The Structure of the Class of Maximum Tsallis–Havrda–Chavát Entropy Copulas
Abstract
:1. Introduction
2. Preliminaries
3. Results
- i
- Every ME copula has the functional form of a RU copula.
- ii
- Let and be inverse distribution functions on I, and set Then the function in Equation (6) is a copula-in fact a RU copula-if and only if
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BGS | Boltzmann–Gibbs–Shannon |
THC | Tsallis–Havrda–Chavát |
ME | maximum entropy |
RU | Rodríguez-Lallena and Úbeda-Flores |
FBST | Full Bayesian Significance Test |
References
- Tsallis, C. Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Pougaza, D.B.; Mohammad-Djafari, A. Maximum entropies copulas. In Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Chamoni, France, 4–9 July 2011; Volume 1305, pp. 329–336.
- Ellerman, D. Counting distinctions: On the conceptual foundations of Shannon’s information theory. Synthese 2009, 168, 119–149. [Google Scholar] [CrossRef]
- Pougaza, D.B.; Mohammad-Djafari, A. New copulas obtained by maximizing Tsallis or Rényi entropies. In Proceedings of AIP Conference, Garching, Germany, 15–20 July 2012; p. 238.
- Rodríguez-Lallena, J.A.; Úbeda-Flores, M. A new class of bivariate copulas. Stat. Probab. Lett. 2004, 3, 315–325. [Google Scholar] [CrossRef]
- Nelsen, R.B. An Introduction to Copulas; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- De Bragança Pereira, C.A.; Stern, J.M. Evidence and credibility: Full Bayesian significance test for precise hypotheses. Entropy 1999, 1, 99–110. [Google Scholar] [CrossRef]
- 2011 Sexually Transmitted Disease Surveillance. Available online: http://www.cdc.gov/std/stats11/ (accessed on 15 July 2016).
- Table 14. Gonorrhea—Reported Cases and Rates by State/Area and Region in Alphabetical Order, United States and Outlying Areas, 2007–2011. Available online: http://www.cdc.gov/std/stats11/tables/14.htm (accessed on 15 July 2016).
- Distribution of the Total Population by Federal Poverty Level (above and below 400% FPL). Available online: http://kff.org/other/state-indicator/population-up-to-400-fpl/ (accessed on 15 July 2016).
- Madruga, M.R.; Esteves, L.G.; Wechsler, S. On the bayesianity of Pereira-Stern tests. Test 2001, 10, 291–299. [Google Scholar] [CrossRef]
Setting | a | b | Ev |
---|---|---|---|
(i) | 1 | 1 | 0.02686 |
(ii) | 2 | 2 | 0.05580 |
(iii) | 2 | 4 | 0.01702 |
(iv) | 4 | 2 | 0.28670 |
(v) | 2 | 10 | 0.00050 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, J.E.; González-López, V.A.; Nelsen, R.B. The Structure of the Class of Maximum Tsallis–Havrda–Chavát Entropy Copulas. Entropy 2016, 18, 264. https://doi.org/10.3390/e18070264
García JE, González-López VA, Nelsen RB. The Structure of the Class of Maximum Tsallis–Havrda–Chavát Entropy Copulas. Entropy. 2016; 18(7):264. https://doi.org/10.3390/e18070264
Chicago/Turabian StyleGarcía, Jesús E., Verónica A. González-López, and Roger B. Nelsen. 2016. "The Structure of the Class of Maximum Tsallis–Havrda–Chavát Entropy Copulas" Entropy 18, no. 7: 264. https://doi.org/10.3390/e18070264
APA StyleGarcía, J. E., González-López, V. A., & Nelsen, R. B. (2016). The Structure of the Class of Maximum Tsallis–Havrda–Chavát Entropy Copulas. Entropy, 18(7), 264. https://doi.org/10.3390/e18070264