On Extensions over Semigroups and Applications
Abstract
:1. Introduction
2. A Theorem due to Rhemtulla and Formanek
3. Proof of Theorem 2
4. Examples
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kamiński, B.; Siemaszko, A.; Szymański, J. The determinism and the Kolmogorov property in topological dynamics. Bull. Pol. Acad. Sci. Math. 2003, 51, 401–417. [Google Scholar]
- Kamiński, B.; Siemaszko, A.; Szymański, J. Extreme relations for topological flows. Bull. Pol. Acad. Sci. Math. 2005, 53, 17–24. [Google Scholar] [CrossRef]
- Hochman, M.; Siemaszko, A. Inverses, powers and Cartesian products of topologically deterministic maps. Topol. Methods Nonlinear Anal. 2012, 39, 189–198. [Google Scholar]
- Hochman, M. On notions of determinism in topological dynamics. Ergodic Theory Dyn. Syst. 2012, 32, 119–140. [Google Scholar] [CrossRef]
- Ault, J.C. Extensions of partial right orders on nilpotent groups. J. Lond. Math. Soc. 1970, 2, 749–752. [Google Scholar]
- Rhemtulla, A.H. Right-ordered groups. Canad. J. Math. 1972, 24, 891–895. [Google Scholar] [CrossRef]
- Formanek, E. Extending partial right orders on nilpotent groups. J. Lond. Math. Soc. 1973, 7, 131–134. [Google Scholar] [CrossRef]
- Ollagnier, J.M. Ergodic theory and statistical mechanics. In Lecture Notes in Math.; Springer-Verlag: Berlin, Germany, 1985; Volume 1115. [Google Scholar]
- Ornstein, D.S.; Weiss, B. Entropy and isomorphism theorems for actions of amenable groups. J. D’Analyse Math. 1987, 48, 1–141. [Google Scholar] [CrossRef]
- Walters, P. An introduction to ergodic theory. In Graduate Texts in Mathematics; Springer-Verlag: New York, NY, USA, 1982; Volume 79. [Google Scholar]
- Huang, W.; Xu, L.; Yi, Y. Asymptotic pairs, stable sets and chaos in positive entropy systems. J. Funct. Anal. 2015, 268, 824–846. [Google Scholar] [CrossRef]
- Pitzkel, B.S. On information futures of amenable groups. Dokl. Acad. Sci. USSR 1975, 223, 1067–1070. [Google Scholar]
- Safonov, A.V. Information pasts in groups. Izv. Akad. Nauk SSSR Ser. Mat. 1983, 47, 421–426. [Google Scholar] [CrossRef]
- Ollagnier, J.M.; Pinchon, D. The variational principle. Studia Math. 1982, 72, 151–159. [Google Scholar]
- Stepin, A.M.; Tagi-Zade, A.T. Variational characterization of topological pressure of the amenable groups of transformations. Dokl. Akad. Nauk SSSR 1980, 254, 545–549. (In Russian) [Google Scholar]
- Botto-Mura, R.; Rhemtulla, A. Orderable groups. In Lecture Notes in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 1977; Volume 27. [Google Scholar]
- Deroin, B.; Navas, A.; Rivas, C. Groups, orders, and dynamics. 2014. arXiv:1408.5805. [Google Scholar]
- Kopytov, V.M.; Medvedev, N.Y. Right ordered groups. Siberian School of Algebra and Logic; Consultants Bureau: New York, NY, USA, 1996. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Jin, L.; Ye, X. On Extensions over Semigroups and Applications. Entropy 2016, 18, 230. https://doi.org/10.3390/e18060230
Huang W, Jin L, Ye X. On Extensions over Semigroups and Applications. Entropy. 2016; 18(6):230. https://doi.org/10.3390/e18060230
Chicago/Turabian StyleHuang, Wen, Lei Jin, and Xiangdong Ye. 2016. "On Extensions over Semigroups and Applications" Entropy 18, no. 6: 230. https://doi.org/10.3390/e18060230
APA StyleHuang, W., Jin, L., & Ye, X. (2016). On Extensions over Semigroups and Applications. Entropy, 18(6), 230. https://doi.org/10.3390/e18060230