3D Buoyancy-Induced Flow and Entropy Generation of Nanofluid-Filled Open Cavities Having Adiabatic Diamond Shaped Obstacles
Abstract
:1. Introduction
2. Definition of the Physical Model
2.1. Governing Equations
2.2. Boundary Conditions
3. Validation of the Code and Grid Dimension
4. Results and Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
Nomenclature
Be | Bejan number |
Cp | Specific heat at constant pressure (J/kg·K) |
G | Gravitational acceleration (m/s2) |
k | Thermal conductivity (W/m·K) |
l | Enclosure width and height (m) |
Ld | Diamond width |
N | Unit vector normal to the wall |
Dimensionless local generated entropy | |
Nu | Local Nusselt number |
Pr | Prandtl number |
Ra | Rayleigh number |
Generated entropy (kJ/kg·K) | |
t | Dimensionless time () |
T | Dimensionless temperature [ |
Cold temperature (K) | |
Hot temperature (K) | |
To | Bulk temperature [To = (c+h)/2] (K) |
Dimensionless velocity vector () | |
x, y, z | Dimensionless Cartesian coordinates (, , ) |
Greek symbols
Thermal diffusivity (m2/s) | |
Thermal expansion coefficient (1/K) | |
Density (kg/m3) | |
Dynamic viscosity (kg/m·s) | |
Kinematic viscosity (m2/s) | |
Nanoparticles volume fraction | |
Irreversibility coefficient | |
Dimensionless vector potential () | |
Dimensionless vorticity () | |
Dimensionless temperature difference |
Subscripts
Av | Average |
x, y, z | Cartesian coordinates |
fr | Friction |
f | Fluid |
nf | Nanofluid |
s | Solid |
th | Thermal |
tot | Total |
Superscript
Dimensional variable |
References
- Bilgen, E.; Öztop, H. Natural convection heat transfer in partially open inclined square cavities. Int. J. Heat Mass Transf. 2005, 48, 1470–1479. [Google Scholar] [CrossRef]
- Prakash, M.; Kedare, S.B.; Nayak, J.K. Numerical study of natural convection loss from open cavities. Int. J. Ther. Sci. 2012, 51, 23–30. [Google Scholar] [CrossRef]
- Zamora, B.; Kaiser, A.S. 3D effects in numerical simulations of convective flows in cubical open cavities. Int. J. Ther. Sci. 2014, 77, 172–185. [Google Scholar] [CrossRef]
- Jafari, M.; Farhadi, M.; Akbarzade, S.; Ebrahimi, M. Lattice Boltzmann simulation of natural convection heat transfer of SWCNT-nanofluid in an open enclosure. Ain. Shams Eng. J. 2015, 6, 913–927. [Google Scholar] [CrossRef]
- Sheremet, M.A.; Pop, I.; Shenoy, A. Unsteady free convection in a porous open wavy cavity filled with a nanofluid using Buongiorno’s mathematical model. Int. Commun. Heat Mass Transf. 2015, 67, 66–72. [Google Scholar] [CrossRef]
- Kefayati, G.H.R. FDLBM simulation of entropy generation due to natural convection in an enclosure filled with non-Newtonian nanofluid. Powder Technol. 2015, 273, 176–190. [Google Scholar] [CrossRef]
- Kefayati, G.H.R. Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using Lattice Boltzmann method. Int. Commun. Heat Mass Transf. 2013, 40, 67–77. [Google Scholar] [CrossRef]
- Mejri, I.; Mahmoudi, A. MHD natural convection in a nanofluid-filled open enclosure with a sinusoidal boundary condition. Chem. Eng. Res. Design 2015, 98, 1–16. [Google Scholar] [CrossRef]
- Öztop, H.F.; Al-Salem, K. A review on entropy generation in natural and mixed convection heat transfer for energy systems. Renew. Sustain. Energy Rev. 2012, 16, 911–920. [Google Scholar] [CrossRef]
- Öztop, H.F.; Kolsi, L.; Al-Salem, K. Numerical study of three-dimensional combined buoyancy and thermocapillary convection and evaluation of entropy generation. Int. J. Numer. Methods Heat Fluid Flow 2014, 24, 148–168. [Google Scholar] [CrossRef]
- Famouri, M.; Hooman, K. Entropy generation for natural convection by heated partitions in a cavity. Int. Commun. Heat Mass Transf. 2008, 35, 492–502. [Google Scholar] [CrossRef]
- Mehrez, Z.; El Gafsi, A.; Belghith, A.; Le Quéré, P. MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity. J. Magn. Magn. Mater. 2015, 374, 214–224. [Google Scholar] [CrossRef]
