Hawking-Like Radiation from the Trapping Horizon of Both Homogeneous and Inhomogeneous Spherically Symmetric Spacetime Model of the Universe
Abstract
:1. Introduction
2. Radial Null Geodesic Approach: Hawking-Like Temperature
- The method is applicable only for massless particles;
- One has to use only Painleve type coordinates to avoid singularity at the horizon;
- There is a discrepancy of factor two in this method;
- There is no general method to include quantum effects.
3. Hamilton–Jacobi Method: Quantum Prescription
4. Hamilton–Jacobi Method in the Lemaitre–Tolman–Bondi Model
- (a)
- bounded:
- (b)
- marginally bounded:
- (c)
- unbounded:
5. Determination of Entropy: Area Law
6. Tunnelling Approach
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix. Calculation of Kodama Vector and Surface Gravity
References
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Hawking, S.W. Black hole explosions? Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Wald, R.M. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics; University of Chicago Press: Chicago, IL, USA, 1994. [Google Scholar]
- Hartle, J.B.; Hawking, S.W. Path-integral derivation of black-hole radiance. Phys. Rev. D 1976, 13, 2188. [Google Scholar] [CrossRef]
- Parikh, M.K.; Wilczek, F. Hawking Radiation as Tunneling. Phys. Rev. Lett. 2000, 85, 5024. [Google Scholar] [CrossRef] [PubMed]
- Parikh, M.K. Membrane Horizons: The Black Holes’ New Clothes. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1998. [Google Scholar]
- Srinivasan, K.; Padmanabhan, T. Particle production and complex path analysis. Phys. Rev. D 1999, 60, 024007. [Google Scholar] [CrossRef]
- Sankarnarayanan, S.; Padmanabhan, T.; Srinivasan, K. Hawking radiation in different coordinate settings: Complex paths approach. Class. Quantum Grav. 2002, 19. [Google Scholar] [CrossRef]
- Corda, C. Non-strictly black body spectrum from the tunnelling mechanism. Ann. Phys. 2013, 337, 49–54. [Google Scholar] [CrossRef]
- Chakraborty, S.; Saha, S.; Corda, C. Quantum Corrected Non-Thermal Radiation Spectrum from the Tunnelling Mechanism. Galaxies 2015, 3, 103–112. [Google Scholar] [CrossRef]
- Corda, C.; Chakraborty, S.; Saha, S. Light from black holes and uncertainty in quantum gravity. EJTP 2015, 12, 107–116. [Google Scholar]
- Parikh, M.K. New coordinates for de Sitter space and de Sitter radiation. Phys. Lett. B 2002, 546, 189–195. [Google Scholar] [CrossRef]
- Parikh, M.K. A Secret Tunnel Through The Horizon. Gen. Relativ. Grav. 2004, 36, 2419–2422. [Google Scholar] [CrossRef]
- Parikh, M.K. Energy Conservation and Hawking Radiation. 2004; arXiv:hep-th/0402166. [Google Scholar]
- Kraus, P.; Wilczek, F. Self-Interaction Correction to Black Hole Radiance. Nucl. Phys. B 1995, 433, 403–420. [Google Scholar] [CrossRef]
- Kraus, P.; Keski-Vakkuri, E. Microcanonical D-Branes and Back Reaction. Nucl. Phys. B 1997, 491, 249–262. [Google Scholar]
- Corda, C. Time-dependent Schrodinger equation for black hole evaporation: No information loss. Ann. Phys. 2015, 353, 71–82. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of Spacetime: The Einstein Equation of State. Phys. Rev. Lett. 1995, 75, 1260. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.G.; Kim, S.P. First Law of Thermodynamics and Friedmann Equations of Friedmann–Robertson– Walker Universe. J. High Energy Phys. 2005, 2005. [Google Scholar] [CrossRef]
- Akbar, M.; Cai, R.G. Friedmann equations of FRW universe in scalar-tensor gravity, f (R) gravity and first law of thermodynamics. Phys. Lett. B 2006, 635, 7–10. [Google Scholar] [CrossRef]
