2.1308 -
- 3 - - - 2.2947 -
- 4 - - - 2.4657 -
- - 0.1 - - 2.0890 0.6456
- - 0.3 - - 1.9087 0.9680
- - 0.8 - - 1.5922 1.1944
- - - 0.2 - 1.9936 0.8506
- - - 0.4 - 1.8325 0.6456
- - - 0.7 - 1.6444 0.4996
- - - - 1.5 - 1.1386
- - - - 2 - 1.4137
- - - - 3 - 1.9450
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Table 2. Comparison of f 2 p0q with existing published data for different values of stretching
parameter α ą 0.

α Present Results γ “ M “ 0 Wang [37]

0 1.23258 1.23258
0.1 1.14656 1.14656
0.2 1.05113 1.05113
1 0.00000 0.00000
2 ´1.88730 ´1.88730
5 ´10.26474 ´10.26474

Figures 2 and 3 are provided for the velocity profile against Hartman number pMq, fluid parameter
pγq , and suction/injection parameter pSq. Figure 2 elucidates that when the Hartmann number pMq
increases then it opposes the flow which causes a reduction in the fluid velocity. In fact, this is due to the
existence of the Lorentz force which originated when the magnetic field was applied. However, we can
observe that suction/injection parameter pSq does not provide any resistance to the flow, and hence
the velocity of the fluid tends to rise when the suction/injection parameter increases. Figure 3 shows
that when the fluid parameter pγq rises then it tends to oppose the flow, which causes a reduction
in the velocity profile. Figures 4 and 5 are provided for the temperature profile against Brownian
motion parameter, thermophoresis parameter, Prandtl number, and radiation parameter. It can be
observed from Figure 4 that the Brownian motion parameter pNbq enhances the temperature profile
and boundary layer thickness, however, the temperature profile behaves in a similar way when the
thermophoresis parameter pNtq increases. An enhancement in the thermophoresis parameter produces
a force which leads to the movement of nanoparticles from a hot region to cold region, and hence the
temperature profile and thermal boundary layer thickness increases. It can be observed from Figure 5
that the radiation parameter pNrq enhances the temperature profile. In fact, this happens due to the
increment in radiation parameter causing a reduction in the mean absorption coefficient, which, as a
result, leads to an increase in the radiative heat transfer. Here we can also observe that larger values of
the Prandtl number reduces the temperature profile and the boundary layer thickness. An increment
in the Prandtl number coincides with weaker thermal diffusivity. It is worth mentioning that those
fluids which hold weaker thermal diffusivity have lower temperatures. This type of thermal diffusivity
reveals a reduction in the boundary layer thickness and temperature profile.

Figures 6 and 7 are provided for the concentration profile against the Brownian motion parameter,
thermophoresis parameter, Lewis number, and suction/injection parameter. Figure 6 shows that
an increment in the Lewis number pLeq tends to reduce the concentration profile and its boundary
layer thickness. Moreover, the concentration profile and boundary thickness behave in a similar way
when the suction parameter pSq increases. From Figure 7, we can observe that an increment in the
Brownian motion parameter pNbq tends to decrease the boundary layer thickness and nanoparticle
concentration profile; however, the nanoparticle concentration profile behaves in an opposite way
when the thermophoresis parameter pNtq increases. Figures 8–10 represent the entropy profile for the
Reynolds number, Brinkmann number, radiation parameter, and Hartmann number. In Figure 8 we
can easily notice that the entropy profile decreases due to the increment in radiation parameter pNrq;
however, when ζ Ñ8 then its behavior starts to change and becomes the opposite after certain values
of ζ. It can be observed from Figures 9 and 10 that the entropy profile increases correspondingly with
increasing values for the Reynolds number, Brinkmann number, and Hartmann number.
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7. Conclusions

Entropy generation of an Eyring–Powell nanofluid through a permeable stretching surface has
been investigated numerically. The impact of MHD and nonlinear thermal radiation are also taken
into consideration. The solution of the governing flow problem has been obtained with the help of the
Successive linearization method and Chebyshev spectral collocation method. The major outcomes are
summarized below:

‚ The velocity of the fluid decreases due to an increment in the fluid parameter and
Hartmann number.

‚ The entropy profile enhances all the physical parameters.
‚ The temperature profile increases due to an increment in the radiation parameter.
‚ The nanoparticle concentration increases for large values of the thermophoresis parameter.
‚ The nanoparticle concentration decreases due to a greater influence of the Lewis number.
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Nomenclature

ru, rv Velocity components pm{sq
x, y Cartesian coordinate pmq
rp Pressure

`

N{m2˘

rk Porosity parameter
Re Reynolds number
NG Dimensionless entropy number
rt Time psq
Pr Prandtl number
k Mean absorption coefficient
S Suction/injection parameter
Nb Brownian motion parameter
Nt Thermophoresis parameter
qw Heat flux
Le Lewis number
qm Mass flux
B, C Fluid parameters
Br Brinkman number

T8 Environmental temperature (K)
M Hartman number
B0 Magnetic field
Nr Radiation parameter
rT, rC Temperature pKq and Concentration
g Acceleration due to gravity

`

m{s2˘

DB Brownian diffusion coefficient
`

m2{s
˘

DT Thermophoretic diffusion coefficient
`

m2{s
˘
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Greek Symbol

a Thermal conductivity of the nano particles
a Stretching parameter
σ Stefan-Boltzmann constant
µ Viscosity of the fluid (N¨ s/m2)
λ1 Dimensionless constant parameter
χ Dimensionless concentration difference
Ω Dimensionless temperature difference
φ Nanoparticle concentration
θ Temperature profile
σ Electrical conductivity (S/m)
ϕ Stream function
τ Effective heat capacity of nano particle (J/K)
υ Nano fluid kinematic viscosity (m2/s)
γ, β Fluid parameters
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