- Koca, A. Numerical analysis of conjugate heat transfer in a partially open square cavity with a vertical heat source. Int. Commun. Heat Mass Transf. 2008, 35, 1385–1395. [Google Scholar] [CrossRef]
- Nasrin, R. Finite element simulation of hydromagnetic convective flow in an obstructed cavity. Int. Commun. Heat Mass Transf. 2011, 38, 625–632. [Google Scholar] [CrossRef]
- Hussein, A.K.; Kolsi, L.; Chand, R.; Sivasankaran, S.; Nikbakhti, R.; Li, D.; Borjini, M.N.; Habib, B.A. Three-dimensional unsteady natural convection and entropy generation in an inclined cubical trapezoidal cavity with an isothermal bottom wall. Alexandria Eng. J. 2016, 55, 203–214. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Kleinstreuer, C.; Moh’d, A.A.; Pop, I.; Sahin, A.Z.; Wongwises, S. A review of entropy generation in nanofluid flow. Int. J. Heat Mass Transf. 2013, 65, 514–532. [Google Scholar] [CrossRef]
- Costa, V.A.F.; Oliveira, M.S.A.; Sousa, A.C.M. Control of laminar natural convection in differentially heated square enclosures using solid inserts at the corners. Int. J. Heat Mass Transf. 2013, 46, 3529–3537. [Google Scholar] [CrossRef]
- Wakashima, S.; Saitoh, T.S. Benchmark solutions for natural convection in a cubic cavity using the high-order time-space method. Int. J. Heat Mass Transf. 2004, 47, 853–864. [Google Scholar] [CrossRef]
- Fusegi, T.; Hyun, J.M.; Kuwahara, K.; Farouk, B. A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure. Int. J. Heat Mass Transf. 1991, 34, 1543–1557. [Google Scholar] [CrossRef]
- Öztop, H.F.; Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 2008, 29, 1326–1336. [Google Scholar] [CrossRef]
- Jahanshahi, M.; Hosseinizadeh, S.F.; Alipanah, M.; Dehghani, A.; Vakilinejad, G.R. Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid. Int. Commun. Heat Mass Transf. 2010, 37, 687–694. [Google Scholar] [CrossRef]
Properties | Al2O3 | Water |
---|---|---|
Cp (J·kg−1·°C−1) | 765 | 4179 |
ρ (kg·m−3) | 3970 | 997.1 |
k (W·m−1·°C−1) | 40 | 0.613 |
α × 107 (m2·s−1) | 131.7 | 1.47 |
× 10−5 (K−1) | 0.85 | 21 |
Ra | Authors | (Center) | (Center) | (y) | (x) | |
---|---|---|---|---|---|---|
104 | Present work | 0.05528 | 1.1063 | 0.199 (0.826) | 0.221 (0.112) | 2.062 |
Wakashima and Saitho [18] | 0.05492 | 1.1018 | 0.198 (0.825) | 0.222 (0.117) | 2.062 | |
Fusegi et al. [19] | - | - | 0.201 (0.817) | 0.225 (0.117) | 2.1 | |
105 | Present work | 0.034 | 0.262 | 0.143 (0.847) | 0.245 (0.064) | 4.378 |
Wakashima and Saitoh [18] | 0.03403 | 0.2573 | 0.147 (0.85) | 0.246 (0.068) | 4.366 | |
Fusegi et al. [19] | - | - | 0.147 (0.855) | 0.247 (0.065) | 4.361 | |
106 | Present work | 0.01972 | 0.1284 | 0.0832 (0.847) | 0.254 (0.032) | 8.618 |
Wakashima and Saitho [18] | 0.01976 | 0.1366 | 0.0811 (0.86) | 0.2583 (0.032) | 8.6097 | |
Fusegi et al. [19] | - | - | 0.0841 (0.856) | 0.259 (0.033) | 8.77 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolsi, L.; Mahian, O.; Öztop, H.F.; Aich, W.; Borjini, M.N.; Abu-Hamdeh, N.; Aissia, H.B. 3D Buoyancy-Induced Flow and Entropy Generation of Nanofluid-Filled Open Cavities Having Adiabatic Diamond Shaped Obstacles. Entropy 2016, 18, 232. https://doi.org/10.3390/e18060232
Kolsi L, Mahian O, Öztop HF, Aich W, Borjini MN, Abu-Hamdeh N, Aissia HB. 3D Buoyancy-Induced Flow and Entropy Generation of Nanofluid-Filled Open Cavities Having Adiabatic Diamond Shaped Obstacles. Entropy. 2016; 18(6):232. https://doi.org/10.3390/e18060232
Chicago/Turabian StyleKolsi, Lioua, Omid Mahian, Hakan F. Öztop, Walid Aich, Mohamed Naceur Borjini, Nidal Abu-Hamdeh, and Habib Ben Aissia. 2016. "3D Buoyancy-Induced Flow and Entropy Generation of Nanofluid-Filled Open Cavities Having Adiabatic Diamond Shaped Obstacles" Entropy 18, no. 6: 232. https://doi.org/10.3390/e18060232
APA StyleKolsi, L., Mahian, O., Öztop, H. F., Aich, W., Borjini, M. N., Abu-Hamdeh, N., & Aissia, H. B. (2016). 3D Buoyancy-Induced Flow and Entropy Generation of Nanofluid-Filled Open Cavities Having Adiabatic Diamond Shaped Obstacles. Entropy, 18(6), 232. https://doi.org/10.3390/e18060232