- Eling, C.; Guedens, R.; Jacobson, T. Nonequilibrium Thermodynamics of Spacetime. Phys. Rev. Lett. 2006, 96, 121301. [Google Scholar] [CrossRef] [PubMed]
- Akbar, M.; Cai, R.G. Thermodynamic behavior of field equations for f (R) gravity. Phys. Lett. B 2007, 648, 243–248. [Google Scholar] [CrossRef]
- Corda, C. Precise model of Hawking radiation from the tunnelling mechanism. Class. Quant. Grav. 2015, 32, 195007. [Google Scholar] [CrossRef]
- Corda, C. Black hole quantum spectrum. Eur. Phys. J. C 2013, 73. [Google Scholar] [CrossRef]
- Corda, C. Effective temperature, Hawking radiation and quasinormal modes. Int. J. Mod. Phys. D 2012, 21, 1242023. [Google Scholar] [CrossRef]
- Bohr, N. XXXVII. On the constitution of atoms and molecules. Philos. Mag. 1913, 26, 476–502. [Google Scholar] [CrossRef]
- Hayward, S.A.; Criscienzo, R.D.; Vanzo, L.; Nadalini, M.; Zerbini, S. Local Hawking temperature for dynamical black holes. Class. Quantum Grav. 2009, 26, 062001. [Google Scholar] [CrossRef]
- Cai, R.G.; Cao, L.M.; Hu, Y.P. Hawking radiation of an apparent horizon in a FRW universe. Class. Quantum Grav. 2009, 26, 155018. [Google Scholar] [CrossRef]
- Kodama, H. Conserved Energy Flux for the Spherically Symmetric System and the Backreaction Problem in the Black Hole Evaporation. Prog. Theor. Phys. 1980, 63, 1217–1228. [Google Scholar] [CrossRef]
- Minamitsuji, M.; Sasaki, M. Local conservation law and dark radiation in cosmological braneworld. Phys. Rev. D 2004, 70, 044021. [Google Scholar] [CrossRef]
- Racz, I. On the use of the Kodama vector field in spherically symmetric dynamical problems. Class. Quantum Grav. 2006, 23. [Google Scholar] [CrossRef]
- Medved, A.J.M. Radiation via tunneling from a de Sitter cosmological horizon. Phys. Rev. D 2002, 66, 124009. [Google Scholar] [CrossRef]
- Painlevé, P. La mécanique classique et la théorie de la relativité. C. R. Acad. Sci. 1921, 173, 677–680. (In French) [Google Scholar]
- Zhu, T. Hawking-like radiation as tunneling from the apparent horizon in an FRW universe. Int. J. Mod. Phys. D 2010, 19, 159–169. [Google Scholar] [CrossRef]
- Banerjee, R.; Majhi, B.R. Quantum Tunneling Beyond Semiclassical Approximation. J. High Energy Phys. 2008, 6. [Google Scholar] [CrossRef]
- Akhmedov, E.T.; Akhmedova, V.; Singleton, D. Hawking temperature in the tunneling picture. Phys. Lett. B 2006, 642, 124–128. [Google Scholar] [CrossRef]
- Akhmedov, E.T.; Akhmedova, V.; Pilling, T.; Singleton, D. Thermal radiation of various gravitational backgrounds. Int. J. Mod. Phys. A 2005, 22, 1705–1715. [Google Scholar] [CrossRef]
- Pilling, T. Black hole thermodynamics and the factor of 2 problem. Phys. Lett. B 2008, 660, 402–406. [Google Scholar] [CrossRef]
- Nakamura, T. Factor Two Discrepancy of Hawking Radiation Temperature. 2007; arXiv:0706.2916. [Google Scholar]
- Angheben, M.; Nadalini, M.; Vanzo, L.; Zerbini, S. Hawking Radiation as Tunneling for Extremal and Rotating Black Holes. J. High Energy Phys. 2005, 5. [Google Scholar] [CrossRef]
- Kerner, R.; Mann, R.B. Tunnelling, temperature, and Taub-NUT black holes. Phys. Rev. D 2006, 73, 104010. [Google Scholar] [CrossRef]
- Yale, A. There are no quantum corrections to the Hawking temperature via tunneling from a fixed background. Eur. Phys. J. C 2011, 71. [Google Scholar] [CrossRef]
- Singleton, D.; Vagenas, E.C.; Zhu, T. Self-similarity, conservation of entropy/bits and the black hole information puzzle. J. High Energy Phys. 2014, 1405. [Google Scholar] [CrossRef]
- Fursaev, D.N. Temperature and entropy of a quantum black hole and conformal anomaly. Phys. Rev. D 1995, 51. [Google Scholar] [CrossRef]
- Akhmedov, E.T.; Pilling, T.; Singleton, D. Subtleties in the quasi-classical calculation of Hawking radiation. Int. J. Mod. Phys. D 2008, 17, 2453–2458. [Google Scholar] [CrossRef]
- Akhmedova, V.; Pilling, T.; de Gill, A.; Singleton, D. Temporal contribution to gravitational WKB-like calculations. Phys. Lett. B 2008, 666, 269–271. [Google Scholar] [CrossRef]
- Akhmedova, V.; Pilling, T.; de Gill, A.; Singleton, D. Comments on anomaly versus WKB/tunneling methods for calculating Unruh radiation. Phys. Lett. B 2009, 673, 227–231. [Google Scholar] [CrossRef]
- Joshi, P.S. Global Aspects in Gravitation and Cosmology; Oxford University Press: Oxford, UK, 1979. [Google Scholar]
- Banerjee, A.; Debnath, U.; Chakraborty, S. Naked singularities in higher dimensional gravitational collapse. Int. J. Mod. Phys. D 2004, 12, 1255–1263. [Google Scholar] [CrossRef]
- Debnath, U.; Chakraborty, S. Gravitational collapse in higher dimensional space-time. Gen. Relativ. Grav. 2004, 36, 1243–1253. [Google Scholar] [CrossRef]
- Debnath, U.; Chakraborty, S. The study of gravitational collapse model in higher dimensional spacetime. Mod. Phys. Lett. A 2003, 18, 1265–1271. [Google Scholar] [CrossRef]
- Setare, M.R.; Sepehri, A.; Kamali, V. Constructing warm inflationary model in brane-antibrane system. Phys. Lett. B 2014, 735, 84–89. [Google Scholar] [CrossRef]
- González-Díaz, P.F.; Sigüenza, C.L. Phantom thermodynamics. Nucl. Phys. B 2004, 697, 363–386. [Google Scholar] [CrossRef]
- Cai, R.G.; Cao, L.M. Unified First Law and Thermodynamics of Apparent Horizon in FRW Universe. Phys. Rev. D 2007, 75, 064008. [Google Scholar] [CrossRef]
- Misner, C.W.; Sharp, D.H. Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational Collapse. Phys. Rev. 1964, 136. [Google Scholar] [CrossRef]
- Hayward, S.A. Gravitational energy in spherical symmetry. Phys. Rev. D 1996, 53. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman and Company: London, UK, 1973. [Google Scholar]
- Criscienzo, R.D.; Hayward, S.A.; Nadalini, M.; Vanzo, L.; Zerbini, S. Hamilton-Jacobi tunneling method for dynamical horizons in different coordinate gauges. Class. Quantum Grav. 2010, 27, 015006. [Google Scholar] [CrossRef]
- Mann, R.B.; Solodukhin, S.N. Universality of Quantum Entropy for Extreme Black Holes. Nucl. Phys. B 1998, 523, 293–307. [Google Scholar] [CrossRef]
- Kaul, R.K.; Mazumder, P. Logarithmic Correction to the Bekenstein-Hawking Entropy. Phys. Rev. Lett. 2000, 84. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Mitra, P. An improved estimate of black hole entropy in the quantum geometry approach. Phys. Lett. B 2005, 616, 114–117. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, S.; Saha, S.; Corda, C. Hawking-Like Radiation from the Trapping Horizon of Both Homogeneous and Inhomogeneous Spherically Symmetric Spacetime Model of the Universe. Entropy 2016, 18, 287. https://doi.org/10.3390/e18080287
Chakraborty S, Saha S, Corda C. Hawking-Like Radiation from the Trapping Horizon of Both Homogeneous and Inhomogeneous Spherically Symmetric Spacetime Model of the Universe. Entropy. 2016; 18(8):287. https://doi.org/10.3390/e18080287
Chicago/Turabian StyleChakraborty, Subenoy, Subhajit Saha, and Christian Corda. 2016. "Hawking-Like Radiation from the Trapping Horizon of Both Homogeneous and Inhomogeneous Spherically Symmetric Spacetime Model of the Universe" Entropy 18, no. 8: 287. https://doi.org/10.3390/e18080287
APA StyleChakraborty, S., Saha, S., & Corda, C. (2016). Hawking-Like Radiation from the Trapping Horizon of Both Homogeneous and Inhomogeneous Spherically Symmetric Spacetime Model of the Universe. Entropy, 18(8), 287. https://doi.org/10.3390/e18080287